

Features

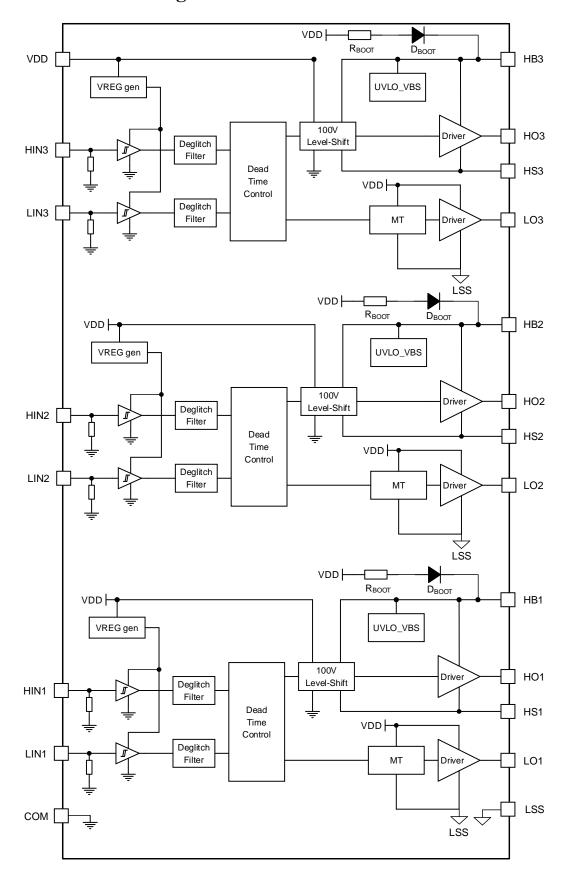
- Driver for three-phase N-channel MOS or IGBT
- High-side floating bootstrap power supply, operating voltage up to 120V
- Integrated bootstrap diode
- Integrated sink-source balancing circuit, no resistors or diodes required at the gate of the power transistor
- Output equivalent current capability of 2.5A
- Maximum operating frequency 500kHz
- Logic input levels compatible with 3.3V / 5V
- High-side undervoltage protection
- Adaptive dead-time control circuit
- Built-in lockout to prevent shoot-through
- Packaging forms: QFN24, TSSOP20

Description

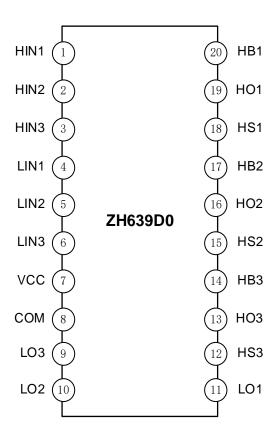
The ZH639D0 is a high-voltage, high-speed half-bridge gate driver for power MOSFETs and IGBTs. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in a high-side configuration, with an operating voltage of 120V. The three output channels builds internal adaptive dead-time to avoid cross-conduction. The output module integrates a sink-source balancing circuit, eliminating the need for resistors and diodes between the IC and the gate of the power transistor. The high and low-side outputs are independently controlled by the input, and the high-side is equipped with undervoltage protection.

The 24-pin package has separate power GND and logic GND pins for convenient PCB layout reducing interference.

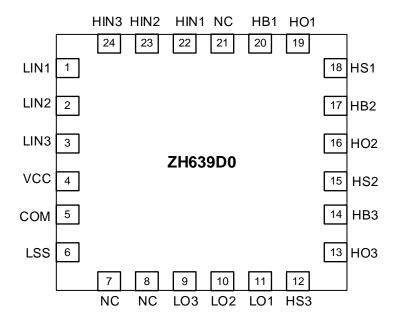
Applications


- Drones
- Power tools
- Motor drives
- Wireless charger

Package


Functional Block Diagram

Pin Definitions


TSSOP20

Pin Name	Pin Number	Туре	Description
HIN1、HIN2、HIN3	1, 2, 3	Input	High-side logic input control signals
LIN1、LIN2、LIN3	4, 5, 6	Input	Low-side logic input control signals
COM(LSS)	8	Ground	Chip ground
VCC	7	Power	Chip power supply
LO3、LO2、LO1	9、10、11	Output	Low-side power output
HS3、HS2、HS1	12、15、18	Output	High-side floating ground
НО3、НО2、НО1	13、16、19	Output	High-side power output
HB3、HB2、HB1	14、17、20	Power	High-edge suspended power supply

QFN24

Pin Name	Pin Number	Туре	Function Description
HIN1, HIN2, HIN3	22, 23, 24	Input	High-side logic input control signal
LIN1, LIN2, LIN3	1, 2, 3	Input	Low-side logic input control signal
COM	5	Ground	Logic reference ground, shared with the microcontroller
LSS	6	Ground	Power reference ground, shared with the power transistor
VCC	4	Power	Chip power supply
LO3, LO2, LO1	9, 10, 11	Output	Low-side power output
HS3, HS2, HS1	12, 15, 18	Output	High-side floating ground
HO3, HO2, HO1	13, 16, 19	Output	High-side power output
HB3, HB2, HB1	14, 17, 20	Power	High-side floating power supply
	7, 8, 21	NC	No connection

Ordering Information

Part Number	Part Number Package Packing		Quantity per Reel	
ZH639D0JT	ZH639D0JT TSSOP20		4000	
ZH639D0NU	QFN24	Reel	4000	

Electrical Characteristics

Absolute Maximum Ratings

Symbol	Parameter	Test Conditions	Min	Max	Unit
HBx	High-Side Floating Supply	_	-0.3	120	V
HSx	High-Side Floating Ground	_	-5	100	V
		1us	-10	110	V
HBx- HSx	Floating Supply Voltage	-	-0.3	20	
HOx	High-Side Output	_	HS – 0.3	HB + 0.3	V
LOx	Low-Side Output	_	-0.3	VCC + 0.3	V
VCC	Supply Voltage	_	-0.3	20	V
HINx	High-Side Logic Input Voltage	_	-0.3	6	V
LINx	Low-Side Logic Input Voltage	_	-0.3	6	V
T_A	Ambient Temperature		-40	125	°C
T_{stg}	Storage Temperature		-55	150	°C

ESD

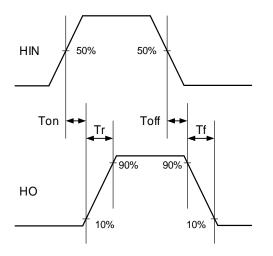
Symbol	Parameter	Test Conditions	Typical Value	Unit
VESD	Electrostatic Discharge	Human Body Model (HBM)	±2000	V
		Negative discharge to GND at HSx pin	1000	V

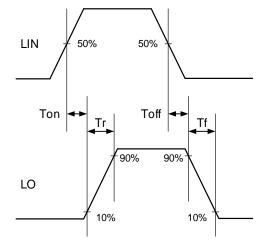
Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{HBx}	High-Side Floating Supply Voltage	VS + 5	VS + 12	V
V _{HSx}	High-Side Floating Ground Voltage	-5	100	V
V _{HOx}	High-Side Floating Output Voltage	V_{HSx}	V_{HBx}	V
VCC	Supply Voltage	5	12	V
V _{LOx}	Low-Side Output Voltage	0	VCC	V
V _{INx}	Logic Input Voltage (HINx & LINx)	0	5	V

T _A Ambient T	emperature	-40	125	°C
--------------------------	------------	-----	-----	----

Electrical Characteristics


(Unless otherwise specified, test conditions are 25°C, VCC=8V, VM=80V)

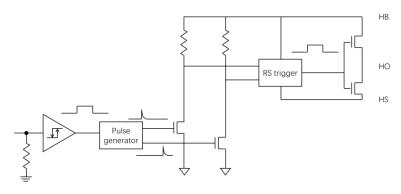

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Power Section	•			•		1
V_{VHBR}	HBx Rising Threshold	$V_{HBRx} = V_{HBx} - V_{HSx}$		3.8		V
$V_{ m VHBF}$	HBx Falling Threshold			2.2		V
$V_{ m VHBH}$	HBx Threshold Hysteresis			1.6		V
$I_{Q\text{-VCC}}$	VCC Quiescent Current	HINx = LINx = 0, $VSx=0$		50	200	μΑ
		HINx=1, LINx=0				uA
		HINx=0, LINx=1				uA
I_{BL}	Bootstrap Supply Leakage Current	HBx = HSx = 100 V			50	μΑ
		150°C			150	uA
I_{OP}	Dynamic Operating Current	Complementary 25k, 50%, PWM, No Load		1.8	2.9	mA
Input Section						
$ m V_{IH}$	High-Level Input Threshold Voltage		2.2			V
V_{IL}	Low-Level Input Threshold Voltage				0.7	V
V _{IN-Hys}	Input Pin Threshold Voltage Hysteresis		0.7			V
R _{IN}	Input Pin Pull-Down Resistance			200		kΩ
Output Section	1					
$ m I_{HPU}$	High-Side Pull-Up Current	HOx = HSx , HINx=1		170		mA
I_{HPD}	High-Side Pull-Down Current	HOx = HBx , HINx=0		150		mA
I_{HPDST}	High-Side Strong Pull- Down Current	HINx=0, HOx=HSx+5V		2.5		A
I_{LPU}	Low-Side Pull-Up Current	LOx=0, LINx=1		140		mA
I_{LPD}	Low-Side Pull-Down Current	LOx=VCC , LINx=0		150		mA
I _{HPDST}	Low-Side Strong Pull- Down Current	LINx=0, LOx=LSS+5V		2.5		A

DT	Dead Time	$C_L = 1nF$	50	100	150	ns
t_{FALL}	Output Fall Time	$10\% \sim 90\%, C_{L} = 1nF$		50	90	ns
t _{RISE}	Output Rise Time	$10\% \sim 90\%, C_{L} = 1nF$		100	170	ns
t _{PDFM}	High-to-Low Propagation Delay Matching				60	ns
t _{PDRM}	Low-to-High Propagation Delay Matching				60	ns
t _{PDHL}	Turn-Off Propagation Delay Time			100	250	ns
t _{PDLH}	Turn-On Propagation Delay Time			100	250	ns
Dynamic Par	rameters					
R_{LPD}	LO Output Strong Pull- Down Resistance	LOx=100mV , LINx=0		0.8	1	Ω
R_{HPD}	HO Output Strong Pull- Down Resistance	HOx=HSx+100mV , HINx=0		0.8	1	Ω

Switching Characteristics Diagram

High-Side Output HOx Switching Time Waveform

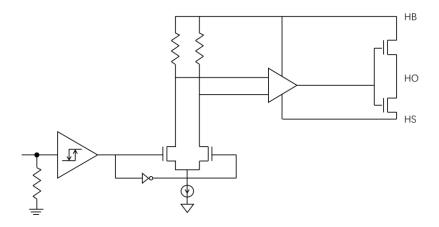
Low-Side Output LOx Switching Time Waveform



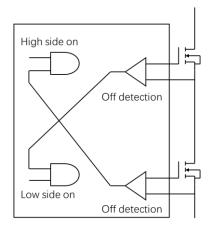
Dead Time Waveform Diagram

Level Shifter

A level shifter circuit is required as an interface from the input (HINx) to the high-voltage side drive (HOx), which is referenced to the switching node (HSx). This allows the control of the HOx output with respect to the HSx pin and provides low-latency matching with the low-side input.


Traditional level shifting circuits use a "level reconstruction" driving method (as shown in the figure below). The drive signal first passes through a pulse generator that generates two short pulses at the rising and falling edges. These short pulses are transmitted to the high rail and then reconstructed to a drive signal through an RS flip-flop. This approach is prone to RS flip-flop false-trigger or miss-trigger due to interference, and the system cannot detect or correct the fault once it occurs.

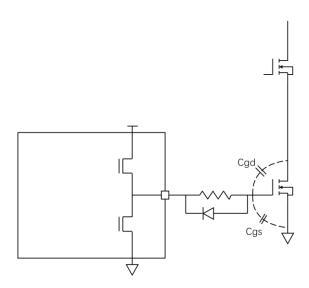
Traditional Level Shifter Scheme


The ZH639D0 achieves level shifting using a real-time differential level shifter, avoiding false triggering, miss triggering caused by high-speed dv/dt and RS flip-flops. At the same time, the system's maximum frequency can be increased, maintaining correct logical output even under strong interference.

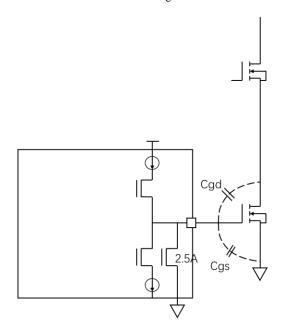
ZH639D0 Level Shifter Scheme

Adaptive Dead Time

Under different load power transistor parameters, working voltages, and operating temperatures, the rise and fall times of the gate voltage will change. Traditional dead time generation methods use fixed dead time and cannot adapt to these parameter changes. This results in wasted dead space under light loads, causing output waveform distortion, while insufficient dead time under heavy loads, causing potential cross-conduction between the upper and lower transistors. The ZH639D0 uses feedback-based adaptive dead time control. During the turn-off process of the upper transistor, the driver chip continuously monitors the completion status of the upper transistor. Once the turn-off is fully completed, it notifies the lower transistor's drive signal to turn on. Similarly, during the turn-off process of the lower transistor, the driver chip continuously monitors the completion status of the lower transistor. Once the turn-off is fully completed, it notifies the upper transistor's drive signal to turn on. This design aims to minimize the dead time as much as possible while ensuring safety.



Adaptive Dead Time



Driving Capability

Traditional driving circuits apply voltage output, use external resistor for current limiting, and diode conducting (as shown in the diagram below). The use of resistor is to slow down the dv/dt and di/dt during the power transistor's conduction, improving EMI and avoiding interference or false triggering caused by rapid changes in voltage and current. The use of diode ensures that during the power transistor's turn-off, the gate has low-impedance pull-down capability to prevent false turn-on of the power transistor, due to coupling of the Cgd capacitance.

Traditional Driving Circuit

Dual-stage driving circuit

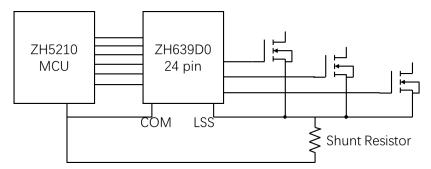
ZH639D0 adopts current-limiting output. Its shutdown logic employs dual-stage driving: the first stage ensures appropriate shutdown dv/dt and di/dt, while the second stage guarantees low impedance in fully shutdown state. Users do not need to connect external resistors or diodes; ZH639D0 reliably achieves switching on and off operations.

Based on I_{HPU} , I_{LPD} , I_{LPD} , and the value of Cgd or Qgd of the power transistors. The rising slope, falling slope, rising time, and falling time of the HS node during system operation can be calculated. The formulas are:

dv/dt = I/Cgd

dt = Qgd/I

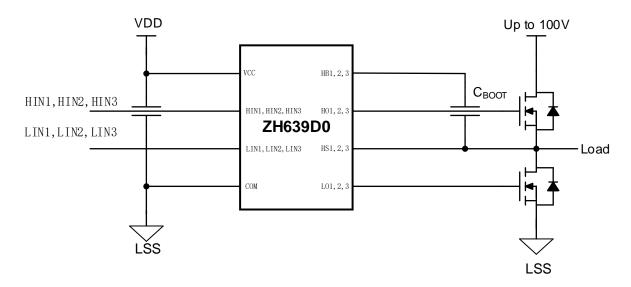
For a 100A MOS transistor with Qgd approximately 40nC, the rise time and fall time can be calculated to be approximately 200ns.

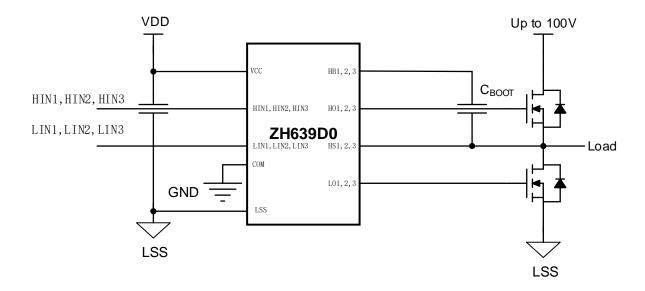


Startup and Undervoltage Protection

The high-side integrates an undervoltage protection circuit, which monitors the bootstrap voltage (HBx-HSx). When the bootstrap voltage is insufficient, the high-side output ignores the input (HINx) logic and remains low (turning off the power transistor). After the voltage on the bootstrap capacitor is sufficient to safely turn on the upper drive transistor, HOx begins to respond to the logic of HINx. During high-side undervoltage conditions, the low-side can operate normally.

Dual GND Design


Gate drivers are used between the MCU and power transistors (MOS or IGBT). During operation, gate currents and the source-drain currents of the power transistors cause fluctuations in the system's ground (GND), affecting normal operation of the system. The ZH639D0 (24-pin version) is designed with a dual GND configuration: COM serves as the logical reference ground, sharing the same potential as the MCU ground, ensuring undisturbed transmission of input signals LINx and HINx logic. LSS stands for low-side source (LSS), connected to the low-side source of the power transistor, ensuring a minimal path for gate drive current. In PCB design, for the 20-pin version, it is recommended to connect COM preferably to the power ground; for the 24-pin version, connecting the bottom heat sink pad to the COM pin and LSS to the power ground is recommended.



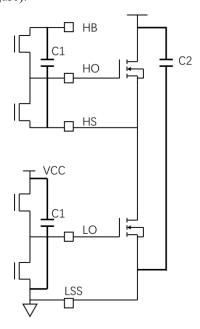
Typical Applications

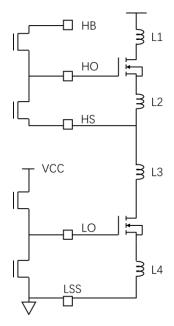
TSSOP20

QFN24

Truth Table Inputs and Outputs

Inp	outs	Outputs		
HINx	LINx	HOx	LOx	
L	L	L	L	
L	Н	L	Н	
Н	L	Н	L	
Н	Н	L	L	
Floating	Floating	L	L	

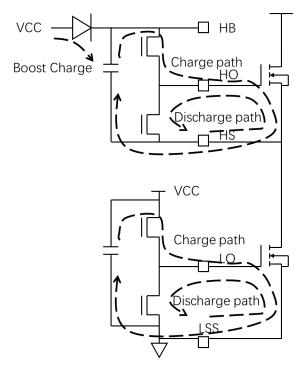

Application Notes


Circuit board layout is crucial to achieve optimal performance of high-side and low-side gate drivers. Please follow the following notes (using MOSFETs as an example):

1.Low ESR / ESL capacitors between VCC and COM pins, and HBx and HSx pins, must be placed close to the chip pins to support peak currents drawn from VCC and HBx during external MOSFET turn-on (see C1 in the lower left figure).

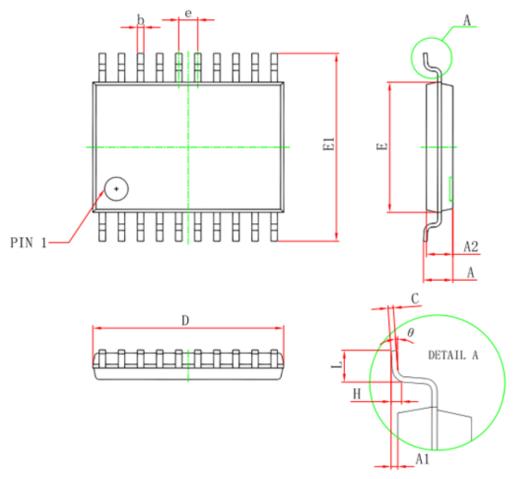
2.To prevent large voltage transients at the Drain of the top MOSFET, connect a low ESR electrolytic capacitor and a high-quality ceramic capacitor between the Drain and Ground (LSS) of the MOSFET (see C2 in the lower left figure).

3.Minimize parasitic inductance between the Source of the top MOSFET and the Drain of the bottom MOSFET (synchronous rectifier) to avoid large negative transients on the switch node (HSx pin) (see lower right figure).

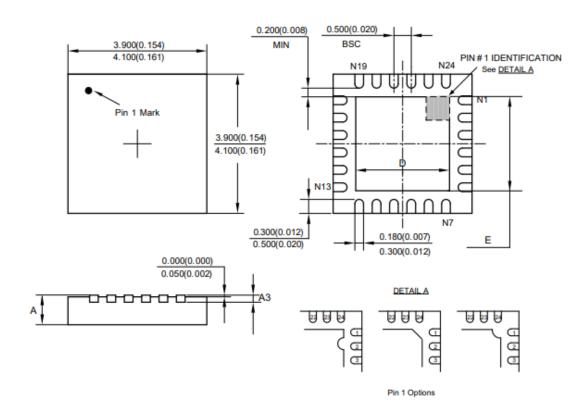


Grounding Considerations:

1 The primary consideration in designing grounding connections is to confine the current loop for charging and discharging MOSFET gates within the smallest physical area possible. This minimizes circuit inductance and reduces noise issues on MOSFET gate terminals. Gate drivers should be placed as close as possible to the MOSFETs.


2 The second consideration involves high-current paths, including bootstrap capacitors, local ground reference bypass capacitors, and body diodes of low-side MOSFETs. Bootstrap capacitors charge cyclically via bootstrap diodes (internal), bypassing capacitors from the ground reference VCC. These charging intervals are brief but entail high peak currents. Minimizing circuit board loop lengths and areas is crucial for ensuring reliable operation.

Package


TSSOP20

Symbol	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
D	6. 400	6. 600	0. 252	0. 259	
E	4.300	4. 500	0.169	0.177	
ь	0.190	0.300	0.007	0.012	
c	0.090	0. 200	0.004	0.008	
El	6. 250	6. 550	0. 246	0. 258	
Α		1. 200		0.047	
A2	0.800	1.000	0.031	0.039	
A1	0.050	0.150	0.002	0.006	
e	0.65 (BSC)	0.026	(BSC)	
L	0.500	0.700	0.020	0.028	
Н	0.25(1	YP)	0.01(TYP)	
θ	1 °	7°	1 °	7°	

QFN24

Symbol		D=	ΕE			-	A			Α	3	
Symbol	min(mm)	max(mm)	min(inch)	max(inch)	min(mm)	max(mm)	min(inch)	max(inch)	min(mm)	max(mm)	min(inch)	max(inch)
Option1	2.600	2.800	0.102	0.110	0.700	0.850	0.028	0.033	0.153	0.253	0.006	0.010
Option2	2.350	2.550	0.093	0.100	0.700	0.850	0.028	0.033	0.153	0.253	0.006	0.010
Option3	2.600	2.800	0.102	0.110	0.550	0.650	0.022	0.026	0.125	0.175	0.005	0.007

Revision History

Version	Modification Date	Modification Details
V1.6	2024.06.18	Generates the English Version Datasheet.

单击下面可查看定价,库存,交付和生命周期等信息

>>Semiment (赛卓电子)