

SGM4T245 4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

GENERAL DESCRIPTION

The SGM4T245 is a 4-bit, dual-supply bus transceiver with configurable voltage translation and 3-state outputs. The device can be used as two 2-bit transceivers or as a 4-bit transceiver. The nAn and nBn are four 2-bit input and output ports. nDIR are the direction control inputs and $n\overline{OE}$ are the output enable inputs. V_{CCA} and V_{CCB} are the supply pins. The supply voltage of V_{CCA} and V_{CCB} can range from 1.2V to 5.0V, making the device suitable for bidirectional translating between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5.0V voltage nodes.

Pins nAn, $n\overline{OE}$ and nDIR are referenced to V_{CCA} and nBn pins are referenced to V_{CCB}. When nDIR is set high, it allows transmission from nAn to nBn. When nDIR is set low, it allows transmission from nBn to nAn. $n\overline{OE}$ can be used to make the outputs disabled so that the buses are effectively isolated. In suspend mode, both nAn and nBn are in high-impedance state when either V_{CCA} or V_{CCB} input is at GND level.

This device is highly suitable for partial power-down applications using power-off leakage current (I_{OFF}) circuit. When the device is powered down, the current backflow will be prevented from passing through the device.

 \overline{OE} should be tied to V_{CC} through a pull-up resistor, in order to make sure the high-impedance state during power-up or power-down, the minimum resistance depends on the current-sinking capability of the driver.

The SGM4T245 is available in Green TSSOP-16 and TQFN-2.6×1.8-16L packages. It operates over an ambient temperature range of -40 $^{\circ}$ C to +125 $^{\circ}$ C.

FEATURES

- V_{CCA} Supply Voltage Range: 1.2V to 5.0V
- V_{CCB} Supply Voltage Range: 1.2V to 5.0V
- Input and Output Interface Capability to 6V System Environment
- Control Inputs Levels are Referenced to V_{CCA}
- Outputs in High-Impedance State when V_{CCA} or V_{CCB} = 0V
- Support Partial Power-Down Mode
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-16 and TQFN-2.6×1.8-16L Packages

APPLICATIONS

Personal Electronic Industrial Equipment Enterprise Infrastructures Telecom Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM4T245	TSSOP-16	-40°C to +125°C	SGM4T245XTS16G/TR	SGM4T245 XTS16 XXXXX	Tape and Reel, 4000
	TQFN-2.6×1.8-16L	-40°C to +125°C	SGM4T245XTQA16G/TR	4T245 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage Range, V _{CCA} 0.3V to 6.0V
Supply Voltage Range, V _{CCB} 0.3V to 6.0V
Input Voltage, VI ⁽²⁾ 0.3V to 6.0V
Output Voltage, Vo ⁽²⁾
Suspend or 3-State Mode0.3V to 6.0V
Active Mode
A Ports0.3V to MIN (6.0V, V _{CCA} + 0.3V)
B Ports0.3V to MIN (6.0V, V _{CCB} + 0.3V)
Input Clamp Current, I _{IK} (V _I < 0)70mA (MAX)
Output Clamp Current, I_{OK} (V _O < 0)70mA (MAX)
Output Current, Io
Continuous Output Current±70mA
Continuous Output Current through V_{CCA} , V_{CCB} , or GND
±100mA
Junction Temperature ⁽³⁾ +150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM6000V
CDM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range, V _{CCA}	1.2V to 5.0V
Supply Voltage Range, V _{CCB}	1.2V to 5.0V
Input Voltage, V _I	0V to 5.0V
Output Voltage, V _O	
Suspend or 3-State Mode	0V to 5.0V
Active Mode	
A Ports	0V to V _{CCA}
B Ports	0V to V _{CCB}

Input Transition Rise or Fall Rate, $\Delta t/\Delta V$ 3ns/V (MAX) Operating Temperature Range......-40°C to +125°C

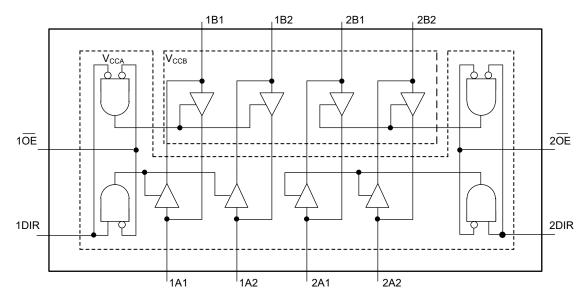
OVERSTRESS CAUTION

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

LOGIC SYMBOL

FUNCTION TABLE

SUPPLY VOLTAGE	CONTRO	DL INPUT	INPUT/OUTPUT			
$V_{CCA}, V_{CCB}^{(1)}$	n OE nDIR		nAn	nBn		
1.2V to 5.0V	L	L	nAn = nBn	Inputs		
1.2V to 5.0V	L	Н	Inputs	nBn = nAn		
1.2V to 5.0V	Н	X	Z	Z		
GND ⁽²⁾	X	x	Z	Z		

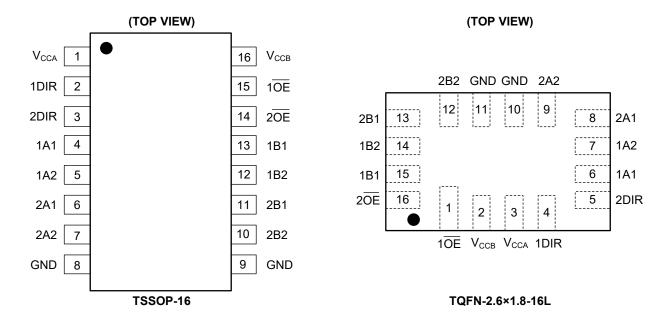
H = High Voltage Level

L = Low Voltage Level

Z = High-Impedance State

X = Don't Care

NOTES:


1. The nAn, nDIR and n\overline{OE} signals are referenced to V_{CCA}. The nBn signals are referenced to V_{CCB}.

2. If at least one of V_{CCA} or V_{CCB} is at GND level, the device enters suspend mode.

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

PIN CONFIGURATIONS

PIN DESCRIPTION

Р	IN	NAME	FUNCTION
TSSOP-16	TQFN-2.6×1.8-16L	NAME	FUNCTION
1	3	V _{CCA}	Supply Voltage V _{CCA.} The nAn, nDIR and n \overline{OE} signals are referenced to V _{CCA} .
2, 3	4, 5	1DIR, 2DIR	Direction Control Inputs.
4, 5	6, 7	1A1, 1A2	Data Inputs/Outputs.
6, 7	8, 9	2A1, 2A2	Data Inputs/Outputs.
8, 9	10, 11	GND	Ground.
11, 10	13,12	2B1, 2B2	Data Inputs/Outputs.
13, 12	15, 14	1B1, 1B2	Data Inputs/Outputs.
15, 14	16, 1	10E, 20E	Output Enable Inputs (Active Low).
16	2	V _{CCB}	Supply Voltage $V_{\text{CCB.}}$ The nBn signals are referenced to V_{CCB}

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are at T_A = +25°C. V_{CCI} is the supply voltage associated with the data input port, V_{CCO} is the supply voltage associated with the data output port, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
			V _{CCI} = 1.2V to 1.4V	Full	0.85 × V _{CCI}				
		Data innuta	V _{CCI} = 1.4V to 2.3V	Full	0.75 × V _{CCI}				
		Data inputs	V _{CCI} = 2.3V to 3.3V	Full	1.75V				
High-Level	N		V _{CCI} = 3.3V to 5.0V	Full	2.2V			N	
Input Voltage	V _{IH}		V _{CCI} = 1.2V to 1.4V	Full	$0.85 \times V_{CCA}$			V	
		nDIR, n OE	V _{CCI} = 1.4V to 2.3V	Full	$0.75 \times V_{CCA}$				
		inputs	V _{CCI} = 2.3V to 3.3V	Full	1.75V				
			V _{CCI} = 3.3V to 5.0V	Full	2.2V				
			V _{CCI} = 1.2V to 1.4V	Full			0.1 × V _{CCI}		
			V _{CCI} = 1.4V to 2.3V	Full			0.15 × V _{CCI}		
		Data inputs	V _{CCI} = 2.3V to 3.3V	Full			0.5V		
Low-Level Input			V _{CCI} = 3.3V to 5.0V	Full			0.65V		
Voltage	VIL		V _{CCI} = 1.2V to 1.4V	Full			$0.1 \times V_{CCA}$	V	
		nDIR, nOE	V _{CCI} = 1.4V to 2.3V	Full			$0.15 \times V_{CCA}$		
		inputs	V _{CCI} = 2.3V to 3.3V	Full			0.5V		
			V _{CCI} = 3.3V to 5.0V	Full			0.65V		
			V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.2V to 5.0V, I_{OH} = -100µA	+25°C		V _{CCO} - 0.005			
			V_{CCA} = 1.2V, V_{CCB} = 1.2V, I_{OH} = -1mA	+25°C		1.17			
High-Level	V _{OH}	$V_{I} = V_{IH}$	V _{CCA} = 1.4V, V _{CCB} = 1.4V, I _{OH} = -5mA	+25°C		1.27		V	
Output Voltage	V OH	VI – VIH	V _{CCA} = 1.65V, V _{CCB} = 1.65V, I _{OH} = -16mA	Full	1.10	1.32		v	
			V_{CCA} = 2.3V, V_{CCB} = 2.3V, I_{OH} = -20mA	Full	1.90	2			
			V_{CCA} = 5.0V, V_{CCB} = 5.0V, I_{OH} = -20mA	Full	4.70	4.83			
			V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.2V to 5.0V, I_{OL} = 100µA	+25°C		0.005		V	
			$V_{CCA} = 1.2V, V_{CCB} = 1.2V, I_{OL} = 1mA$	+25°C		0.02			
Low-Level Output Voltage	V _{OL}	$V_{I} = V_{IL}$	$V_{CCA} = 1.4V, V_{CCB} = 1.4V, I_{OL} = 5mA$	+25°C		0.09			
Output voltage			$V_{CCA} = 1.65V, V_{CCB} = 1.65V, I_{OL} = 16mA$	Full		0.25	0.40		
			$V_{CCA} = 2.3V, V_{CCB} = 2.3V, I_{OL} = 20mA$	Full		0.2	0.36		
			$V_{CCA} = 5.0V, V_{CCB} = 5.0V, I_{OL} = 20mA$	Full		0.18	0.27		
Input Leakage Current	I,	Control inputs	V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.2V to 5.0V, V_{I} = V_{CCA} or GND	Full		±0.01	11	μA	
Power Off	-	A or B Dorto	$V_{CCA} = 0V, V_{CCB} = 0V \text{ to } 5.0V, V_1 \text{ or } V_0$ = 0V to 5.0V	Full		±0.01	14		
Leakage Current	I _{OFF}	A or B Ports	V_{CCA} = 0V to 5.0V, V_{CCB} = 0V, V _I or V ₀ = 0V to 5.0V	Full		±0.01	14	μA	
3-State Output Leakage	I_{OZ} ⁽¹⁾	A or B Ports	$V_{CCA} = 5.0V, V_{CCB} = 5.0V, n\overline{OE} = V_{IH}$ $V_0 = V_{CC0} \text{ or GND}, V_1 = V_{CC1} \text{ or GND},$	Full		±0.01	11	μA	
	I _{CCA}			Full			15		
Quiescent Supply Current	I _{CCB}	$V_{CCA} = 1.2V t$ $V_{I} = V_{CCI} \text{ or } G$	o 5.0V, V _{CCB} = 1.2V to 5.0V, ND. I _O = 0A	Full			24	μA	
- spp.y surrout	$I_{CCA} + I_{CCB}$,	Full			25		
Input Capacitance	Cı	Control input	or GND	+25°C		12.3		pF	
Input/Output Capacitance	CIO	A or B Ports	V_{CCA} = 3.3V, V_{CCB} = 3.3V, V_{O} = 3.3V or GND	+25°C		9.8		pF	

NOTE:

1. For I/O ports, the parameter I_{OZ} includes the input leakage current.

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.2V, unless otherwise noted.)

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	01110
t _{PLH}	А	A B	62.1	42.9	36.8	31.9	30.9	31.1	20
t _{PHL}	A	D	143.9	97.7	86.2	77.9	75.3	80.2	ns
t _{PLH}	В	А	50.8	45.8	43.5	41.0	40.2	39.2	50
t _{PHL}	Б	A	132.7	87.8	77.2	71.9	70.2	70.9	ns
t _{PZH}	OE	А	167.5	150.1	146.1	144.1	144.2	146.6	20
t _{PZL}	ÛE	Υ. Υ	123.5	123.5	123.5	123.5	123.5	124.6	ns
t _{PZH}		В	159.3	141.3	134.5	130.5	129.7	131.7	50
t _{PZL}	OE	D	132.7	120.3	115.6	110.4	110.9	113.7	ns
t _{PHZ}	OE	А	55.6	55.6	55.6	55.6	55.6	56.0	nc
t _{PLZ}	ÛE	τ	56.4	56.4	56.4	56.4	56.4	56.9	ns
t _{PHZ}	OE	В	68.2	63.0	63.8	61.9	70.3	72.8	nc
t _{PLZ}	UE	0	66.0	60.6	59.9	58.7	61.7	64.8	ns

SWITCHING CHARACTERISTICS (continued)

 $(T_A = +25^{\circ}C, V_{CCA} = 1.5V, unless otherwise noted.)$

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	ТҮР	TYP	01113
t _{PLH}	А	в	46.2	28.0	21.5	16.6	14.6	13.5	20
t _{PHL}	A	D	98.3	54.4	41.9	33.0	29.8	28.0	ns
t _{PLH}	В	А	31.6	26.3	24.0	21.3	17.6	19.5	20
t _{PHL}	D	A	97.3	52.4	42.6	36.7	34.8	34.4	ns
t _{PZH}	ŌĒ	А	83.6	66.2	62.6	60.0	59.5	59.5	20
t _{PZL}		A	50.7	50.7	50.7	50.7	50.7	50.7	ns
t _{PZH}	OE	D	82.3	63.5	57.1	52.2	50.4	49.2	
t _{PZL}	OE	В	66.6	54.1	49.3	45.2	43.8	43.4	ns
t _{PHZ}	OE	^	27.8	27.8	27.8	27.8	27.8	27.8	20
t _{PLZ}	UE	A	26.3	26.3	26.3	26.3	26.3	26.3	ns
t _{PHZ}		В	38.6	33.1	32.9	31.4	38.3	36.1	20
t _{PLZ}	OE	D	35.6	30.3	30.5	27.2	30.0	27.6	ns

SWITCHING CHARACTERISTICS (continued)

(T_A = +25°C, V_{CCA} = 1.8V, unless otherwise noted.)

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	01110
t _{PLH}	А	В	42.6	24.4	18.0	12.7	10.8	9.3	20
t _{PHL}	A	D	88.3	45.5	32.1	20.8	20.2	18.2	ns
t _{PLH}	В	А	25.0	19.4	17.2	14.8	13.8	12.9	ns
t _{PHL}	ם	A	86.3	40.8	31.5	25.6	23.6	22.9	115
t _{PZH}	OE	А	61.7	44.0	40.3	37.8	37.4	37.3	20
t _{PZL}		A	31.5	31.5	31.5	31.5	31.5	31.5	ns
t _{PZH}		В	64.5	45.6	38.6	33.6	31.6	30.2	ns
t _{PZL}	OE	Б	50.5	38.5	33.3	30.6	27.7	27.1	115
t _{PHZ}	OE	А	21.6	21.6	21.6	21.6	21.3	21.6	ns
t _{PLZ}	UE	A	19.8	19.8	19.8	19.8	19.3	19.8	115
t _{PHZ}		В	32.6	27.1	26.3	23.8	30.1	27.9	20
t _{PLZ}	OE	D	27.1	22.6	21.7	18.4	21.5	18.5	ns

SWITCHING CHARACTERISTICS (continued)

 $(T_A = +25^{\circ}C, V_{CCA} = 2.5V, unless otherwise noted.)$

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS		
PARAWETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	ТҮР	TYP	UNITS		
t _{PLH}	А			В	39.6	21.0	14.8	9.5	7.6	6.0	20
t _{PHL}	A	В	82.1	38.5	25.8	17.0	14.2	11.1	ns		
t _{PLH}	Р	^	19.8	14.2	11.8	9.3	8.2	7.4	20		
t _{PHL}	В	3 A	78.9	32.7	22.7	16.9	14.8	14.4	ns		
t _{PZH}	OE	^	46.1	29.7	25.6	23.1	22.5	22.2	20		
t _{PZL}		A	18.9	19.5	19.5	19.5	19.5	19.5	ns		
t _{PZH}	OE	D	49.8	33.0	26.5	21.0	19.0	17.9			
t _{PZL}	OE	В	39.8	26.7	22.7	18.5	17.0	15.9	ns		
t _{PHZ}		•	13.4	13.4	13.4	13.4	13.4	13.4			
t _{PLZ}	OE	A	11.0	11.0	11.0	11.0	11.0	11.0	ns		
t _{PHZ}		В	24.6	18.7	19.5	17.2	23.6	21.0	20		
t _{PLZ}	OE	В	21.4	16.1	16.3	12.8	15.5	12.5	ns		

SWITCHING CHARACTERISTICS (continued)

(T_A = +25°C, V_{CCA} = 3.3V, unless otherwise noted.)

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS
t _{PLH}	А	В	38.2	19.8	14.9	8.3	6.4	5.0	20
t _{PHL}	A	D	80.0	36.6	22.5	15.1	12.0	10.6	ns
t _{PLH}	В	А	18.6	12.0	9.7	7.2	6.4	5.2	ns
t _{PHL}	ם	A	76.6	29.9	19.7	13.7	12.7	12.4	115
t _{PZH}	ŌE	А	39.8	24.1	20.2	17.8	17.2	16.8	20
t _{PZL}		A	14.1	14.1	14.1	14.4	14.1	14.1	ns
t _{PZH}	OE	В	46.1	28.0	21.8	16.5	14.8	13.2	ns
t _{PZL}	ÛE	D	40.3	25.2	20.0	15.8	14.0	12.7	115
t _{PHZ}	OE	А	17.4	17.4	17.4	17.4	17.4	17.4	ns
t _{PLZ}	OE	A	10.9	10.9	10.9	10.9	10.9	10.9	115
t _{PHZ}		В	22.1	16.5	16.8	14.3	21.6	19.1	ns
t _{PLZ}	OE	ы	18.6	13.7	13.2	10.2	12.6	9.9	115

SWITCHING CHARACTERISTICS (continued)

 $(T_A = +25^{\circ}C, V_{CCA} = 5.0V, unless otherwise noted.)$

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS
PARAWETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS
t _{PLH}	А	В	37.3	18.9	12.7	7.4	5.4	3.7	20
t _{PHL}	A	В	76.3	36.5	23.6	14.7	10.4	9.6	ns
t _{PLH}	в	А	21.3	11.2	8.2	5.8	4.9	3.7	20
t _{PHL}		В	A	83.2	30.5	18.2	11.9	10.3	9.4
t _{PZH}	OE	А	37.5	20.6	17.6	15.1	13.9	13.6	ns
t _{PZL}	ÛE	A	11.4	11.4	11.4	11.4	11.4	11.4	113
t _{PZH}	OE	В	47.7	27.6	20.9	15.3	13.3	11.7	20
t _{PZL}	ÛE	Б	34.2	22.2	17.3	13.1	11.9	11.0	ns
t _{PHZ}	ŌĒ	^	14.3	14.3	14.3	14.3	14.3	14.3	20
t _{PLZ}	UE	OE A	6.3	6.3	6.3	6.3	6.3	6.3	ns
t _{PHZ}		В	20.0	14.5	15.0	12.9	18.1	16.0	ns
t _{PLZ}	OE	В	17.3	13.4	11.9	8.3	10.5	7.6	115

OPERATING CHARACTERISTICS

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER			V _{CCA} /V _{CCB}					
		TEST CONDITIONS	1.5V	1.8V	2.5V	3.3V	5.0V	UNITS
			ТҮР	ТҮР	ТҮР	ТҮР	TYP	
C _{PD} (1)(2)	A to B		0.5	0.5	0.9	0.7	1.4	- pF
	B to A	$C_L = 0pF$, f = 10MHz, $t_R = t_F = 1ns$	0.5	0.5	0.5	0.6	0.7	

NOTES:

1. Power dissipation capacitance per transceiver.

2. C_{PD} is used to determine the dynamic power dissipation (P_D in $\mu W).$

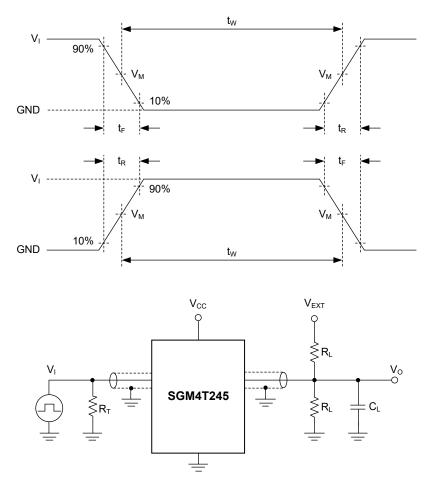
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o})$ where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.

C_L = Output load capacitance in pF.

V_{CC} = Supply voltage in Volts.


N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = Sum of the outputs.

4-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

RL: Load resistance.

C_L: Load capacitance (includes jig and probe).

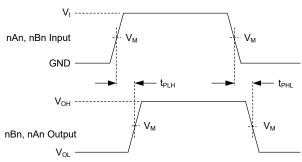
 R_T : Termination resistance (equals to output impedance Z_0 of the pulse generator).

V_{EXT}: External voltage used to measure switching time.

Figure 1. Test Circuit for Measuring Switching Times

SUPPLY VOLTAGE INPUT		LO	AD	V _{EXT}			
V_{CCA}, V_{CCB}	$V_{I}^{(1)}$	Δt/ΔV	CL	RL	t _{PD}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ} (2)
1.2V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
1.5V ± 0.1V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
1.8V ± 0.15V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	$2 \times V_{CCO}$
2.5V ± 0.2V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
3.3V ± 0.3V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}
5.0V ± 0.5V	V _{CCI}	≤ 1.0ns/V	15pF	2kΩ	Open	GND	2 × V _{CCO}

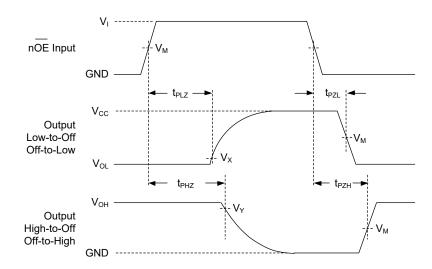
Table 1. Test Conditions


NOTES:

1. V_{CCI} is the supply voltage associated with the data input port.

2. V_{CCO} is the supply voltage associated with the data output port.

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Input (nAn, nBn) to Output (nBn, nAn) Propagation Delay Times

Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 3. Enable and Disable Times

SUPPLY VOLTAGE	INPUT ⁽¹⁾		OUTPUT				
V_{CCA}, V_{CCB}	V _I V _M ⁽²⁾		V _M ⁽³⁾	V _X	V _Y		
1.2V	V _{CCI}	0.5 × V _{CCI}	$0.5 \times V_{CCO}$	V _{OL} + 0.1V	V _{OH} - 0.1V		
1.5V ± 0.1V	Vcci	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.1V	V _{OH} - 0.1V		
1.8V ± 0.15V	Vcci	0.5 × V _{CCI}	0.5 × V _{CCO}	V _{OL} + 0.15V	V _{OH} - 0.15V		
2.5V ± 0.2V	V _{CCI}	$0.5 \times V_{CCI}$	0.5 × V _{CCO}	V _{OL} + 0.15V	V _{он} - 0.15V		
3.3V ± 0.3V	V _{CCI}	$0.5 \times V_{CCI}$	$0.5 \times V_{CCO}$	V _{OL} + 0.3V	V _{OH} - 0.3V		
5.0V ± 0.5V	V _{CCI}	$0.5 \times V_{CCI}$	$0.5 \times V_{CCO}$	V _{OL} + 0.5V	V _{OH} - 0.5V		

Table 2. Measurement Points

NOTES:

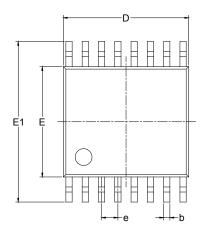
1. V_{CCI} is the supply voltage associated with the data input port.

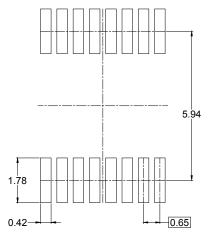
- 2. The measurement points should be V_{IH} or V_{IL} when $\Delta t/\Delta V > 1.0$ ns/V.
- 3. V_{CCO} is the supply voltage associated with the output port.

4-Bit Dual-Supply Bus Transceiver with SGM4T245 Configurable Voltage Translation and 3-State Outputs

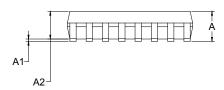
REVISION HISTORY

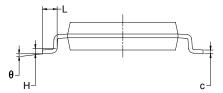
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (JULY 2018) to REV.A

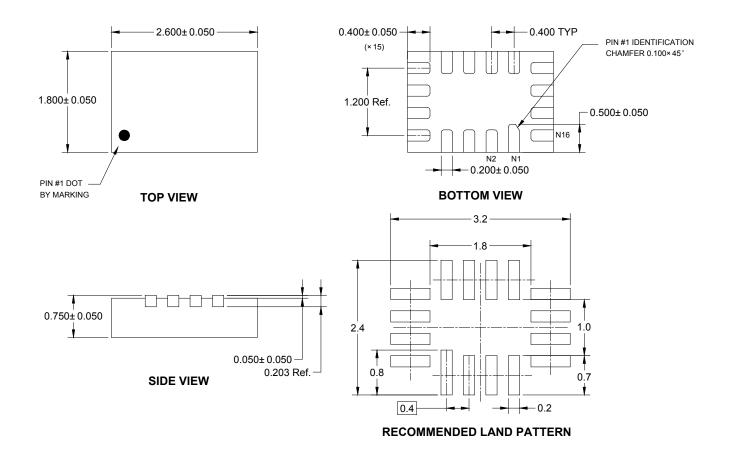

•	•	,		•	·
Changed from	product preview	to production data	 	 	٩II

Page

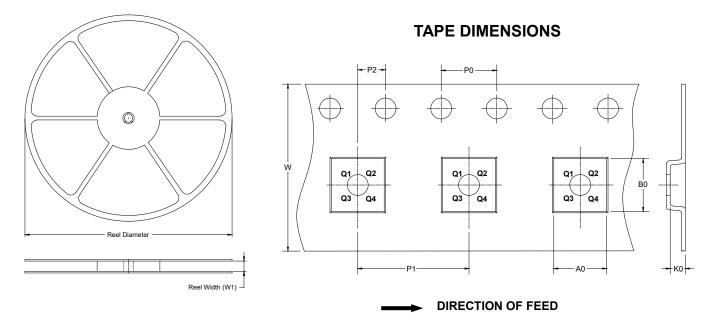

PACKAGE OUTLINE DIMENSIONS


TSSOP-16

RECOMMENDED LAND PATTERN (Unit: mm)



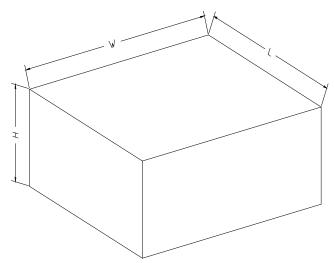
Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
D	4.860	5.100	0.191	0.201		
E	4.300	4.500	0.169	0.177		
E1	6.200	6.600	0.244	0.260		
е	0.650	BSC	0.026	BSC		
L	0.500	0.700	0.02	0.028		
н	0.25 TYP		0.01	TYP		
θ	1°	7°	1°	7°		


PACKAGE OUTLINE DIMENSIONS TQFN-2.6×1.8-16L

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.6×1.8-16L	7"	9.0	2.01	2.81	0.93	4.0	4.0	2.0	8.0	Q1
TSSOP-16	13″	12.4	6.90	5.60	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18]_
13″	386	280	370	5	DD0002

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)