

Specification

Date: 2017/03/03 Page: 1/15

History of Specification

Revsion number	Date	Page	Details	Person in carge	Remark	
00	2012.11.01		Creation of Specification Sheet	K.H. Lee		
		5	Maximum ratings			
01	2012.11.15	12 - 14	Packing & Labeling	K.H. Lee		
		14 - 16	Precaution			
02	2013.04.02	9 – 10	Product Name and Sorting Bin	K.H. Lee		
03			Product Name and Sorting Bin	KILL		
03	2013.05.21	2013.05.21	8	Visual Inspection(Pinholes, Surface scratch)	K.H. Lee	
04	2013.08.26	4	Typical electro-optical characteristics	K.H. Lee		
٥٢	2013.09.16	4	Typical electro-optical characteristics			
05		2013.09.16	9 – 10	Product Name and Sorting Bin	K.H. Lee	
0.6			Packing & Labeling	1117.16		
06	2014.03.21	14 – 16	Precaution	H.K. Kim		
0.7	07 2014.07.28	7 – 10	Visual inspection			
07		13 -15	Precaution	S.H. Lee		
08	2014.11.21	4 – 5	Typical Electro-Optical Characteristics at Ta=25℃	S.H. Lee		
		9 – 10	Product name and Sorting Bins			

Specification

Date: 2017/03/03

Page : 2/15

History of Specification

Revsion number	Date	Page	Details	Person in charge	Remark
		4	Chip Diagram (PAD size 140um->120um)	CHIL	
00	7 – 9		Visual inspection		
09	2016.01.07		Chip structure modified	S.H. Lee	
		issue	Chip Passivation enhanced		
10	2016.07.11	5 - 6	Typical Electro-Optical Characteristics at Ta=25℃	S.H. Lee	
11	2017.03.03	9-10	Visual inspection addition	J.Y. Park	

Specification

Date: 2017/03/03

Page: 3/15

\sim	4			
Cı	ICT/	ΛN	nΔ	r
Vι	เอเ	UI.	ш	1.

Part Name: UV1000-38

Contents:

- 1. Features and Application
- 2. Part Name
- 3. Main Materials
- 4. Electrodes
- 5. Chip Diagram
- 6. Maximum Ratings at Ta=25 ℃
- 7. Typical Electro-Optical Characteristics at Ta=25 °C
- 8. Mechanical Specifications
- 9. Visual Inspection
- 10. Product name and Sorting Bins
- 11. Packing
- 12. Labeling
- 13. Precaution

Seoul Viosys Co., Ltd.					
Drawn by Checked by Approved by					
J.Y. Park	C.Y. Kim	Y.J. Yoon			
2017.03.03	2017.03.03	2017.03.03			

Customer					
Chec	Approved by				

Specification

Date: 2017/03/03

Page: 4/15

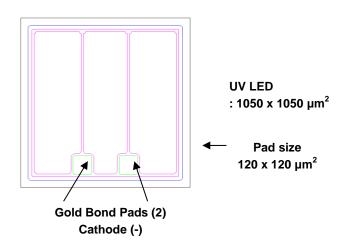
1. Features and Application

- High Luminous Intensity, Long Operation Life
- Power Package Application
- UV Curing, Printing, Coating

2. Part Name:

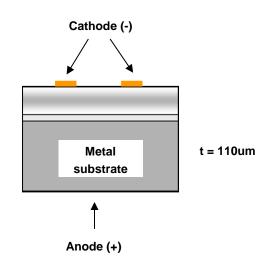
- UV1000-38

3. Main Material


- Epitaxial Layer: GaN Based LED Structure

4. Electrodes

P-Electrode: AuN-Electrode : Au


5. Chip Diagram

TOP View

<Fig. 1 >Plane View

Die Cross Section

<Fig. 2> Cross Sectional View

Specification

Date: 2017/03/03 | Pag

Page : 5/15

6. Maximum Ratings at Ta=25 ℃

DC Forward Current 700mA Junction Temperature^(a) 125 $^{\circ}$ C

Operating Temperature Range $-30\,^{\circ}\text{C}$ to $+85\,^{\circ}\text{C}$ Storage Temperature Range (Chip) $-40\,^{\circ}\text{C}$ to $+100\,^{\circ}\text{C}$

('Maximum Ratings' mean when it exceeds the chip has the possibility of breaking down when these conditions are exceeded momentarily. 'Maximum ratings', the chip is not guaranteed to endure such conditions. 'Maximum Ratings' concerning your LED device after the chip is built into your package shall be established by yourself since these greatly depend on the design of the device, the conditions of assembly, the environment used, and so forth.)

(a) Measurement condition: AAP63 PKG

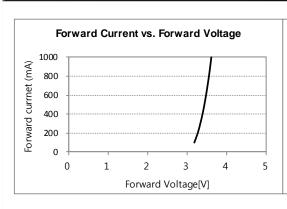
7. Typical Electro-Optical Characteristics at Ta=25 °C

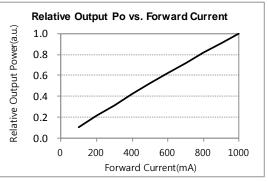
ITEM	Symbol	Condition	Characteristics (Ta=25 ℃)			Unit
TTEW	Symbol		Min	Тур	Max	Onit
Reverse Current	I_R	$V_R = 5V$	0	-	1.0	uA
Turn-on Voltage	V_{F1}	$I_F=10uA$	2.3	-	3.0	V
Forward Voltage	V_{F2}	I _F =500mA	3.3	3.5	3.9	V
Peak Wavelength (1)	Wp	I _F =500mA	380	385	390	nm
Full Width Half Maximum	Δλ	I _F =500mA	-	10	-	nm
Luminous Intensity (2)	Po	I _F =500mA	780	980	1180	mW

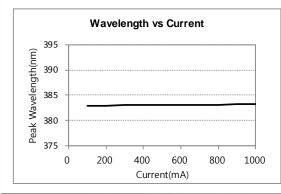
Note: Radiant and Peak wavelength are measured by Seoul Viosys's equipment.

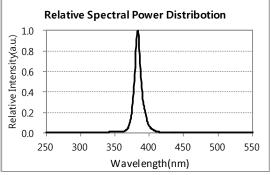
Peak Wavelength: ±1nm. (1), Luminous Intensity: ±10%. (2)

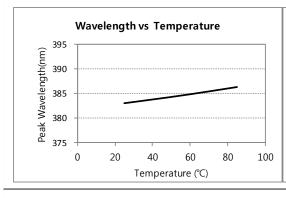
It is recommended to operate the LED at a minimum current 100mA to stabilize the LED characteristics

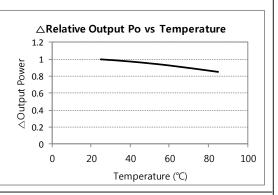


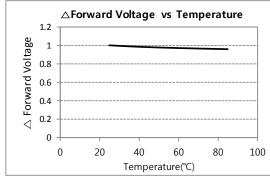

1B-25, 727, Wonsi-dong, Danwon-gu, Ansan-city, Gyeonggi-do, Korea 425-851


Specification


Date: 2017/03/03


Page: 6/15





These curves represent typical performance of the UV1000-38 LED chip.

Actual performance will vary slightly for different power & peak wavelength bins.

Specification

Date: 2017/03/03

Page : 7/15

8. Mechanical Specifications

Description	Dimension	Tolerance	
P-N junction Area	960 × 960um	±50um	
Chip Area	1,050 × 1,050um	±50um	
Chip Thickness	110um	±20um	
Pad Size	120um	±15um	

9. Visual inspection

Done by optical microscope (20x).

		Done by optical interescope (20x).
Item	Accepted (OK)/defective (N.G.)	Example
Surface dirt	accepted: if surface dirt(metal) less than 5% of unit cell.	
Passivation film peeling	accepted: if Passivation film peeling less than 10% of unit cell.	
Partially missing bond pad	accepted: a < b/10 a: missing bond pad b: normal bond pad	

Specification

Date: 2017/03/03 Page: 8/15

Bond pad scratch	accepted: if bond pad scratch (including probe mark) less than 15 % of bond pad area	
θ shift	accepted : $\theta < \pm 5^{\circ}$	
Twins or triples	Inseparable chips are rejected If extra-size is less than 10%, OK.	
Dicing shift	The light-emitting surface, pad can't be cut-off	

Specification

Date: 2017/03/03

Page : 9/15

Chipping	Pad electrode not chipped off	
Bad cut	Not accepted: if bad cut is occured	
Surface scratches	accepted: if surface scratch less than 5% of surface emitting area	
Mesa line defect	Accepted: inner metal line (Over etched) Defective: crack or chipping if occurred	OK NG

Specification

Date: 2017/03/03 | Page : 10/15

Pad Contamination	Accepted: if contamination less than 10% of bond pad area	
Edge Contamination	Accepted: if contamination less than 5% of chip out line	

Specification

Date: 2017/03/03

Page : 11/15

10. Product Name and Sorting Bin

(1) Product Name

Product Name	38	X	YY
UV1000-38XYY	Wp(nm) (380 ~ 390)	L: Low Wp (380~385nm) H: High Wp (385~390nm)	Vf & Power

(2) Sorting Bin

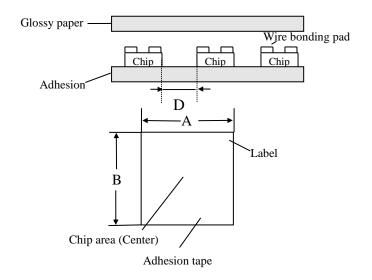
Rank	Bin#	Ir@-5V	Vf1@10uA	Wp@500mA	Vf@500mA	Po@500mA
UV1000-38L01	1				3.3~3.4V	
UV1000-38L02	2				3.4~3.5V	780~860mW
UV1000-38L03	3				3.5~3.6V	
UV1000-38L04	4				3.6~3.7V	
UV1000-38L05	5				3.7~3.8V	
UV1000-38L06	6				3.8~3.9V	
UV1000-38L07	7				3.3~3.4V	
UV1000-38L08	8				3.4~3.5V	860~940mW
UV1000-38L09	9				3.5~3.6V	
UV1000-38L10	10				3.6~3.7V	
UV1000-38L11	11				3.7~3.8V	
UV1000-38L12	12				3.8~3.9V	
UV1000-38L13	13				3.3~3.4V	940~1020mW
UV1000-38L14	14		A 2.3~3.0V	380~385nm	3.4~3.5V	
UV1000-38L15	15	0~1.0uA			3.5~3.6V	
UV1000-38L16	16	0'-1.0uA			3.6~3.7V	
UV1000-38L17	17				3.7~3.8V	
UV1000-38L18	18				3.8~3.9V	
UV1000-38L19	19				3.3~3.4V	1020~1100mW
UV1000-38L20	20				3.4~3.5V	
UV1000-38L21	21				3.5~3.6V	
UV1000-38L22	22				3.6~3.7V	
UV1000-38L23	23				3.7~3.8V	
UV1000-38L24	24				3.8~3.9V	
UV1000-38L25	25				3.3~3.4V	4400 4400 W
UV1000-38L26	26				3.4~3.5V	
UV1000-38L27	27				3.5~3.6V	
UV1000-38L28	28				3.6~3.7V	1100~1180mW
UV1000-38L29	29				3.7~3.8V	
UV1000-38L30	30				3.8~3.9V	

Specification

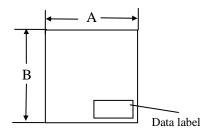
Date: 2017/03/03

Page : 12/15

Rank	Bin#	Ir@-5V	Vf1@10uA	Wp@500mA	Vf@500mA	Po@500mA
UV1000-38H01	31				3.3~3.4V	
UV1000-38H02	32				3.4~3.5V	
UV1000-38H03	33				3.5~3.6V	
UV1000-38H04	34				3.6~3.7V	780~860mW
UV1000-38H05	35				3.7~3.8V	
UV1000-38H06	36				3.8~3.9V	
UV1000-38H07	37				3.3~3.4V	
UV1000-38H08	38				3.4~3.5V	
UV1000-38H09	39				3.5~3.6V	
UV1000-38H10	40				3.6~3.7V	860~940mW
UV1000-38H11	41				3.7~3.8V	
UV1000-38H12	42				3.8~3.9V	
UV1000-38H13	43				3.3~3.4V	940~1020mW
UV1000-38H14	44		2.3~3.0V	385~390nm	3.4~3.5V	
UV1000-38H15	45	0~1.0uA			3.5~3.6V	
UV1000-38H16	46				3.6~3.7V	
UV1000-38H17	47				3.7~3.8V	
UV1000-38H18	48				3.8~3.9V	
UV1000-38H19	49				3.3~3.4V	1020~1100mW
UV1000-38H20	50				3.4~3.5V	
UV1000-38H21	51				3.5~3.6V	
UV1000-38H22	52				3.6~3.7V	
UV1000-38H23	53				3.7~3.8V	
UV1000-38H24	54				3.8~3.9V	
UV1000-38H25	55				3.3~3.4V	1100~1180mW
UV1000-38H26	56				3.4~3.5V	
UV1000-38H27	57				3.5~3.6V	
UV1000-38H28	58				3.6~3.7V	
UV1000-38H29	59				3.7~3.8V	
UV1000-38H30	60				3.8~3.9V	


Specification

Date: 2017/03/03 | Page: 13/15


11. Packing

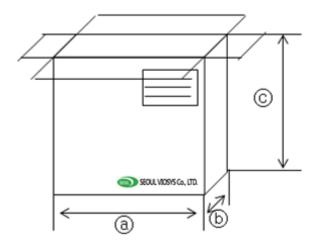
- (1) Chips-on-tape
 - (a) Electro-Optical measurement data should be labeled and tacked on the backside of the glossy paper.

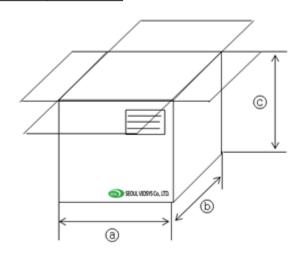
Chip area should be in the center of adhesion tape, and the wire-bonding pad should face toward the covered glossy paper.

(b) Chip type, Lot No. and quantity etc. should be labeled and tacked to the corner of the glossy paper.

(c) Dimensions

Item	Instruction
Adhesion tape	Semi- transparent blue
Glossy paper (A×B)	197mm × 220mm
Chip Qty/tape	Min. 100 EA
Chip separation (D)	Typ. 0.35mm

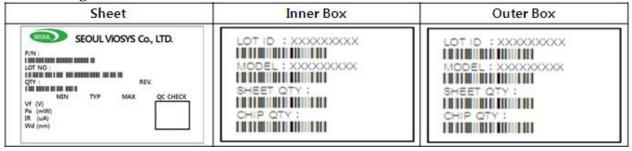

Specification


Date: 2017/03/03 | Page : 14/15

(2) Packing for shipment

- (a) The sheets (adhesion tape + glossy paper) are packed in an anti-static electricity bag. The anti-static electricity bag has two different size; 240mmx270mm and 300mmx300mm. Each anti-static bag can contain up to 80sheets and 150sheets respectively.
- (b) The anti-static bags are packed in a box. The size of this box is $250 \text{mm} \times 65 \text{mm} \times 275 \text{mm}$ (a) \times b) \times c). Each box can contain up to 5 anti-static electricity bags.
- (c) The boxes which contain anti-static electricity bags are packed in the other box. The size of this outer box is $260 \text{mm} \times 340 \text{mm} \times 290 \text{mm}$ (a) \times b) \times c). Each outer box can contain up to 5 inner boxes.
- (d) Each sheet / box is labeled with information describing its content. (Details please refer to section 12)

TYPE	SIZE(mm)				
TIPE	0	0	0		
Inner box	250	65	275		
Outer box	260	340	290		



Specification

Date: 2017/03/03

Page: 15/15

12. Labeling

- (1) Sheet: The measurement data for each lot are also shown on the backside of the sheet.
- (2) Inner Box: The information about the products is also shown on the inner box.
- (3) Outer Box: The information about the products is also shown on the outer box.

13. Precaution

(1) Quality Guarantee

The chip guarantee period is three months after the delivery under the following preservation conditions. If any defective is found, the customer shall immediately inform of that to Seoul Viosys Co., Ltd. Preservation conditions (when the shipping package is unopened.)

- · Temperature and humidity : $0 \sim 45$ °C, sealed bag open $\leq 70\%$ RH, sealed bag close $\leq 90\%$ RH
- · Atmosphere: Keep the chips in a desiccator with silica gel or with nitrogen substitution.

(2) Handling of Electrostatic Discharge

- · The chips are sensitive to static electricity charge and users are required to handle with care. If the applied current and/or voltage exceed the max rating, the overflow in energy may cause damage to, or possibly result in electrical destruction of the products. Accordingly, Customer should take absolutely secure countermeasure against static electricity and surge when handling products.
- · It is highly recommended to utilize the diodes for prevention of ESD damage (Zener diode, TVS, etc) when applications are designed. This measure could keep the applications safe by blocking the excess of maximum ratings for surge current during on/off switching.
- · Proper grounding of products (via $1M\Omega$), use of conductive mat, semiconductive working uniform and shoes, and semiconductive containers are considered to be effective as countermeasures against static electricity and surge. It is recommended to use an ionizer in the facility or environment where static electricity may be generated easily.

Specification

Date: 2017/03/03 | Page : 16/15

- · High humidity and extremely low temperature can cause ESD damage to make reliability worse. Users make sure that the chips should not be stored or packaged in this environment and keep an eye on dealing with humidity and temperature.
- · Preliminary inspection is first recommended if chips are out of order due to ESD damage in users' applications. ESD damage can be detected by applying low current ($\leq 1 \text{mA}$).

Failure Criteria: V_F < 2.0V at 0.5mA

(3) General precaution for use

- · Chips should be stored in a clean environment. If the Chips are to be stored for 3 months or more after being shipped from Seoul Viosys, they should be packed by a sealed container with nitrogen gas injected. (Shelf life of sealed bags: 1 year)
- · Chips should keep away from high humidity environment. The chips surrounded by the environment with high moisture can be damaged, which can cause degradation of optical and electrical performance as well as delamination between the interfaces.
- · This chip should not be used directly in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA is recommended to use.
- · After sealed bag is open, device subjected to soldering, solder flow, or other high temperature processes must be:

Mounted within 168 hours (7days) at an assembly line with a condition of no more than 30 °C and 70% RH

- · Chips require baking before mounting, if humidity card reading is >70% at, 23 ± 5 °C. Chips must be baked for 24Hrs. at 65 ± 5 °C, if baking required.
- · When the chips are illuminating, the maximum ambient temperature should be first considered before operation. If voltage exceeding the absolute maximum rating is applied to chips, it may cause damage or even destruction to chips. Damaged LEDs will show some abnormal characteristics such as remarkable increase of leak current, lower turn-on voltage and getting unlit at low current.

Specification

Date: 2017/03/03 | Page: 17/15

- · Chips are intended to be operating for ordinary electronic devices. It is not guaranteed to be used for the applications (such as aviation, aerospace, heating equipment, life-sustaining equipment) which could require extremely high reliability and safety. In addition to damage to the chips, it could directly threaten human life and safety.
- · UV light could have negative effects on raw and subsidiary materials users utilize for applications. If users utilize materials which can be reacted or weakened by UV light, it might be possible to damage the applications. Please keep in mind that it is recommendable to take advantage of durable materials which is not affected by UV light.
- · The appearance and specifications of the products may be modified for improvement without further notice.

(4) Chip Handling Precaution

- · Adhesives or Tapes : Please keep away from the Adhesives or Tapes to the light emitting surface. Even a small piece of residue can be possible to cause the reduced light extraction efficiency and mechanically damage the surface.
- · Wrist bands or Anti-electrostatic gloves : If possible, utilize wrist bands and Anti-electrostatic gloves. This precautionary measure is to ward off ESD damage.
- · Do not press the chip even covered with blue sheets.
- · Do not fold the blue sheets with the chips.

The above specifications are subject to change with prior notice.

Seoul Viosys Co., Ltd

July 11, 2016

•UV LEDs emit high intensity UV light.

•Do not look directly into the UV light during operation.

This can be harmful to your eyes and skin.

Wear protective eyewear to avoid exposure to U

•Wear protective eyewear to avoid exposure to UV light.
•Attach caution labels to your products which contain UV LEDs.

Avoid direct eye and skin exposure to UV light. Keep out of reach of children.

单击下面可查看定价,库存,交付和生命周期等信息

>>Seoul Viosys(首尔伟傲世)