

Structure : Silicon Monolithic Integrated Circuit

Product Name : Power Driver For CD Players

Device Name : BA5968FP

Features

 5-ch driver comprising of 4 channels for BTL drivers and 1 channel for reversible drivers

- Use of the HSOP-28PIN power package allows downsizing of the set.
- A built-in thermal shutdown circuit installed.
- A wide dynamic range (6.0V (Typ.) when VCC=8V, RL=8Ω)

<BTL Driver>

 For 2 of 4 channels, the input terminal is connected to the general OP-AMP, which allows a differential input and the addition of signals.

<Loading Driver>

- A built-in brake function installed
- A built-in diode for protecting against over-voltage caused by a counter electromotive force
- The output voltage control terminal (LDCTL) is used to control the output voltage. (Applicable only to the voltage on the 'H' side)

O ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Parameter	Symbol	Limits	Unit
Power Supply Voltage	Vcc	13.5	٧
Power Dissipation	Pd	1.7 *1	W
Operating Temperature Range	Topr	-40 to 85	°C
Storage Temperature Range	Tstg	-55 to 150	°C

^{*1} When mounted on the glass/epoxy board with the size: 70 mm×70 mm, the thickness: 1.6 mm, and the rate of copper foil occupancy area: 3% or less.

Over Ta=25°C, derating at the rate of 13.6mV/°C.

O RECOMMENDED OPERATING CONDITIONS

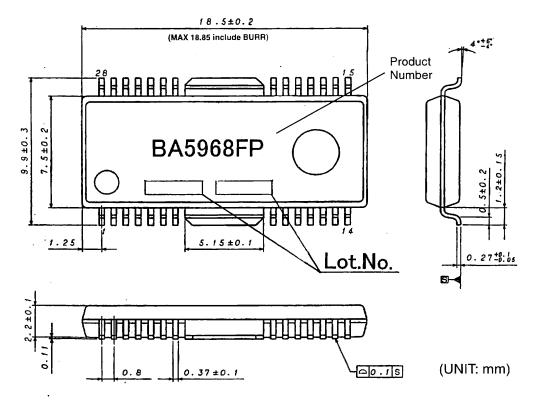
(To determine a power supply voltage, the power dissipation must be taken into consideration.)

VCC 4.3 to 9V

This product has not been checked for the strategic materials (or service) defined in the Foreign
Exchange and Foreign Trade Control Low of Japan so that a verification work is required before

exporting it.

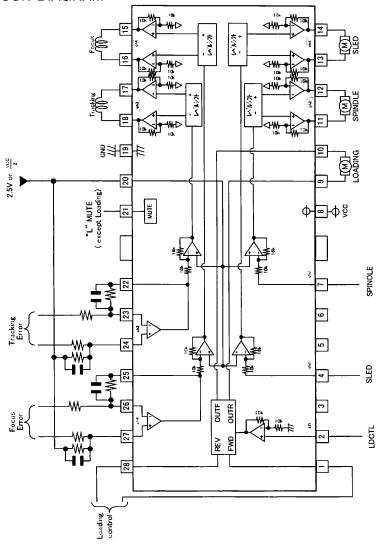
Not designed for radiation resistance.



O ELECTRIC CHARACTERISTICS

_(Ta=25°C, Vcc=8V, BIAS=2.5V, RL=8Ω, unless otherwise noted.)

Slew Hate SHOP - 1 - W/Us output <loading driver=""> Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V Sum of upper side + lo side, IL=200mA Output Saturation Voltage 1 F/R Difference Output Saturation Voltage 2 VSAT2 0.7 1.2 2.0 V Sum of upper side + lo side, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL <loading input="" logic=""></loading></loading>	Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Output Offset Voltage	Quiescent Circuit Current	ICC	-	24	34	mA	No load applied
Maximum Output Amplitude	<btl driver=""></btl>				-		
Voltage Gain GVC 14.0 16.1 18.0 Db	Output Offset Voltage	V00	-50	0	50		
Mute ON Voltage	Maximum Output Amplitude			6.0	-	•	
Mute OFF Voltage VMTOFF 1.5 - V Mute Terminal Input Current IMUTE - 180 270 μA VMUTE=5V Bias Drop Mute ON Voltage VBMUTE ON - - 0.5 V Bias Drop Mute OFF Voltage VBMUTE OFF 1.1 - - V Bias Terminal Input Current IBIAS - 75 120 μA VBIAS=2.5V - Pre-stage Operational Amplifier> Common Mode Input Range VICM 0.5 - 6.8 V Input Offset Voltage VOFOP -6 0 6 mV Input Offset Voltage VOHOP 5 - V Coutput Oriving Current Sink ISIN 1 - - MA GND with 50Ω			14.0	16.1			
Mute Terminal Input Current IMUTE - 180 270 μA VMUTE=5V			-	-	0.5		
Bias Drop Mute ON Voltage VBMUTE ON - - 0.5 V			1.5	-	-		
Bias Drop Mute OFF Voltage VBMUTE OFF 1.1 -			-	180			VMUTE=5V
Bias Terminal Input Current IBIAS - 75 120	Bias Drop Mute ON Voltage			-	0.5		
Common Mode Input Range			1.1		<u> </u>	<u> </u>	
Common Mode Input Range	Bias Terminal Input Current	IBIAS		75	120	μΑ	VBIAS=2.5V
Input Offset Voltage	<pre-stage amplifier="" operational=""></pre-stage>						
Input Bias Current	Common Mode Input Range	VICM	0.5		6.8	V	
Input Bias Current	Input Offset Voltage	VOFOP	-6	0	6	mV	
Low-level Output Voltage VOLOP - - 0.5 V Output Driving Current Sink ISIN 1 - - mA VCC with 50Ω Output Driving Current Source ISOU 1 - - MA GND with 50Ω Slew Rate SROP - 1 - V/us 100kHz square wave, 2 output <loading driver=""> Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V Sum of upper side + loside, IL=200mA Output Saturation Voltage 1 F/R Difference ΔVSAT1 - - 0.1 V F/R difference of Output Saturation Voltage 1 Output Saturation Voltage 2 VSAT2 0.7 1.2 2.0 V Sum of upper side + loside, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""></loading></loading>		UBOP	-	-	300	nA	
Output Driving Current Sink ISIN 1 - - mA VCC with 50Ω Output Driving Current Source ISOU 1 - - MA GND with 50Ω Slew Rate SROP - 1 - V/us 100kHz square wave, 20 output Loading Driver> Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V Sum of upper side + loside, IL=200mA Output Saturation Voltage 1 Output Saturation Voltage 1 Output Saturation Voltage 2 VSAT2 O.7 1.2 2.0 V Sum of upper side + loside, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) Loading Logic Input> 	High-level Output Voltage	VOHOP	7.5		-	V	
Output Driving Current Source ISOU 1 - - MA GND with 50Ω Slew Rate SROP - 1 - V/us 100kHz square wave, 20 output <loading driver=""> Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V Sum of upper side + loside, IL=200mA Output Saturation Voltage 1 F/R Difference ΔVSAT1 - - 0.1 V F/R difference of Output Saturation Voltage 1 Output Saturation Voltage 2 VSAT2 0.7 1.2 2.0 V Sum of upper side + loside, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""> Voltage Input Voltage Gain Voltage Gain</loading></loading>	Low-level Output Voltage	VOLOP	-		0.5	V	
Slew Rate SROP - 1 - V/us 100kHz square wave, 2 output <loading driver=""> Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V Sum of upper side + lo side, IL=200mA Output Saturation Voltage 1 F/R ΔVSAT1 0.1 V F/R difference of Output Saturation Voltage 1 Output Saturation Voltage 2 VSAT2 0.7 1.2 2.0 V Sum of upper side + lo side, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""></loading></loading>	Output Driving Current Sink	ISIN	1	-	-	mA	VCC with 50Ω
Slew Rate SROP - 1 - V/Us output output output Coutput Saturation Voltage 1 Output Saturation Voltage 1 F/R Difference Output Saturation Voltage 1 F/R Difference Output Saturation Voltage 2 VSAT2 VSAT2 VSAT2 User SROP - 1 - V/Us output Satur output Saturation Voltage 1 V Sum of upper side + los side, IL=200mA V Sum of upper side + los side, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 4B VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""></loading>	Output Driving Current Source	ISOU	1	-	•	MA	GND with 50Ω
Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V Sum of upper side + lo side, IL=200mA Output Saturation Voltage 1 F/R Difference ΔVSAT1 - - 0.1 V F/R difference of Output Saturation Voltage 1 Output Saturation Voltage 2 VSAT2 0.7 1.2 2.0 V Sum of upper side + lo side, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""></loading>	Slew Rate	SROP	-	1	-	V/us	100kHz square wave, 2Vpp output
Output Saturation Voltage 1 VSAT1 0.6 0.9 1.4 V side, IL=200mA Output Saturation Voltage 1 F/R Difference ΔVSAT1 - - 0.1 V F/R difference of Output Saturation Voltage 1 Output Saturation Voltage 2 VSAT2 0.7 1.2 2.0 V Sum of upper side + loside, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""></loading>	<loading driver=""></loading>						
Difference Output Saturation Voltage 2 VSAT2 VSAT2 0.7 1.2 2.0 V Sum of upper side + lo side, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V)	Output Saturation Voltage 1	VSAT1	0.6	0.9	1.4	V	
Output Saturation Voltage 2 VSA12 0.7 1.2 2.0 V side, IL=500mA Voltage Gain LGVC 6.6 8.6 10.6 dB VOLD over VLDCTL (VLDCTL=2V) <loading input="" logic=""> VOLD over VLDCTL (VLDCTL=2V)</loading>		ΔVSAT1	-	-	0.1	V	F/R difference of Output Saturation Voltage 1
Voltage Gain LGVC 6.6 8.6 10.6 dB (VLDCTL=2V) <loading input="" logic=""></loading>	Output Saturation Voltage 2	VSAT2	0.7	1.2	2.0	V	Sum of upper side + lower side, IL=500mA
	Voltage Gain	LGVC	6.6	8.6	10.6	dB	
	<loading input="" logic=""></loading>		-				
Imput dign-level voltage Video 1.5 - VCO V	Input High-level Voltage	VIHLD	1.5	-	VCC	V	
Input Low-level Voltage VILLD -0.3 - 0.5 V		VILLD	-0.3	· .	0.5	V	
Input High-level Current IIHLD - 180 270 μA VFWD=VREV=5V		IIHLD	-	180	270	цΑ	VFWD=VREV=5V


O OUTLINE DIMENSIONS, SYMBOLS

Rev. A

O APPLICATION CIRCUIT DIAGRAM

Resistance unit: $[\Omega]$

O PIN NUMBERS, PIN NAMES

No.	Pin name	Description	No.	Pin name	Description
1	FWD	Loading driver FWD input terminal	15	VO4(+)	Driver CH4 positive output
2	LDCTL	Loading driver output voltage control terminal	16	VO4(-)	Driver CH4 negative output
3	TEST	TEST	17	VO3(+)	Driver CH3 positive output
4	IN1	CH1 input terminal	18	VO3(-)	Driver CH3 negative output
5	TEST	TEST	19	GND	Ground terminal
6	TEST	TEST	20	BIAS	Bias input terminal
7	IN2	CH2 input terminal	21	MUTE	Mute control terminal
8	VCC	Power supply terminal	22	OPOT3	CH3 pre-stage amp output terminal
9	VOL(-)	Loading driver negative output	23	OPIN3(-)	CH3 pre-stage amp inverted input terminal
10	VOL(+)	Loading driver positive output	24	OPIN3(+)	CH3 pre-stage amp non-inverted input terminal
11	VO2(-)	Driver CH2 negative output	25	OPOUT4	CH4 pre-stage amp output terminal
12	VO2(+)	Driver CH2 positive output	26	OPIN4(-)	CH4 pre-stage amp inverted input terminal
13	VO1(-)	Driver CH1 negative output	27	OPIN4(+)	CH4 pre-stage amp non-inverted input terminal
14	VO1(+)	Driver CH1 positive output	28	REV	Loading driver REV input terminal

Note: The positive or negative polarity of driver outputs is determined by the input polarity.

(For example, when the voltage on the pin 4 is HIGH, the output voltage on the pin 14 becomes HIGH.)

O CAUTIONS ON USE

- (1) Setting the voltage on the Mute terminal to open or 0.5V or less will activate a mute function for the output current. Under condition of normal use, the Mute terminal should be pull-up to 1.5V or above.
- (2) When the voltage applied on the Bias terminal (pin 20) has dropped to 0.5V (Typ.) or less, the mute function will be activated. Under conditions of normal use, it should be set to 1.1V or above.
- (3) When the power supply voltage drops to 3.8V (Typ.) or less, the internal circuit will turn OFF and, when recovering to 4.0V (Typ.) or above, the circuit will startup again.
- (4) Thermal shutdown (TSD) or power supply voltage drop will activate the mute functions on all drivers, while mute ON or bias terminal voltage drop will on the BTL drivers except loading drivers. The pre-stage OP-amps cannot be muted in any cases described above. While muting, the output terminals of the BTL driver are set to the value of the internal bias voltage ((VCC-0.7)/2V).
- (5) Loading Driver Logic Input Truth Table

FWD (1pin)	REV (28pin)	VOL (+) (10pin)	VOL (-) (9pin)	Function
L	Ĺ	OPEN	OPEN	Open mode
L	Н	L	Н	Reverse mode
Н	L	Н	L	Forward mode
Н	Н	L	L	Brake mode

The input circuitry for PIN 1 and PIN 28 is designed to avoid the driver output upper/lower transistors from turning ON synchronously, but, for better reliability, the motor positive/negative inversion input must stay once in the open mode. It is recommendable to set the open mode period to 10msec or above.

The potential between the outputs can be controlled by the LDCTL terminal (PIN 2). It outputs the voltage of 2.7 times (8.6dB Typ.) of the input at PIN 2.

- (6) Even though a radiating fin is connected to the GND inside of the package, it must be connected to the external GND.
- (7) Basically, applying a voltage below the IC sub-potential to any terminals must be avoided. Due to a counter electromotive force of the load, if the output on each driver has dropped to the IC sub-potential (GND) or less, an operation margin must be considered and examined.
- (8) The TEST terminal must be set to open.
- (9) About absolute maximum ratings

Exceeding the absolute maximum ratings, such as the applied voltage or the operating temperature range, may cause permanent device damage. As these cases cannot be limited to the broken short mode or the open mode, if a special mode where the absolute maximum ratings may be exceeded is assumed, it is recommended to take mechanical safety measures such as attaching fuses.

(10) About power supply lines

As a measure against the back current regenerated by a counter electromotive force of the motor, a capacitor to be used as a regenerated-current path can be installed between the power supply and GND and its capacitance value should be determined after careful check that any problems, for example, a leak capacitance of the electrolytic capacitor at low temperature, are not found in various characteristics.

(11) About GND potential

The electric potential of the GND terminal must be kept lowest in the circuitry at any operation states.

(12) About thermal design

With consideration of the power dissipation (Pd) under conditions of actual use, a thermal design provided with an enough margin should be done.

(13) About operations in a strong electric field

When used in a strong electric field, note that a malfunction may occur.

(14) ASO

When using this IC, the output Tr must be set not to exceed the values specified in the absolute maximum ratings and ASO.

(15) Thermal shutdown circuit

This IC incorporates a thermal shutdown circuit (TSD circuit). When the chip temperature reaches the value shown below, the coil output to the motor will be set to open.

The thermal shutdown circuit is designed only to shut off the IC from a thermal runaway and not intended to protect or guarantee the entire IC functions.

Therefore, users cannot assume that the TSD circuit once activated can be used continuously in the subsequent operations.

TSD ON Temperature	Hysteresis Temperature
[°C] (typ.)	[°C] (typ.)
175	25

(16) About earth wiring patterns

- When a small signal GND and a large current GND are provided, it is recommended that the large current GND pattern and the small signal GND pattern should be separated and grounded at a single point of the reference point of the set in order to prevent the voltage of the small signal GND from being affected by a voltage change caused by the resistance of the pattern wiring and the large current. Make sure that the GND wiring patterns of the external components will not change, too.
- (17) This IC is a monolithic IC which has a P⁺ isolations and P substrate to isolate elements each other. This P layer and an N layer in each element form a PN junction to construct various parasitic elements. Due to the IC structure, the parasitic elements are inevitably created by the potential relationship. Activation of the parasitic elements can cause interference between circuits and may result in a malfunction or, consequently, a fatal damage. Therefore, make sure that the IC must not be used under conditions that may activate the parasitic elements, for example, applying the lower voltage than the ground level (GND, P substrate) to the input terminals.
 - In addition, do not apply the voltage to input terminals without applying the power supply voltage to the IC. Also while applying the power supply voltage, the voltage of each input terminal must not be over the power supply voltage, or within the guaranteed values in the electric characteristics.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

Please contact our sales offices for details ;

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                 FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                 FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                 FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                 FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                        TEL: +852(2)740-6262
                                                 FAX: +852(2)375-8971
       Shanghai
                        TEL: +86(21)6279-2727
                                                 FAX: +86(21)6247-2066
       Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
       Beijing
                        TEL: +86(10)8525-2483
                                                 FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                 FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                 FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                 FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                 FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                 FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                 FAX: +66(2)256-6334
```

Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL: +81(52)581-8521 FAX: +81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271

As of 18th. April 2005

单击下面可查看定价,库存,交付和生命周期等信息

>>ROHM Semiconductor(罗姆)