

SENSYLINK Microelectronics

(CT7035) Analog Output Temperature Sensor

CT7035 is an Analog Output Temperature Sensor with $\pm 0.35^{\circ}$ C Accuracy (CT7035K). The sensor supports multi slope gain of Temperature-to-Voltage.

It is ideally used in General Temperature Sensing and Monitoring Systems, such as Industry Thermal Control and HVAC System etc.

Sep.2020 Rev. 1.6

Table of Contents

Descript	ion	3
Features .	ions	3
Applicati	ions	3
PIN Conf	figurations (Top View)	
Typical A	Application	3
Pin Desc	ription	4
Function	n Block	4
	Maximum Ratings (Note 2)	
	nended Operating Conditions	
	ıl Characteristics (Note 3)	
	ction Descriptions	
1.1	Temperature-to-Voltage Transfer Function	c
1.2	Minimum Supply Voltage	
1.3	Output Driver and Capacitive Load	
1.4	Bypass Capacitor	
1.5	PCB Layout	
Package	Outline Dimensions (SOT-23)	
	nend Land Pattern Layout (SOT-23)	
	nend Land Pattern Layout (SC70-5)	
	History	

Figures and Tables

Figure 1. Typical Application of CT/035
Figure 2. CT7035 function block
Figure 4. Output Voltage vs. Supply Voltage
Figure 5. Supply Current vs. Supply Voltage
Figure 6. Output Voltage vs. Supply Voltage (power on)
Figure 7. Capacitive Load with/without Rs 1
Figure 8. Recommended PCB Layout

Table 1. Transfer Function between Temperature and	Output
Voltage	9
Table 2. Temperature Data Look-up Table	10
Table 3 Minimum Supply Voltage Table	10

Description

The CT7035 is an analog output temperature sensor with $\pm 0.35^{\circ}$ C accuracy (CT7035K). It is easily to use to replace NTC by connection to A-to-D port of MCU.

The CT7035 serial parts have multi slope gain, which can replace industry stand parts directly, like LM20, LM35.

Each chip is calibrated in factory before shipment to customers. There is no need for re-calibration anymore for $\pm 0.35^{\circ}$ C (CT7035K) accuracy.

It includes a band-gap circuit, thermal diode, class AB output, a calibration unit.

It integrates a class AB output structure, which can offer up to $\pm 500 \mathrm{uA}$ output capability to drive 1000pFload.

Available Package: SOT-23 and SC70-5

Features

- Operation Voltage: 1.8V to 5.5V
- Average Quiescent Current: 7uA (Typ.)
- Temperature Accuracy:

 $\pm 0.35^{\circ}$ C (Max.) from 10°C to 30°C (K version) $\pm 1.0^{\circ}$ C (Max.) from -50°C to 150°C (K version) $\pm 1.5^{\circ}$ C (Max.) from 10°C to 50°C (Non K version)

 ± 3.5 °C(Max.) from -40°C to 125°C (Non K version)

NC

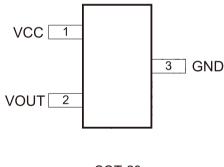
VCC

Multi Option for Slope Gain [mV/°C]: CT7035A, 19.5; CT7035B/J, 10.0 CT7035C, 6.25; CT7035D, -5.5 CT7035E, -8.2; CT7035F, -10.9 CT7035G, -11.77; CT7035H, -13.6 CT7035K, -5.8;

- Output Short Protection
- Temperature Range: -50°C to 150°C

Applications

NC


GND

VOUT

2

- Industry Thermal Control
- HVAC System

PIN Configurations (Top View)

SOT-23 SC70-5

Typical Application

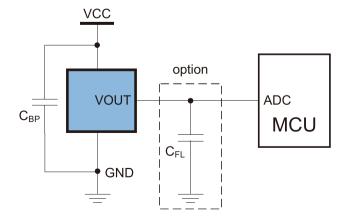


Figure 1. Typical Application of CT7035

Pin Description

PIN No.		PIN Name	Description
SOT-23	SC70-5	Pin name	Description
1	4	1 //(.(.	Power supply input pin, it should connect a 100nF to 1.0uF ceramic cap to ground close to the sensor.
2	3	VOUT	Analog voltage output pin, proportional to temperature.
3	2	GND	Ground pin.
	1, 5	NC	No connection

Function Block

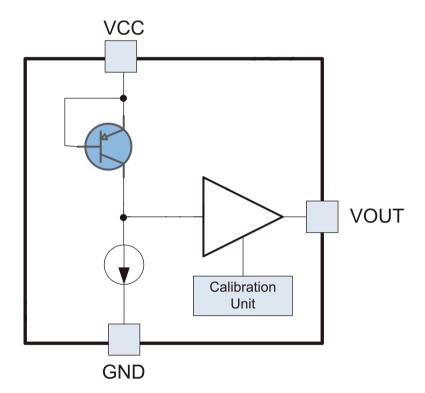
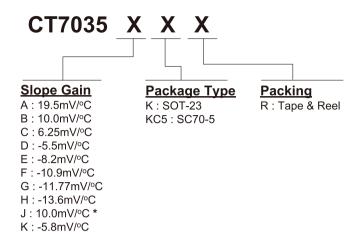



Figure 2. CT7035 function block

Ordering Information (note 1)

Order PN	Slope Gain [mV/°C]	Green ¹	Package	Marking ID ²	Packing	MPQ	Operation Temperature
CT7035AKR	19.5	Halogen free	SOT-23	AUWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035BKR	10.0	Halogen free	SOT-23	BBWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035CKR	6.25	Halogen free	SOT-23	BCWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035DKR	- 5.5	Halogen free	SOT-23	BDWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035EKR	- 8.2	Halogen free	SOT-23	BEWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035FKR	-10.9	Halogen free	SOT-23	BFWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035GKR	-11.77	Halogen free	SOT-23	BGWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035HKR	-13.6	Halogen free	SOT-23	BHWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035JKR	10.0	Halogen free	SOT-23	BJWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035KKR	-5.8	Halogen free	SOT-23	BKWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035AKC5R	19.5	Halogen free	SC70-5	BYWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035BKC5R	10.0	Halogen free	SC70-5	BQWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035CKC5R	6.25	Halogen free	SC70-5	BRWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035DKC5R	- 5.5	Halogen free	SC70-5	BSWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035EKC5R	- 8.2	Halogen free	SC70-5	BTWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035FKC5R	-10.9	Halogen free	SC70-5	BUWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035GKC5R	-11.77	Halogen free	SC70-5	BPWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035HKC5R	-13.6	Halogen free	SC70-5	BZWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035JKC5R	10.0	Halogen free	SC70-5	CQWX	Tape & Reel	3,000	-50°C ~ +150°C
CT7035KKC5R	-5.8	Halogen free	SC70-5	CRWX	Tape & Reel	3,000	-50°C ~ +150°C

* for J version, output voltage is 750mV at Ta = 25°C, for B version, output voltage is 850mV at Ta = 25°C. for other slope gain version unlisted above, please contact Sensylink sales.

Note 1,

Absolute Maximum Ratings (Note 2)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC} to GND	-0.3 to 5.5	V
Output pin Voltage	V _{OUT} to GND	-0.3 to 5.5	V
Operation junction temperature	T _J	-50 to 150	°C
Storage temperature Range	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{LEAD}	260	°C
ESD MM	ESD _{MM}	400	V
ESD HBM	ESD _{HBM}	4000	V
ESD CDM	ESD _{CDM}	1000	V

Note 2

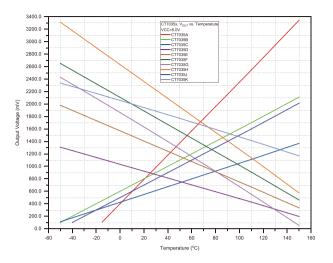
- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

 These are stress ratings only. Functional operation of the device at the "Absolute Maximum Ratings" conditions or any other conditions beyond those indicated under "Recommended Operating Conditions" is not recommended. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 2. Using 2oz dual layer (Top, Bottom) FR4 PCB with 4x4 mm² cooper as thermal PAD

Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	1.8 ~ 5.5	V
Ambient Operation Temperature Range	T _A	-50 ~ + 150	°C

Electrical Characteristics (Note 3)


Test Conditions: V_{CC} =3.3V, T_A=25°C.Unless otherwise specified.

Parameter	Symbol		Test Conditions	Min	Тур	Max	Unit
Supply Voltage ¹	Vcc		(Note 3)	1.8		5.5	V
		K waralan ²	$T_A = 10^{\circ}C \text{ to } 30^{\circ}C$	-0.35	±0.15	0.35	°C
		K version ²	$T_A = -50^{\circ}C \text{ to } 150^{\circ}C$	-1.0	±0.35	1.0	°C
Temperature Accuracy ²	T _{AC}	Non K	$T_A = 10^{\circ}C$ to $50^{\circ}C$	-1.5	± 0.5	1.5	°C
		version	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	-3.5	±1.0	3.5	°C
		VO101011	$T_A = -50^{\circ}C \text{ to } 150^{\circ}C$		±2.0		°C
			CT7035A		19.5		mV/°C
		(CT7035B, CT7035J		10.0		mV/°C
			CT7035C		6.25		mV/°C
			CT7035D		- 5.5		mV/°C
Slope Gain	Gain		CT7035E		-8.2		mV/°C
			CT7035F		-10.9		mV/°C
			CT7035G		-11.77		mV/°C mV/°C
			CT7035H CT7035K		-13.6 -5.8		mv/ C
			CT7035A		887.5		mV
Slope Gain							+
			CT7035B		850		mV
			CT7035C		580		mV
			CT7035D		895.5		mV
Output Voltage ³ @ T = 25°C	V _{T25}		CT7035E		1365		mV
Cutput Voltage @ 1 - 23 0	V 125		CT7035F		1834.5		mV
			CT7035G		1574		mV
			CT7035H		2293		mV
			CT7035J		750		mV
			CT7035K		1914.7		mV
Supply Current	Icc				7.0	12	uA
Line Regulation		VCC char	ige from Min. voltage to 5.0V		0.3		mV/V
Output Resistance	Ro	I _{LO}	_{AD} = -500uA to 500uA		1		ohm
Maximum Capacitive Load					1000		pF

Note 3

- 1. The Min. supply voltage is always 250mV higher than that of output voltage at least, see below table for each part.
- 2. Temperature error is defined the temperature difference between temperature-to-voltage transfer function based on Table 1 and absolute temperature. K version means CT7035K, which is better temperature accuracy performance than other slope gain version.
- 3. For CT7035J, slope gain is $10.0 \text{mV/}^{\circ}\text{C}$, Vout at $Ta = -25^{\circ}\text{C}$, is 250 mV.

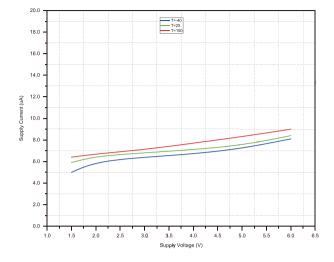
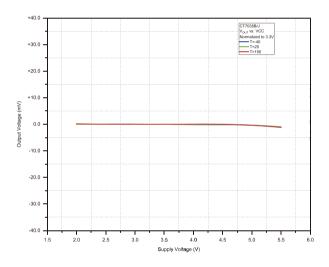



Figure 3. Output Voltage vs. Temperature

Figure 5. Supply Current vs. Supply Voltage

(1 18.5ms 1.529 2 18.6ms 1.529 2 2 18.6ms 2.5 2 18.6ms 2

Figure 4. Output Voltage vs. Supply Voltage

Figure 6. Output Voltage vs. Supply Voltage (power on)

1 Function Descriptions

The chip is an analog output temperature sensor with optimized thermal diode as temperature-sensing device. Also the chip has a class-AB output stage with buffer which can offer 500uA source/sink capability. Also CT7035 serial chips can offer several kinds of slope gain distinguished by suffix A to H, J and K.

1.1 Temperature-to-Voltage Transfer Function

It is recommended to use below transfer function to express the relationship between temperature and output voltage. For CT7035A/B/C/D/E/F/H/J, to use 1st order equation; for CT7035G, CT7035K, prefer to use 2nd order equation.

Part No.	Temperature Range	Output Voltage (unit: mV) NOTE4	Temperature (unit: °C) NOTE4		
CT7035A	-40°C~150°C	V _O = 19.5 * T + 400	$T = (V_O - 400) / 19.5$		
CT7035B	-40°C~150°C	V _O = 10.0 * T + 600	T = (V _O - 600) / 10.0		
CT7035C	-40°C~150°C	V _O = 6.25 * T + 424	$T = (V_O - 424) / 6.25$		
CT7035D	-40°C~110°C	Vo = -5.5 * T + 1033	T =(V _O - 1033) /(-5.5)		
C17035D	110°C~150°C	V _O = -5.8 * (T - 110) + 428	$T = (V_0 - 428) / (-5.8) + 110$		
CT7035E	-40°C~110°C	Vo = -8.2 * T + 1570	T =(Vo - 1570) / (-8.2)		
C17035E	110°C~150°C	V _O = -8.35 * (T - 110) + 668	T = (V _O - 668) / (-8.35) + 110		
CT7035F	-40°C~110°C	Vo = -10.9 * T + 2107	T =(Vo - 2107) / (-10.9)		
C17035F	110°C~150°C	V _O = -11.2 * (T - 110) + 908	T = (V _O - 908) / (-11.2) + 110		
CT7035G	-40°C~150°C	$V_O = -0.00388 * T^2 - 11.5 * T + 1863.9$	T = -1481.96 + sqrt[$2.1962*10^6$ + (1863.9 - V_0) / ($3.88*10^{-3}$)]		
CT7035H	-40°C~110°C	V _O = -13.6 * T + 2633	$T = (V_O - 2633) / (-13.6)$		
C17035H	110°C~150°C	V _O = -14.1 * (T - 110) + 1137	T = (Vo - 1137) / (-14.1) + 110		
CT7035J	-40°C~110°C	V _O = 10.0 * T + 500	$T = (V_0 - 500) / 10.0$		
C170353	110°C~150°C	V _O = 10.35 * (T - 110) + 1600	T = (V _O - 1600) / 10.35 + 110		
CT7035K	-40°C~150°C	V _O = -0.00174 * T ² - 5.666 * T + 2057.4	T = -1628.16 + sqrt[$2.65098*10^6$ + ($2057.4 - V_0$) / ($1.74*10^{-3}$)]		

Table 1. Transfer Function between Temperature and Output Voltage

*Note 4: Here T is temperature with Celsuis degree, Vo unit is mV.

Temperature (°C)	CT7035A	СТ7035В	CT7035C	CT7035D	CT7035E	CT7035F	CT7035G	СТ7035Н	CT7035J	СТ7035К
150	3325	2100	1361.5	196	334	460	51.6	573	2014	1168.4
140	3130	2000	1299	254	417.5	572	177.8	714	1910.5	1230.1
130	2935	1900	1236.5	312	501	684	303.3	855	1807	1291.4
120	2740	1800	1174	370	584.5	796	428	996	1703.5	1352.4
110	2545	1700	1111.5	428	668	908	552	1137	1600	1413.1
100	2350	1600	1049	483	750	1017	675.1	1273	1500	1473.4
90	2155	1500	986.5	538	832	1126	797.5	1409	1400	1533.4
80	1960	1400	924	593	914	1235	919.1	1545	1300	1593
70	1765	1300	861.5	648	996	1344	1039.9	1681	1200	1652.3
60	1570	1200	799	703	1078	1453	1159.9	1817	1100	1711.2

Sep.2020 Rev. 1.6

50	1375	1100	736.5	758	1160	1562	1279.2	1953	1000	1769.8
40	1180	1000	674	813	1242	1671	1397.7	2089	900	1828
30	985	900	611.5	868	1324	1780	1515.4	2225	800	1885.9
20	790	800	549	923	1406	1889	1632.3	2361	700	1943.4
10	595	700	486.5	978	1488	1998	1748.5	2497	600	2000.6
0	400	600	424	1033	1570	2107	1863.9	2633	500	2057.4
-10	205	500	361.5	1088	1652	2216	1978.5	2769	400	2113.9
-15	107.5	450	330.3	1115.5	1693	2270.5	2035.5	2837	350	2142
-20		400	299	1143	1734	2325	2092.3	2905	300	2170
-30		300	236.5	1198	1816	2434	2205.4	3041	200	2225.8
-40		200	174	1253	1898	2543	2317.7	3177	100	2281.3
-50		100	111.5	1306	1973	2644	2429.2	3308		2336.4

Table 2. Temperature Data Look-up Table

Due to different gain slope, there is different working temperature range.

1.2 Minimum Supply Voltage

Since the chip output is analog voltage, and changed versus temperature with different slope. The minimum supply voltage is different at different temperature shown as below table for each version.

Temperature		Minimum Supply Voltage (V)												
(°C)	CT7035A	CT7035B	CT7035C	CT7035D	CT7035E	CT7035F	CT7035G	CT7035H	CT7035J	CT7035K				
+150	Vout+0.15	Vout+0.18	1.8	1.8	1.8	1.8	1.8	1.8	Vout+0.18	1.8				
+125	Vout+0.19	Vout+0.25	1.8	1.8	1.8	1.8	1.8	1.8	Vout+0.25	1.8				
+100	Vout+0.21	1.8	1.8	1.8	1.8	1.8	1.8	Vout+0.77	1.8	1.8				
+75	Vout+0.24	1.8	1.8	1.8	1.8	1.8	1.8	Vout+0.66	1.8	1.8				
+50	1.8	1.8	1.8	1.8	1.8	Vout+0.5	Vout+0.63	Vout+0.58	1.8	Vout+0.20				
+25	1.8	1.8	1.8	1.8	1.8	Vout+0.4	Vout+0.54	Vout+0.51	1.8	Vout+0.25				
0	1.8	1.8	1.8	1.8	1.8	Vout+0.3	Vout+0.44	Vout+0.44	1.8	Vout+0.30				
-25.0	1.8	1.9*	1.8	1.8	Vout+0.23	Vout+0.3	Vout+0.35	Vout+0.36	1.9*	Vout+0.30				
-50.0	1.8	2.0*	1.9*	1.9*	Vout+0.23	Vout+0.26	Vout+0.26	Vout+0.29	2.0*	Vout+0.30				

^{* --} For CT7035B/J version, it is better to apply 2.0V at T = -50° C, 1.9V at T = -25° C to keep enough margin; For CT7035C/D version, it is better to apply 2.0V at T = -50° C, 1.9V at T = -25° C to keep enough margin;

Table 3. Minimum Supply Voltage Table

1.3 Output Driver and Capacitive Load

If the chip is used in noisy environment, or connected to a switched sampling input of post ADC, it is necessary to add a filter capacitor shown as below, to minimize noise coupling. The output can drive maximum capacitive load is 1000pF. If capacitive loads greater than 1000pF, a series resistor is required on the output, to maintain stable conditions.

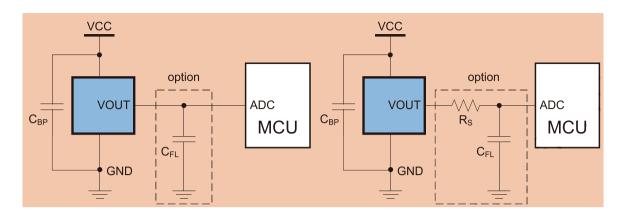


Figure 7. Capacitive Load with/without Rs

1.4 Bypass Capacitor

Bypass Capacitor is necessary to filter noise and placed as close as the chip in most application. And the capacitance value could be 100pF to 1.0nF depending on noise frequency.

1.5 PCB Layout

It is recommended PCB layout shown as below.

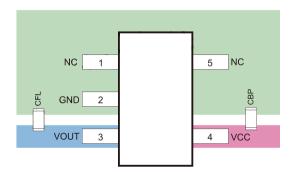
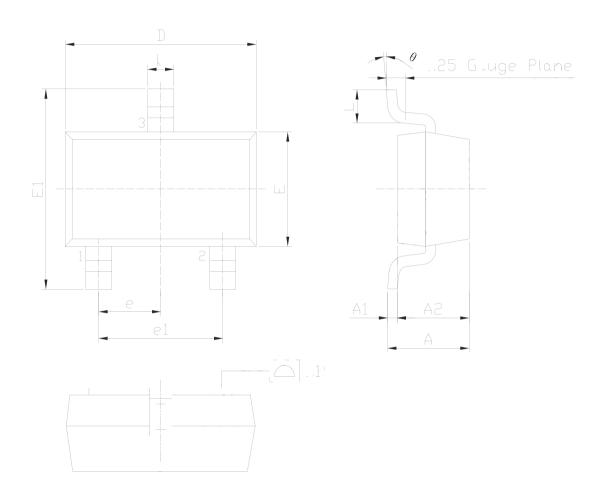
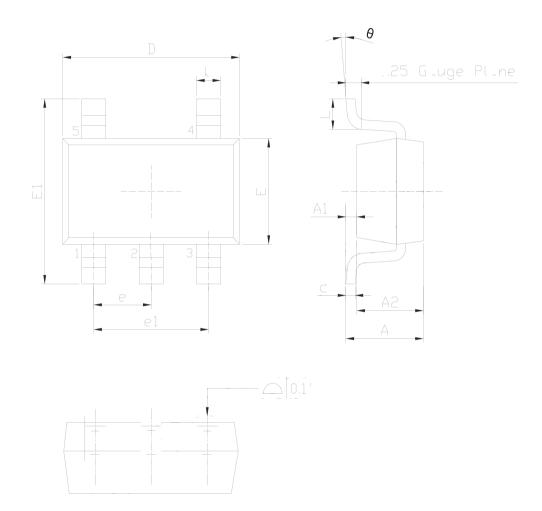



Figure 8. Recommended PCB Layout

Package Outline Dimensions (SOT-23)

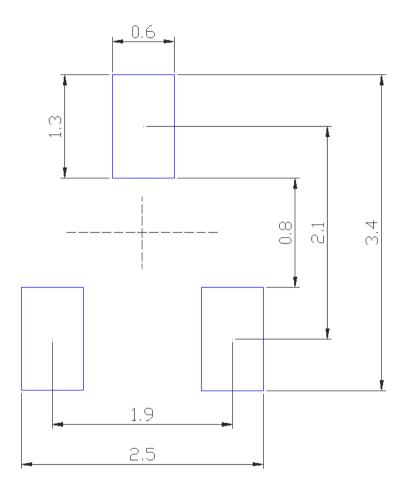
SOT-23 Unit (mm)



Symbol	Dimensions	in Millimeters	Dimensions in Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.200	0.003	0.008	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.200	2.600	0.087	0.102	
е	0.950 (BSC)		0.037 (BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Package Outline Dimensions (SC70-5)

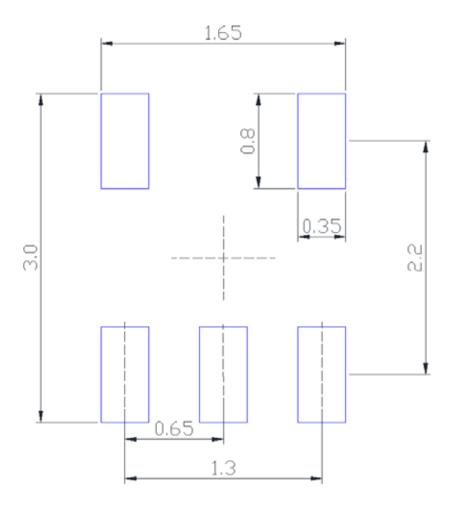
SC70-5 Unit (mm)



Symbol	Dimensions	in Millimeters	Dimensions in Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650	(BSC)	0.026 (BSC)		
e1	1.200	1.400	0.047	0.055	
L	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

Recommend Land Pattern Layout (SOT-23)

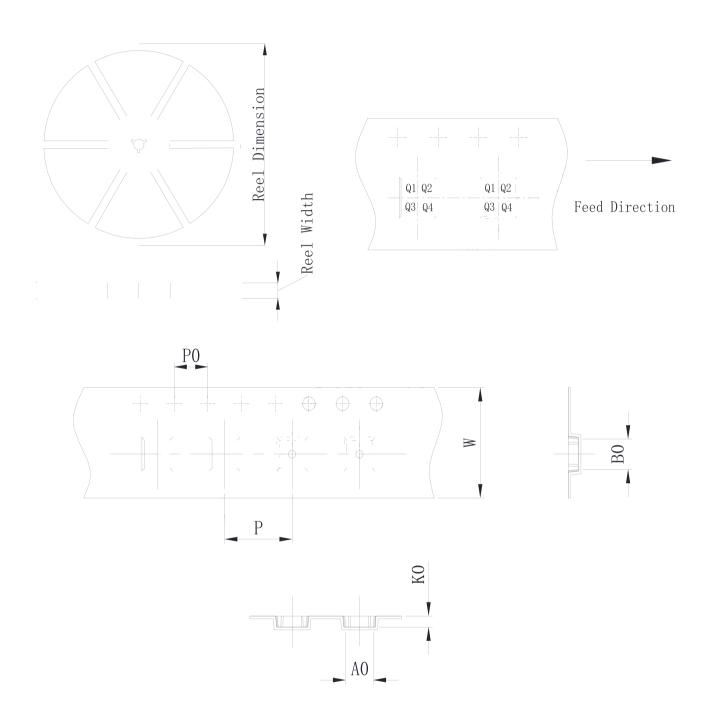
SOT-23 Unit (mm)


Note:

- 1 All dimensions are in millimeter
- 2 Recommend tolerance is within ± 0.1 mm
- 3 Change without notice

Recommend Land Pattern Layout (SC70-5)

SC70-5 Unit (mm)



Note:

- 1 All dimensions are in millimeter
- 2 Recommend tolerance is within ± 0.1 mm
- 3 Change without notice

Packing information

Package type	Reel size	Reel dimension (±3.0mm)	Reel width (±1.0mm)	A0 (±0.1mm)	B0 (±0.1mm)	K0 (±0.1mm)	P (±0.1mm)	P0 (±0.1mm)	W (±0.3mm)	Pin1
SOT-23	7'	180	8.4	3.15	2.77	1.22	4.0	4.0	8.0	Q3
SC70-5	7'	180	8.4	2.3	2.5	1.2	4.0	4.0	8.0	Q3

Revision History

Version	Date	Change Content		
Ver1.0	2018.09	Initial version		
Ver1.1	2019.06	Add J version (CT7035J)		
Ver1.2	2019-08	Update Current		
Ver1.3	2020-03	Update Function Descriptions		
Ver1.4	2020-04	Update Marking Information, add K version (CT7035K		
Ver1.5	2020-06	Update Temperature Range		
Ver1.6	2020-09	Optimize Marking Add packing Information		

SENSYLINK Microelectronics Co., Ltd

www.sensylink.com

IMPORTANT NOTICE

SENSYLINK Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. SENSYLINK Microelectronics does not assume any responsibility for use of any product, nor does SENSYLINK Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. SENSYLINK Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using SENSYLINK Microelectronics components. SENSYLINK Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

SENSYLINK Microelectronics Co., Ltd $\ensuremath{\mathbb{Q}}$ 2015 - 2020.

Sep.2020 Rev. 1.6

SENSYLINK Microelectronics Co., LTD

单击下面可查看定价,库存,交付和生命周期等信息

>>SENSYLINK