

High Sensitive Digital-Latch Hall Effect Sensor

### **FEATURES**

- AEC-Q100 qualified production
- Digital latch Hall sensor
- High chopping frequency 800KHZ
- Supports a wide voltage range: 2.5~24V
- Wide operating temperature range:

**-40~150**℃

- Factory-programmed at end-of-line for magnetic optimum
- Reverse battery protection (up to 28V)
- Over-voltage protection at all pins
- Solid-state reliability
- Small package
  - 3-pin SIP -(UA)
  - 3-pin SOT23 -(SO)
  - 3-pin SOT23 -(SE)

## **APPLICATIONS**

- Power tools
- Flow meters
- Valve and solenoid status
- BLDC motors with sensors
- Tachometers
- Proximity sensing

### DESCRIPTION

The SC244X family, produced with BiC MOS technology, is a chopper-stabilized Hall Effect Sensor that offers a magnetic sensing solution with superior sensitivity stability over temperature and integrated protection features.

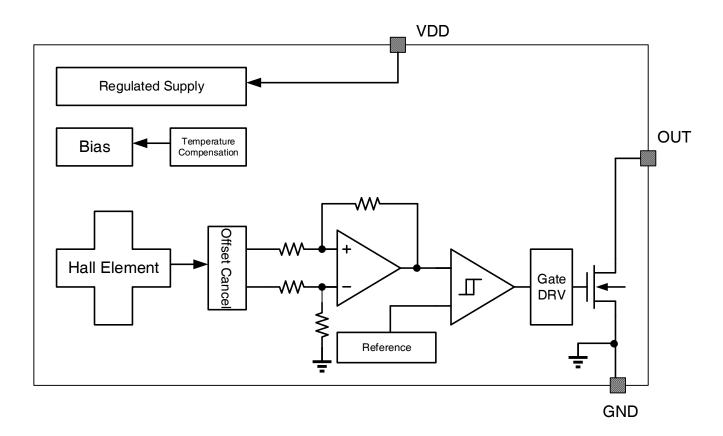
Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over molding, temperature dependencies, and thermal stress. Each device includes a single silicon chip a voltage regulator, Hallvoltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and an open-drain output to sink up to 30mA.

An onboard regulator permits with supply voltages of 2.5V to 24V which makes the device suitable for a wide range of industrial and automotive applications

The device is available in a 3-pin SIP package (UA) and a 3-pin SOT-23 style package (SO). Both are lead (Pb) free, with 100% matte tin lead frame plating.






# CONTENTS

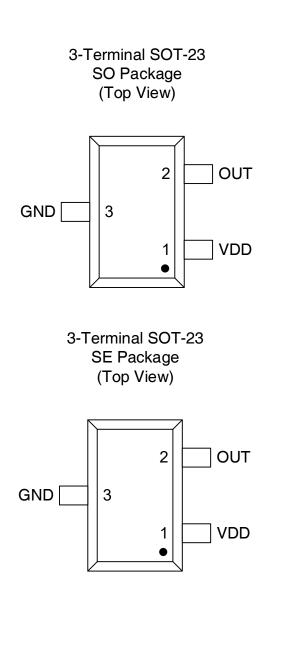
| FEATURES 1 -                 |
|------------------------------|
| APPLICATIONS 1 -             |
| DESCRIPTION 1 -              |
| BLOCK DIAGRAM 3 -            |
| ORDERING INFORMATION 4 -     |
| TERMINAL CONFIGURATION 5 -   |
| ABSOLUTE MAXIMUM RATINGS 6 - |
| ESD PROTECTION 6 -           |
| THERMAL CHARACTERISTICS 7 -  |
| OPERATING CHARACTERISTICS    |

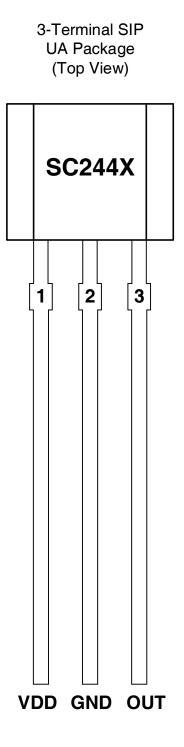
| Electric Characteristics 7    |
|-------------------------------|
| Magnetic Characteristics 8    |
| TYPICAL CHARACTERISTICS9      |
| FUNCTION DESCRIPTION 13       |
| Field Direction Definition 13 |
| Transfer Function 14          |
| TYPICAL APPLICATION 15        |
| PACKAGE INFORMATION "UA" 16   |
| PACKAGE INFORMATION "SO" 17   |



# **BLOCK DIAGRAM**







# **ORDERING INFORMATION**

| Part Number | Packing              | Mounting    | Ambient, T <sub>A</sub> | Вор(Тур.) | B <sub>RP</sub> (Typ.) |
|-------------|----------------------|-------------|-------------------------|-----------|------------------------|
| SC2442UA    | Bulk,1000 pcs /bag   | 3-pin SIP   |                         | +2.0mT    | -2.0mT                 |
| SC2442SO    | Reel, 3000 pcs /reel | 3-pin SOT23 | <b>-40</b> ℃ to 150℃    | +2.001    | -2.0111                |
| SC2442SO-N  | Reel, 3000 pcs /reel | 3-pin SOT23 |                         | -2.0mT    | +2.0mT                 |
| SC2443UA    | Bulk,1000 pcs /bag   | 3-pin SIP   | -40℃ to 150℃            | +3.0mT    | -3.0mT                 |
| SC2443SO    | Reel, 3000 pcs /reel | 3-pin SOT23 | -40 C 10 150 C          | +3.000    | -3.0111                |
| SC2448UA-N  | Bulk, 1000 pcs /bag  | 3-pin SIP   | 10°C to 150°C           | -8.0mT    | +8.0mT                 |
| SC2448SO    | Reel, 3000 pcs /reel | 3-pin SOT23 | -40℃ to 150℃            | +8.0mT    | -8.0mT                 |



## **TERMINAL CONFIGURATION**





Semiment Technology Inc.



| Terminal |        |    |      |             |                                                               |
|----------|--------|----|------|-------------|---------------------------------------------------------------|
| Name     | Number |    | Туре | Description |                                                               |
| Name     | UA     | SO | SE   |             |                                                               |
| VDD      | 1      | 1  | 1    | PWR         | 2.5 to 24 V power supply                                      |
| GND      | 2      | 3  | 3    | Ground      | Ground terminal                                               |
| OUT      | 3      | 2  | 2    | Output      | Open-drain output. The open drain requires a pull-up resistor |

## **ABSOLUTE MAXIMUM RATINGS**

over operating -40  $^\circ\!\mathrm{C}$  --150  $^\circ\!\mathrm{C}$  (unless otherwise noted)  $^{(1)}$ 

| Parameter                     | Symbol | Min.                      | Max. | Units |
|-------------------------------|--------|---------------------------|------|-------|
| Power supply voltage          | VDD    | <b>-28</b> <sup>(2)</sup> | 28   | V     |
| Output terminal voltage       | VOUT   | -0.5                      | 28   | V     |
| Output terminal current sink  | ISINK  | 0                         | 30   | mA    |
| Operating ambient temperature | ТА     | -40                       | 150  | °C    |
| Maximum junction temperature  | TJ     | -55                       | 165  | °C    |
| Storage temperature           | TSTG   | -65                       | 175  | °C    |

<sup>(1)</sup> Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

<sup>(2)</sup> Ensured by design.

# **ESD PROTECTION**

Human Body Model (HBM) tests according to: standard AEC-Q100-002 HBM

| Parameter      | Symbol | Min. | Max. | Units |
|----------------|--------|------|------|-------|
| ESD-Protection | VESD   | -4   | 4    | KV    |



## THERMAL CHARACTERISTICS

| Symbol            | Parameter                     | Test Conditions                                      | Rating | Units |
|-------------------|-------------------------------|------------------------------------------------------|--------|-------|
| R $_{	ext{B}}$ JA | UA Package thermal resistance | Single-layer PCB, with copper limited to solder pads | 313    | °C/W  |
| R <sub>0</sub> JA | SO Package thermal resistance | Single-layer PCB, with copper limited to solder pads | 313    | °C/W  |
| R <sub>0</sub> JA | SE Package thermal resistance | Single-layer PCB, with copper limited to solder pads | 357    | °C/W  |

# **OPERATING CHARACTERISTICS**

#### **Electric Characteristics**

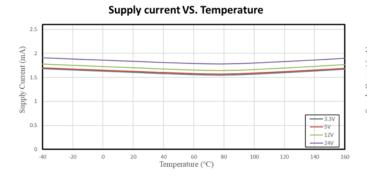
| over operating -40°C150°C | $(V_{DD} = 5.0V, unless otherwise noted)$ |
|---------------------------|-------------------------------------------|
|                           |                                           |

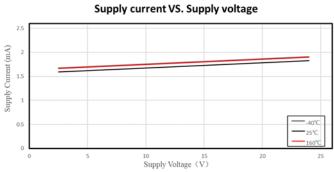
| Symbol          | Parameter                        | Test Conditions                           | Min. | Тур. | Max. | Units |
|-----------------|----------------------------------|-------------------------------------------|------|------|------|-------|
| $V_{DD}$ (1)    | Operating voltage <sup>(1)</sup> | T <sub>J</sub> < T <sub>J(Max.)</sub>     | 2.5  |      | 24   | V     |
| Vddr            | Reverse supply voltage           |                                           | -28  |      | 1    | V     |
| ldd             | Operating supply current         | V <sub>DD</sub> =2.5 to 24 V,             | 1.2  | 1.6  | 2.5  | mA    |
| t <sub>on</sub> | Power-on time                    | V <sub>DD</sub> ≥2.5V                     |      | 35   | 50   | μS    |
| I <sub>QL</sub> | Off-state leakage current        | Output Hi-Z                               |      |      | 3    | μA    |
| Vsat            | Output Saturation Voltage        | V <sub>DD</sub> =5V, I <sub>O</sub> =20mA |      | 180  | 500  | mV    |
| t <sub>d</sub>  | Output delay time                | B=B <sub>RP</sub> to B <sub>OP</sub>      |      | 15   | 25   | μS    |
| tr              | Output rise time (10% to 90%)    | R∟=1Kohm Co=50pF                          |      |      | 0.5  | μS    |
| t <sub>f</sub>  | Output fall time (90% to 10%)    | R∟=1Kohm Co=50pF                          |      |      | 0.2  | μS    |

(1) Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

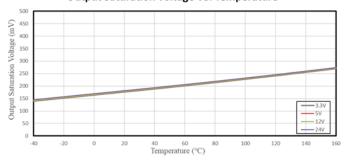


### **Magnetic Characteristics**

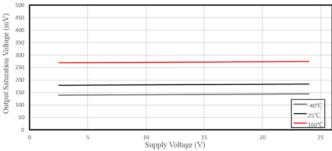

over operating -40°C--150°C (unless otherwise noted)


| Symbol           | Parameter             | Test Conditions                                       | Min.  | Тур. | Max. | Units |
|------------------|-----------------------|-------------------------------------------------------|-------|------|------|-------|
| fвw              | Bandwidth             |                                                       |       | 20   |      | kHz   |
| SC2442           | SC2442 +2.0 / -2.0 mT |                                                       |       |      |      |       |
| Вор              | Operated point        |                                                       | 1.0   | 2.0  | 3.0  | mT    |
| Brp              | Release point         | T <sub>A</sub> =-40℃ to 150℃                          | -3.0  | -2.0 | -1.0 | mT    |
| B <sub>HYS</sub> | Hysteresis            |                                                       |       | 4.0  |      | mT    |
| Bo               | Magnetic offset       | Bo=(Bop+Brp)/2                                        | -1.0  | 0.0  | 1.0  | mT    |
| SC2443           | SC2443 +3.0 / -3.0 mT |                                                       |       |      |      |       |
| Вор              | Operated point        |                                                       | 2.0   | 3.0  | 4.0  | mT    |
| Brp              | Release point         | T <sub>A</sub> =-40℃ to 150℃                          | -4.0  | -3.0 | -2.0 | mT    |
| B <sub>HYS</sub> | Hysteresis            |                                                       |       | 6.0  |      | mT    |
| Bo               | Magnetic offset       | B <sub>O</sub> =(B <sub>OP</sub> +B <sub>RP</sub> )/2 | -1.0  | 0.0  | 1.0  | mT    |
| SC2448           | +8.0 / -8.0 mT        |                                                       | -     |      | -    |       |
| Вор              | Operated point        |                                                       | 6.0   | 8.0  | 10.0 | mT    |
| Brp              | Release point         | T <sub>A</sub> =-40℃ to 150℃                          | -10.0 | -8.0 | -6.0 | mT    |
| BHYS             | Hysteresis            |                                                       |       | 16.0 |      | mT    |
| Bo               | Magnetic offset       | B <sub>0</sub> =(B <sub>0P</sub> +B <sub>RP</sub> )/2 | -2.0  | 0.0  | 2.0  | mT    |

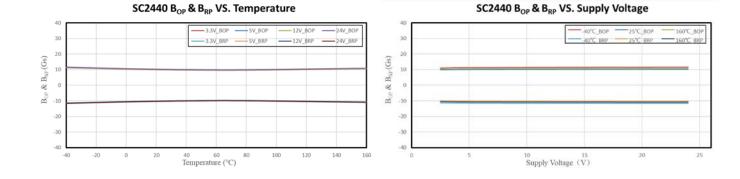
(1)1mT=10Gs


<sup>(2)</sup>Magnetic flux density, B, is indicated as a negative value for North-polarity magnetic fields, and as a positive value for South-polarity magnetic fields.

## **TYPICAL CHARACTERISTICS**

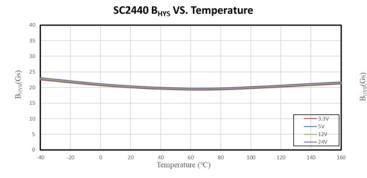




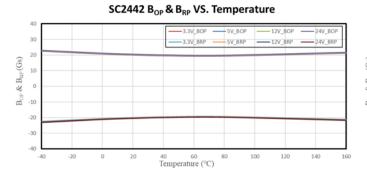


**Output Saturation Voltage VS. Temperature** 



**Output Saturation Voltage VS. Supply Voltage** 




Supply Vollage (V)




20

-40°C



#### **TYPICAL CHARACTERISTICS (continued)**



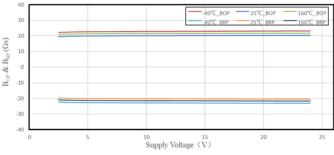
SC2442 B<sub>OP</sub> & B<sub>RP</sub> VS. Supply Voltage

Supply Voltage (V)

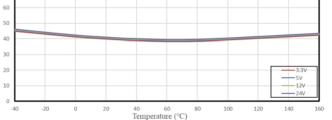
SC2440 B<sub>HYS</sub> VS. Supply Voltage

40

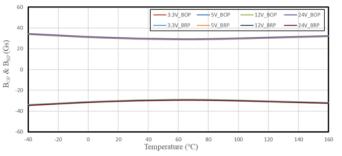
35


30

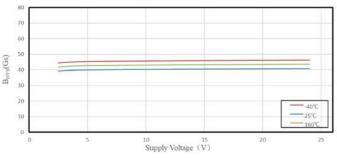
25


20

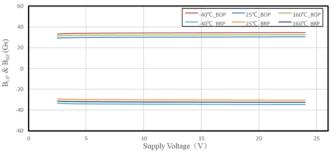
15


10




SC2442 B<sub>HYS</sub> VS. Temperature



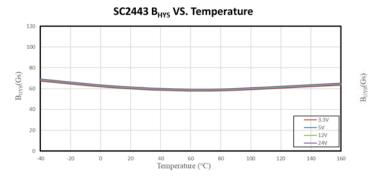

SC2443  $B_{\text{OP}}\,\&\,B_{\text{RP}}$  VS. Temperature



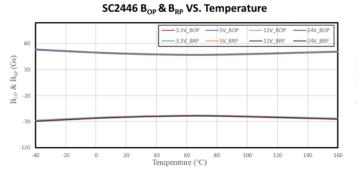
SC2442 B<sub>HYS</sub> VS. Supply Voltage



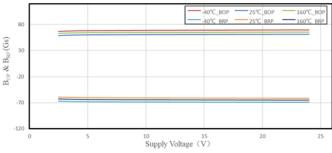
SC2443  $B_{\text{OP}}\,\&\,B_{\text{RP}}$  VS. Supply Voltage




80 70


B<sub>HYS</sub>(Gs)

20


-40\*0



#### **TYPICAL CHARACTERISTICS (continued)**

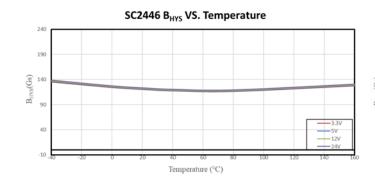


SC2446 B<sub>OP</sub> & B<sub>RP</sub> VS. Supply Voltage

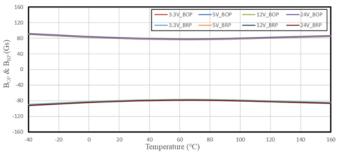


Supply Voltage (V)

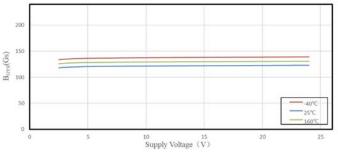
SC2443 B<sub>HYS</sub> VS. Supply Voltage


120

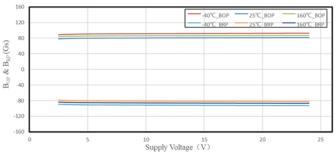
100


60

4(

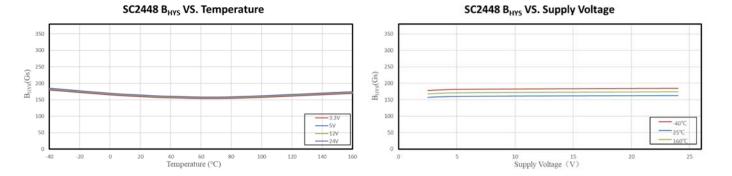

20




SC2448  $\mathrm{B}_{\mathrm{OP}}\,\&\,\mathrm{B}_{\mathrm{RP}}$  VS. Temperature



SC2446 B<sub>HYS</sub> VS. Supply Voltage




SC2448  $B_{\text{OP}}\,\&\,B_{\text{RP}}$  VS. Supply Voltage



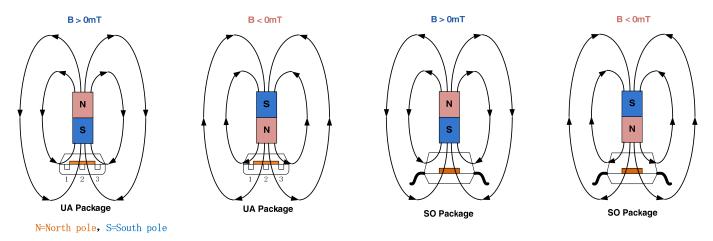
Semiment Technology Inc.

www.semiment.com





# **FUNCTION DESCRIPTION**


The SC244X device is a chopper-stabilized Hall sensor with a digital latched output for magnetic sensing applications. The device can be powered with a supply voltage between 2.5 and 24V, and continuously survives continuous -28V reverse-battery conditions.

The output of SC244X switches low (turns on) when a magnetic field (South polarity) perpendicular to the Hall element exceeds the operate point threshold, Bop. After turn-on, the output is capable of sinking 20mA and the output voltage is  $V_{Q(sat)}$ . When the magnetic field is reduced below the release point, B<sub>RP</sub>, the device output goes high (turns off). The difference in the magnetic operate and release points is the hysteresis, B<sub>HYS</sub>, of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

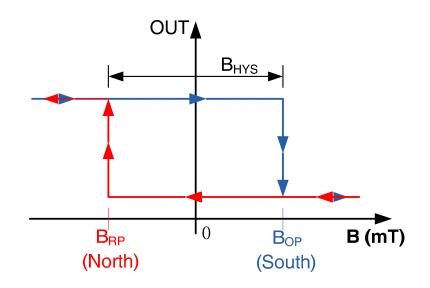
An external output pull-up resistor is required on the OUT terminal. The OUT terminal can be pulled up to  $V_{DD}$  or to a different voltage supply. This allows for easier interfacing with controller circuits.

#### **Field Direction Definition**

A positive magnetic field is defined as a South pole near the marked side of the package.

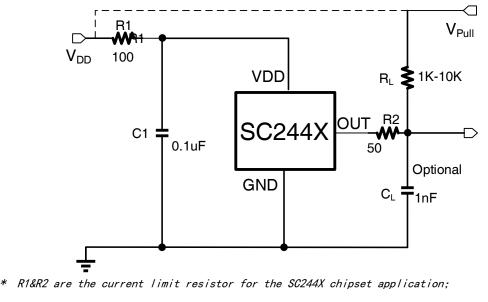





### **Transfer Function**

Powering-on the device in the hysteresis region, less than  $B_{OP}$  and higher than  $B_{RP}$ , allows an indeterminate output state. The correct state is attained after the first excursion beyond  $B_{OP}$  or  $B_{RP}$ . If the field strength is greater than  $B_{OP}$ , then the output is pulled low. If the field strength is less than  $B_{RP}$ , the output is released.

BOP-magnetic threshold for activation of the device output, turning in ON (low) state


**B**<sub>RP</sub>—magnetic threshold for release of the device output, turning in OFF (high) state.

#### B<sub>HYS</sub>= B<sub>OP</sub> - B<sub>RP</sub>





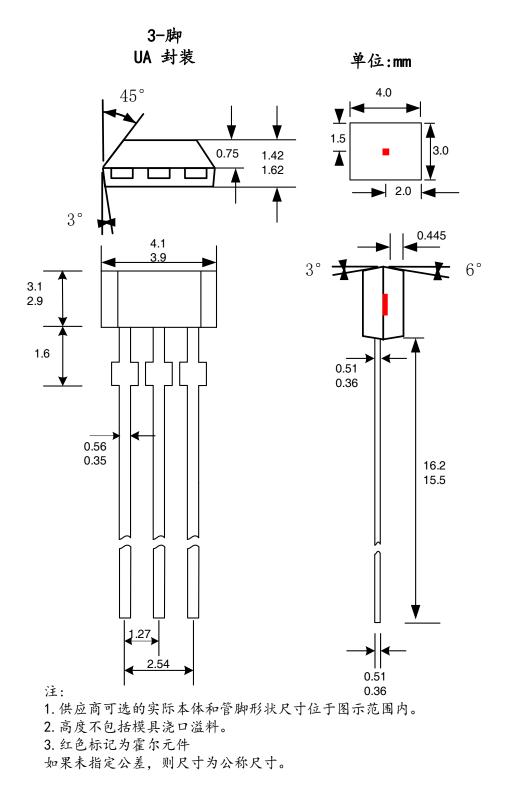
# **TYPICAL APPLICATION**



\* It is highly recommend to add R1, R2 in application circuit, especially R2.

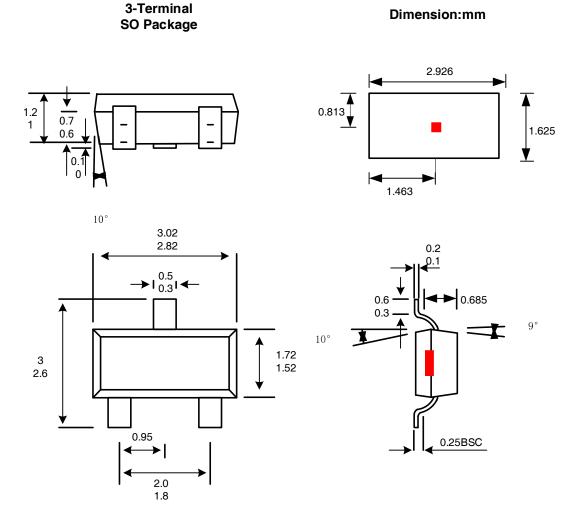
The SC244X contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. It is recommended that C1 capacitor be connected to the ground in parallel near the VDD power end of the chip, with a typical value of 0.1UF.At the same time in the external optional series resistor R1 and output capacitance C<sub>L</sub> used for enhanced protection circuit, its typical values for 100  $\Omega$  and 1 nF.

The SC244X device output stage uses an open-drain NMOS, and it is rated to sink up to 20mA of current. For proper operation, calculate the value of the pull-up resistor  $R_L$  is required. The size of  $R_L$  is a tradeoff between OUT rise time and the load capacity when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching.


Select a value for CL based on the system bandwidth specifications as:

$$CL = \frac{1}{2\pi \times R \times f (Hz)}$$

V<sub>PULL</sub> is not restricted to VDD, and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.



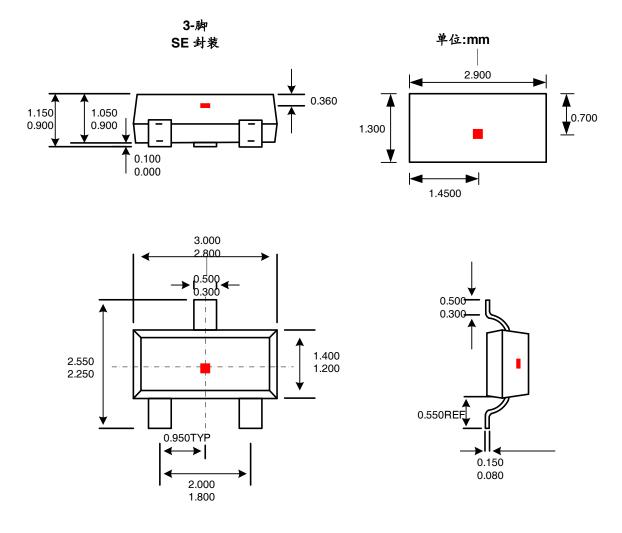

# **PACKAGE INFORMATION "UA"**





# **PACKAGE INFORMATION "SO"**




Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.
- 3. The red mark is Hale element.

Where no tolerance is specified, dimension is nominal.



## **PACKAGE INFORMATION "SE"**



Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.
- 3. The red mark is Hale element.

Where no tolerance is specified, dimension is nominal.



#### **REVISION HISTORY**

| Revision | Date       | Description                                                    |  |
|----------|------------|----------------------------------------------------------------|--|
| Rev1.0   | 2016-05-10 | Preliminary Datasheet                                          |  |
| Rev1.1   | 2017-08-06 | Add ordering information SC2448SO                              |  |
| Rev2.3   | 2019-05-06 | The final revision of old datasheet                            |  |
| RevA/1.0 | 2021-10-09 | Unified datasheet format, update AEC-Q100                      |  |
| RevA/1.1 | 2022-04-03 | Add ordering information of SC2443SO and SC2443UA              |  |
| RevA/1.2 | 2023-02-10 | Add IDD Minimum limit / Update sensing point vertical position |  |
| RevA/1.3 | 2023-06-08 | Add order information of SC2442SE                              |  |
| RevA/1.4 | 2023-08-07 | Add R2=50 ohm in application circuit                           |  |
| RevA/1.5 | 2024-05-06 | Update part number in order information                        |  |

单击下面可查看定价,库存,交付和生命周期等信息

>>Semiment (赛卓电子)