

High Sensitivity Omnipolar Hall-effect Sensor

FEATURES

- Digital Omni-polar Hall-Effect sensor
- High chopping frequency
- Very high sensitivity
- Superior temperature stability
- Supports a wide voltage range
 - --2.5 to 24V
 - --Operating from unregulated supply
- Reverse battery protection (up to 28V)
- Over-voltage protection at all pins
- Robust EMC performance
- Solid-state reliability
- Small package
 - 3-pin SIP -(UA)
 - 3-pin SOT23 -(SO)

APPLICATIONS

- Flow meters
- Magnetic encoding
- Proximity sensing
- Garage door openers
- Power sliding doors
- Sunroofs motor

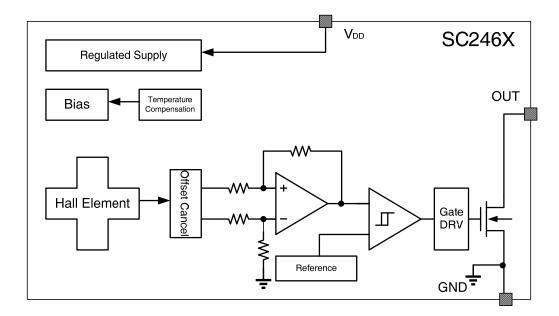
DESCRIPTION

The SC246X family, produced with BiCMOS technology, is a chopper-stabilized Hall Effect Sensor that offers a magnetic sensing solution with superior sensitivity stability over temperature and integrated protection features.

Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over molding, temperature dependencies, and thermal stress. Each device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and an open-drain output to sink up to 20mA.

An onboard regulator permits with supply voltages of 2.5 to 24V which makes the device suitable for a wide range of industrial and automotive applications

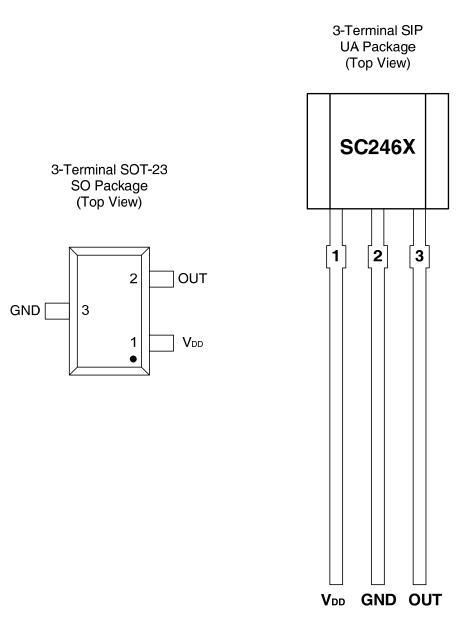
The SC246X is available in a 3-pin SIP and a plastic SOT23-3 surface mount package. Both packages are lead (Pb) free, with 100% matte tin lead frame plating


CONTENTS

FEATURES 1 -
APPLICATIONS 1 -
DESCRIPTION 1 -
BLOCK DIAGRAM 3 -
ORDERING INFORMATION 3 -
TERMINAL CONFIGURATION 4 -
ABSOLUTE MAXIMUM RATINGS 5 -
ESD PROTECTION 5 -
THERMAL CHARACTERISTICS 5 -
OPERATING CHARACTERISTICS 6 -
Electrical Characteristics 6 -

Magnetic Characteristics 7 -
TYPICAL CHARACTERISTIC 8 -
TYPICAL CHARACTERISTIC (Continued) 9 -
FUNCTIONAL DESCRIPTION 10 -
Field Direction Definition 10 -
Transfer function 11 -
TYPICAL APPLICATION 12 -
PACKAGE INFORMATION (UA) 13 -
PACKAGE INFORMATION (SO) 14 -
REVISON HISTORY 15 -

BLOCK DIAGRAM



ORDERING INFORMATION

Part Number	Packing	Mounting	Ambient, T _A	B _{оР} (Тур.)	B _{RP} (Typ.)
SC246XUA	Bulk, 1000 pieces/bag	3-pin SIP	-40 ℃ to	.0 EmT	. 1 FmT
SC246XSO	Reel, 3000pieces/reel	3-pin SOT23	150 ℃	±2.5mT	±1.5mT
SC2464UA	Bulk, 1000 pieces/bag	3-pin SIP	-40 ℃ to	. C 0m T	. 5 0 m T
SC2464SO	Reel, 3000pieces/reel	3-pin SOT23	150 ℃	±6.0mT	±5.0mT
SC2466UA	Bulk, 1000 pieces/bag	3-pin SIP	-40 ℃ to	40 F.m.T	10 E.T.
SC2466SO	Reel, 3000pieces/reel	3-pin SOT23	150 ℃	±16.5mT	±13.5mT

TERMINAL CONFIGURATION

Те	Terminal			
Nomo	Number		Туре	Description
Name	UA	SO		
Vdd	1	1	PWR	2.5V~ 24 V power supply
GND	2	3	Ground	Ground terminal
OUT	3	2	Output	Output terminal. The open drain requires a pull-up resistor

Semiment Technology Inc.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	Vdd	-28 ⁽²⁾	28	V
Output terminal voltage	Vout	-0.5	28	V
Output terminal current sink	I _{SINK}	0	30	mA
Operating ambient temperature	TA	-40	150	°C
Maximum junction temperature	TJ	-55	165	°C
Storage temperature	T _{STG}	-65	175	°C

⁽¹⁾ Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

⁽²⁾ Ensured by design.

ESD PROTECTION

Human Body Model (HBM) tests according to: standard AEC-Q100-002 HBM

Parameter	Symbol	Min.	Max.	Units
ESD-Protection	V _{ESD}	-4	4	KV

THERMAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Rating	Units
R _@ JA	UA Package thermal resistance	Single-layer PCB, with copper limited to solder pads	166	℃ /W
R _@ JA	SO Package thermal resistance	Single-layer PCB, with copper limited to solder pads	228	°C/W

OPERATING CHARACTERISTICS

Electrical Characteristics

emiMEnt

www.semiment.com

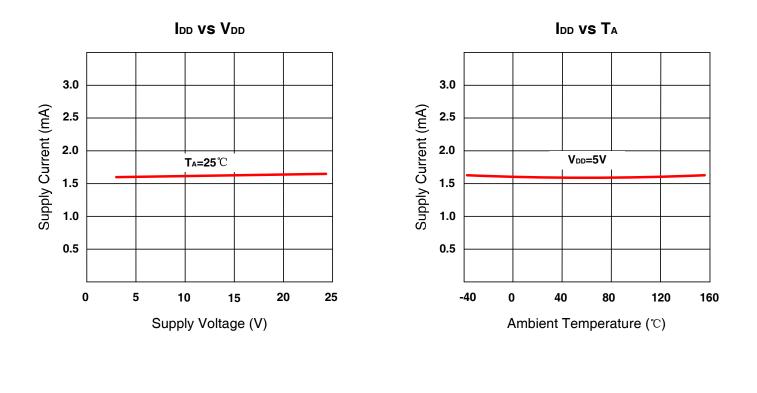
over operating free-air temperature range ($V_{DD} = 5.0V$, unless otherwise noted)

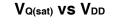
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{DD}	Operating voltage (1)	$T_J < T_{J(Max.)}$	2.5		24	V
Vddr	Reverse supply voltage		-28			V
IDD (off)	Operating supply surrent	V _{DD} =2.5 to 24 V, T _A =25 $^{\circ}$ C	1.1	1.8	2.6	mA
I _{DD (on)}	Operating supply current	V _{DD} =2.5 to 24 V, T _A =25 $^{\circ}$ C	1.1	2.1	2.6	mA
ton	Power-on time			35	50	μS
Iql	Off-state leakage current	Output Hi-Z			1	μA
D		V _{DD} =5V, I _O =10mA, T _A =25℃		20		Ω
RDS (on)	FET on-resistance	V _{DD} =5V, Io=10mA, T _A =125℃		30		Ω
td	Output delay time	B=BRP to BOP		15	25	μS
tr	Output rise time (10% to 90%)	R1=1Kohm Co=50pF			0.5	μS
t _f	Output fall time (90% to 10%)	R1=1Kohm Co=50pF			0.2	μS

(1) Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

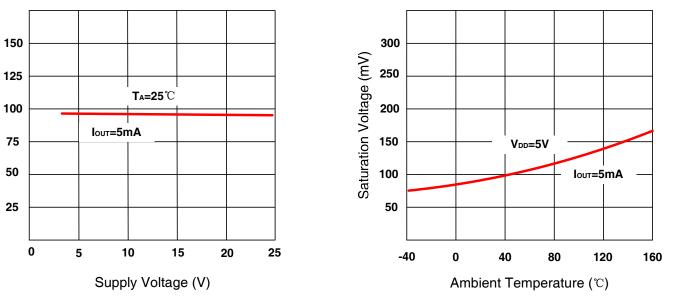
Magnetic Characteristics

over operating free-air temperature range (unless otherwise noted)

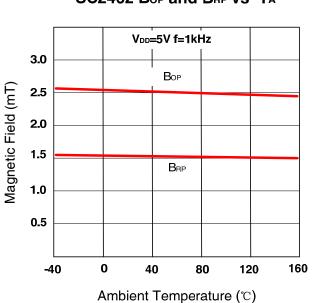

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
fвw	Bandwidth		20			kHz
SC2462						
Вор	Operated point		±1.5	±2.5	±3.5	mT
Brp	Release point	T _A =-40℃ to 125℃	±1.0	±1.5	±3.0	mT
B _{HYS}	Hysteresis			±1.0		mT
SC2464		-				
BOP	Operated point		±4.5	±6.0	±7.5	mT
Brp	Release point	T _A =-40℃ to 125℃	±3.5	±5.0	±6.5	mT
B _{HYS}	Hysteresis			1.0		mT
SC2466		·			•	
BOP	Operated point		±14.0	±16.5	±19.0	mT
Brp	Release point	T _A =-40℃ to 125℃	±11.0	±13.5	±16.0	mT
Bнys	Hysteresis	1		±3.0		mT


1mT=10Gs

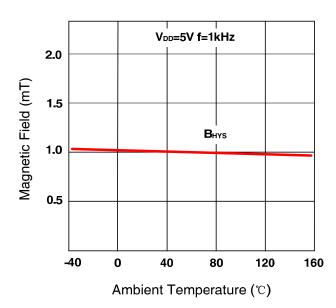
Magnetic flux density, B, is indicated as a negative value for North-polarity magnetic fields, and as a positive value for South-polarity magnetic fields.



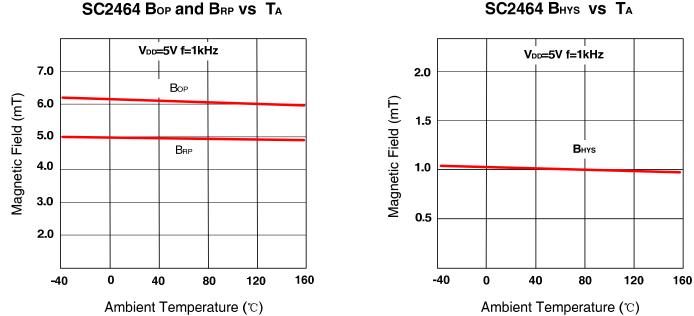
TYPICAL CHARACTERISTIC


V_{Q(sat)} vs T_A

Saturation Voltage (mV)



TYPICAL CHARACTERISTIC (Continued)

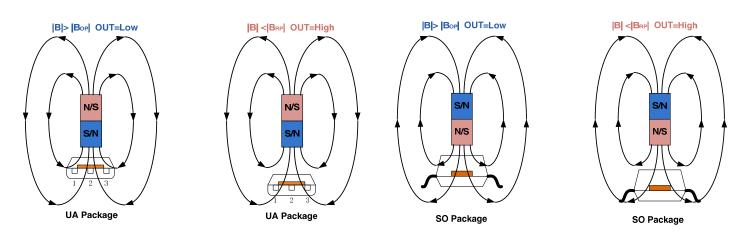


SC2462 BOP and BRP VS TA

SC2462 BHYS VS TA

SC2464 BHYS VS TA

FUNCTIONAL DESCRIPTION

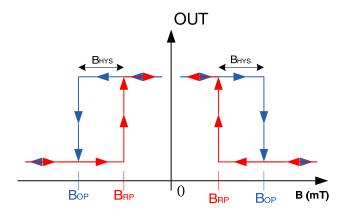

The SC246X device is a chopper-stabilized Hall sensor with a digital latched output for magnetic sensing applications. The device can be powered with a supply voltage between 2.5 and 24V, and continuously survives continuous -28V reverse-battery conditions. The device does not operate when -28 to 2.2V is applied to the V_{DD} terminal (with respect to the GND terminal). In addition, the device can withstand voltages up to 40V for transient durations.

The output of SC246X switches low (turns on) when a magnetic field (South or North polarity) perpendicular to the Hall element exceeds the operate point threshold, B_{OP} . After turn-on, the output is capable of sinking 20mA and the output voltage is $V_{Q \text{ (sat)}}$. When the magnetic field is reduced below the release point, B_{RP} , the device output goes high (turns off). The difference in the magnetic operate and release points is the hysteresis, B_{HYS} , of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

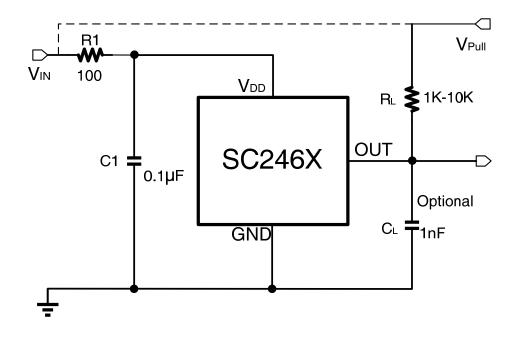
An external output pull-up resistor is required on the OUT terminal. The OUT terminal can be pulled up to V_{DD} or to a different voltage supply. This allows for easier interfacing with controller circuits.

Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.



Transfer function


The SC246X exhibits "Omni polar" magnetic characteristics. It means the device reacts to both North and South magnetic pole. The purpose is to detect the presence of any magnetic field applied on the device. This mode of operation simplifies customer production processes by avoiding the need to detect the Hall sensor pole active on the magnet used in the application. Therefore, the "Omni polar" magnetic behavior helps customers by removing the need of magnet pole detection system during production phase.

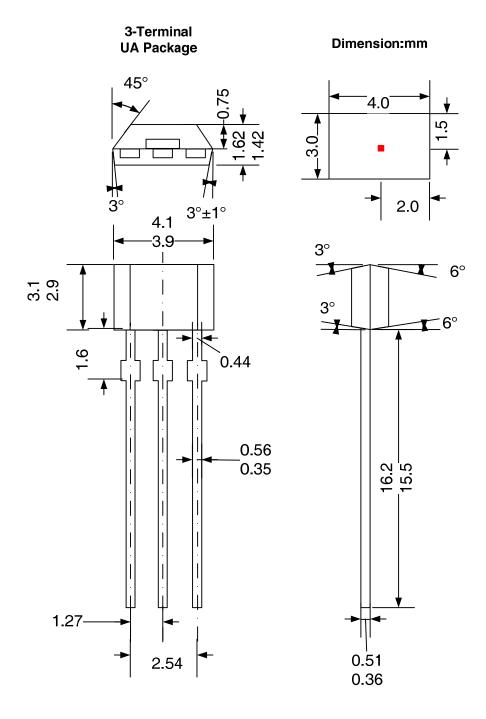
Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

TYPICAL APPLICATION

The SC246X contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. It is recommended to shunt C1 capacitors to the ground near the chip V_{DD} power supply, with a typical value of 0. 1µF.At the same time in the external optional series resistor R1 their typical values for 100 Ω . The output capacitor C_L is used as the output filter, typically 1nF.

Select a value for C_L based on the system bandwidth specifications as:

$$C_L = \frac{1}{2\pi \times R \times f (Hz)}$$


The output stage of the SC246X device is a drain open-circuit NMOS tube, which provides a load capacity of 20mA.Adjust the pull-up resistor R_{L} to make it work properly. The R_{L} provides a high level for the leak-opening output. In general, less current is better, but faster transient response and bandwidth are required, with a smaller resistor R_{L} for faster switching.

VPULL is not restricted to VDD, and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.

Rev. A/1.1

PACKAGE INFORMATION (UA)


Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

PACKAGE INFORMATION (SO)

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

REVISON HISTORY

Revision	Date	Description
Rev0.1	2016-08-19	Preliminary datasheet
Rev2.3	2018-05-06	The final revision of old datasheet
RevA/1.0	2020-11-19	Unified datasheet format
RevA/1.1	2024-05-07	Add SC2466

单击下面可查看定价,库存,交付和生命周期等信息

>>Semiment (赛卓电子)