

Switching Regulator Series

Buck Converter with Integrated FET BD9E302EFJ EVK

BD9E302EFJ-EVK-001 (12V→5V, 3A)

Introduction

This user's guide will provide the necessary steps to operate the EVK of ROHM's BDE302EFJ 1channel Buck DC/DC converter. This include the external parts, operating procedures and application data.

Description

BD9E302EFJ-EVK-001 Evaluation board delivers an output 5 volts from an input 7.2 to 28 volts using BD9E302EFJ, a synchronous rectification step-down DC/DC converter integrated circuit, with output current rating of maximum 3A. It adopts a SLLM™ (Simple Light Load Mode) control system which can operate low power consumption in light load condition. It has a soft start function to prevent rush current at startup, UVLO (under voltage lock out), TSD (thermal shutdown detection), OCP (over current protection) and OVP (over voltage protection) protection functions.

Application

Consumer applications such as home appliance Secondary power supply and Adapter equipment Telecommunication devices

Operating Limits

These are representative values, and it is not a guaranteed against the characteristics.

Parameter	Min	Тур	Max	Units	Conditions
Input Voltage Range	7.2		28.0	V	
Output Voltage		5.0		V	R1=430kΩ, R2=82kΩ
Output Current Range			3.0	Α	
Operating Frequency		550		kHz	
Maximum Efficiency		91		%	V _{IN} =12V, I _{OUT} =1A

EVK

Figure 1. BD9E302EFJ-EVK-001 (Top View)

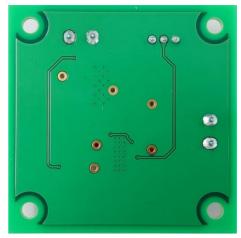


Figure 2. BD9E302EFJ-EVK-001 (Bottom View)

EVK Schematic

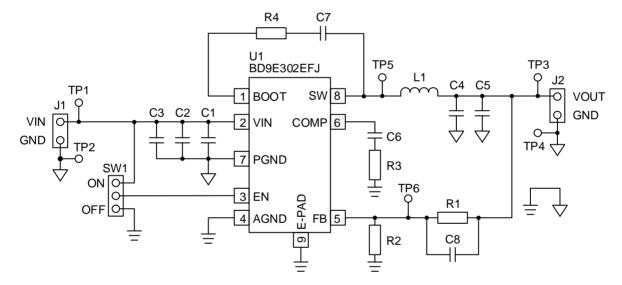


Figure 3. BD9E302EFJ-EVK-001 Circuit Diagram

Operation Procedure

Below is the procedure to operate the EVK.

- 1. Turn off the power supply and connect power supply's GND pin to the GND pin of the terminal block J1.
- 2. Connect the power supply's VCC pin to the VIN pin of the terminal block J1.
- 3. Check if the shunt jumper of SW1 is at position ON (intermediate-terminal connect to H-side terminal, the EN pin of IC is pulled high)
- 4. Check if the electronic load is turned off and connect the electronic load to the VOUT pin and the GND pin of the terminal block J2.
- 5. Connect the voltmeter to the VOUT pin and the GND pin of the terminal block J2.
- 6. Turn on the power supply and check if the measured value of the voltmeter is 5V.
- 7. Turn on the electronic load.

Notes:

The board does not support hot plugging protection. Do not perform hot plugging on this board.

Enable-Pin

To minimize current consumption during standby-mode and normal operation, Enable-mode can be switched by controlling EN pin (3pin) of the IC. Standby-mode is enabled by shorting Jumper-pin of SW1 between intermediate-terminal and OFF-side terminal and normal-mode operation by shorting between intermediate-terminal and ON-side terminal.

It also can be switched between standby-mode and normal-mode operation by removing Jumper-pin and controlling the voltage between EN and GND-terminal. Standby-mode is enabled when the voltage of EN is under 0.8V, and normal-mode operation when it is over 2.5V.

Bill of Materials

Table 1. Bill of Materials

Reference Designator	Туре	Value	Description	Manufacturer Part Number	Manufacturer	Configuration (mm)
C1, C7	Ceramic Capacitor	0.1µF	50V, X5R, ±10%	GRM155R61H104KE14	MURATA	1005
C2	Ceramic Capacitor	10µF	100V, X7S, ±10%	GRM32EC72A106KE05	MURATA	3225
C3	Ceramic Capacitor	-	Not installed	-	-	-
C4, C5	Ceramic Capacitor	22µF	25V, X5R, ±20%	TMK212BBJ226MG-TT	TAIYO YUDEN	2012
C6	Ceramic Capacitor	6800pF	50V	-	-	1608
C8	Ceramic Capacitor	-	Not installed	-	-	-
L1	Inductor	4.7µH	±30%, DCR=23mΩmax, 4.1A	CLF7045NIT-4R7	TDK	7470
R1	Resistor	430kΩ	1/16W, ±1%	-	-	1005
R2	Resistor	82kΩ	1/16W, ±1%	-	-	1005
R3	Resistor	10kΩ	1/16W, ±1%	-	-	1005
R4	Resistor	0Ω	Jumper	-	-	1005
SW1	Pin header	-	2.54mm x 3 contacts	61300311121	Wurth Elektronik	-
U1	IC	-	Buck DC/DC Converter	BD9E302EFJ	ROHM	HTSOP-J8
J1, J2	Terminal Block	-	2 contacts, 15A, 14 to 22AWG	691102710002	Wurth Elektronik	-
-	Jumper	-	Jumper pin for SW1	60900213421	Wurth Elektronik	-

© 2020 ROHM Co., Ltd.

No. 63UG039E Rev.002

SEP.2021

Board Layout

Number of Layers	Material	Board Size	Copper Thickness
4	FR-4	50mm x 50mm x 1.6mmt	1oz (35µm)

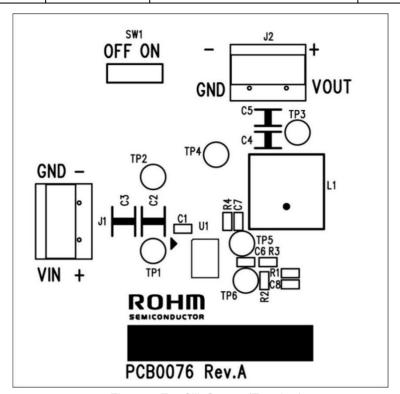


Figure 5. Top Silk Screen (Top view)

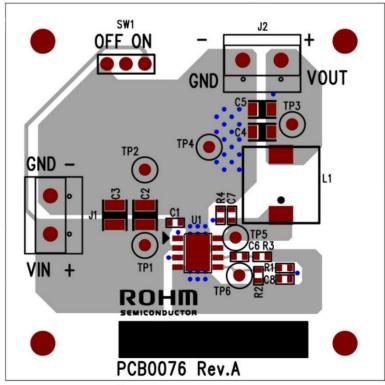


Figure 6. Top Silk Screen and Layout (Top view)

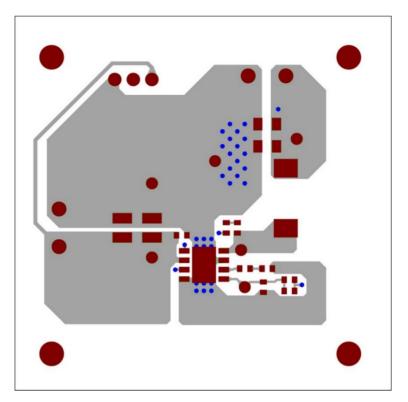


Figure 7. Top Side Layout (Top view)

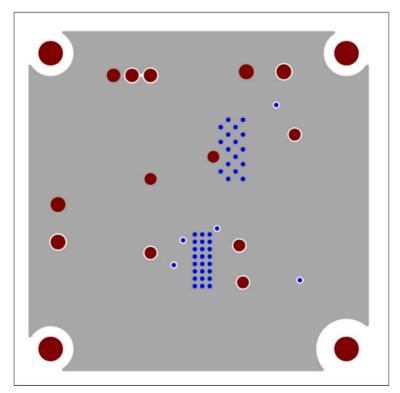


Figure 8. Middle1 Layer Layout (Top view)

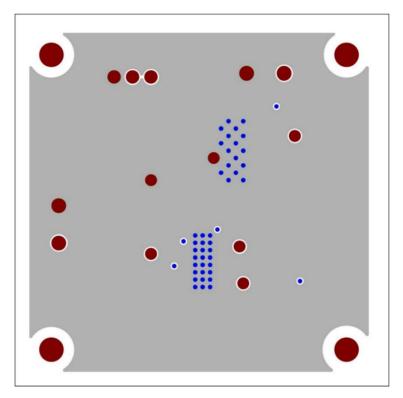


Figure 9. Middle2 Layer Layout (Top view)

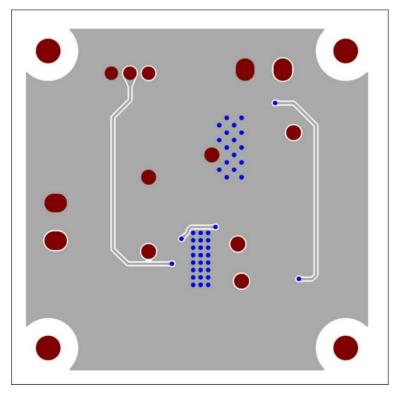


Figure 10. Bottom Side Layout (Top view)

Reference Application Data

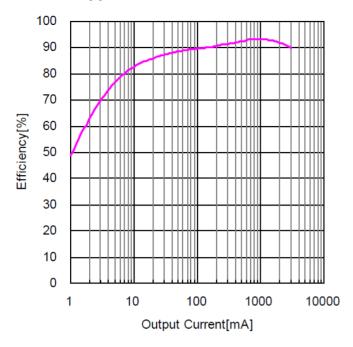


Figure 11. Efficiency vs Load Current (V_{IN}=12V)

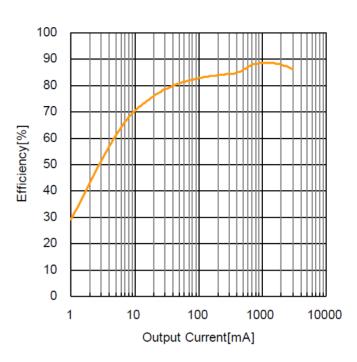


Figure 12. Efficiency vs Load Current (V_{IN}=24V)

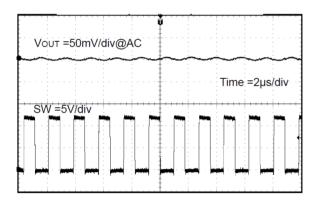


Figure 13. Output Voltage Ripple Wave (V_{IN}=12V)

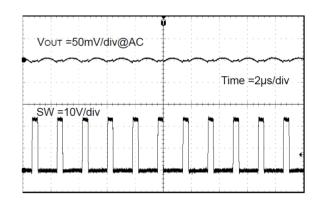


Figure 14. Output Voltage Ripple Wave (V_{IN}=24V)

© 2020 ROHM Co., Ltd. No. 63UG039E Rev.002 7/9 SEP.2021

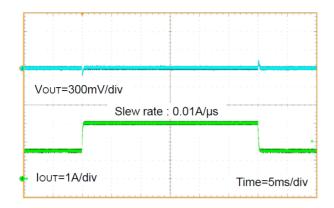


Figure 15. Load Transient Characteristics (V_{IN} = 12V, I_{OUT} = 1.5A - 3A)

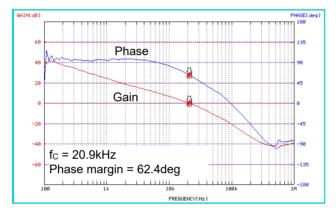


Figure 17. Loop Response $(V_{IN} = 12V, I_{OUT} = 3A)$

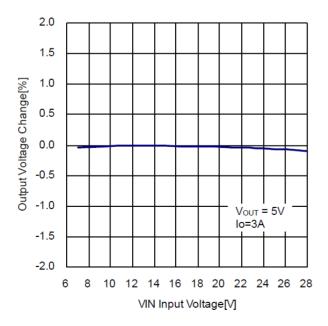


Figure 19. Vout Line Regulation

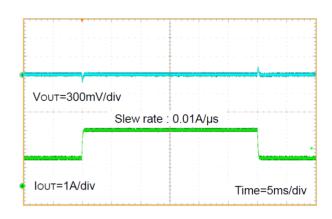


Figure 16. Load Transient Characteristics (V_{IN} = 24V, I_{OUT} = 1.5A - 3A)

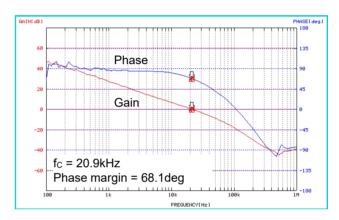


Figure 18. Loop Response (V_{IN} = 24V, I_{OUT} = 3A)

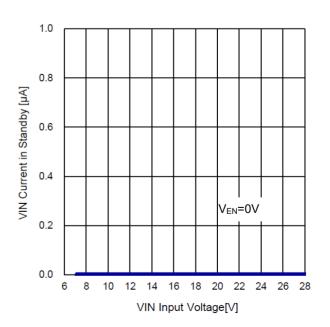


Figure 20. V_{IN} Current in Standby

Revision History

Date	Revision Number	Description
22. Jul. 2020	001	Initial release
27. Sep. 2021	002	P.2 Update Figure 3. BD9E302EFJ-EVK-001 Circuit Diagram

© 2020 ROHM Co., Ltd.

9/9

SEP.2021

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

单击下面可查看定价,库存,交付和生命周期等信息

>>ROHM Semiconductor(罗姆)