SGM3718 0.6Ω Ultra Low On-Resistance, Negative Signal Passing, Dual SPDT Analog Switch

GENERAL DESCRIPTION

The SGM3718 is a negative signal passing dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single +2.5V to +5V power supply. Targeted applications include battery powered equipment that benefit from SGM3718's ultra low on-resistance (0.6 Ω) and fast switching speeds (t_{on} = 17ns, t_{OFF} = 24ns).

The SGM3718 has excellent on-resistance matching $(0.22\Omega \text{ MAX})$ between switches and guarantees excellent on-resistance flatness over all signal range $(0.22\Omega \text{ MAX})$. This ensures excellent linearity and low distortion when switching audio signals.

The SGM3718 is a committed dual single-pole/doublethrow (SPDT) that consist of two normally open (NO) and two normally closed (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

The SGM3718 can pass -2V ground referenced signal with very low distortion.

The SGM3718 is available in Green TQFN-1.8×1.4-10L package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Supply Voltage Range: 2.5V to 5V
- Ultra Low On-Resistance: 0.6Ω (TYP) at 4.5V
- -2V Low Distortion Negative Signal Passing
- Fast Switching Times t_{ON} = 17ns (TYP)
 - t_{OFF} = 24ns (TYP)
- High Off-Isolation: -57dB at 1MHz
- Low Crosstalk: -61dB at 1MHz
- Rail-to-Rail Input and Output Operation
- 1.8V Logic Compatible Control Pin
- Break-Before-Make Switching
- -40°C to +85°C Operating Temperature Range
- Available in Green TQFN-1.8×1.4-10L Package

APPLICATIONS

Portable Instrumentation Battery-Operated Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM3718	TQFN-1.8×1.4-10L	-40°C to +85°C	SGM3718YUWQ10G/TR	TBXX	Tape and Reel, 3000

NOTE: XX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

MARKING INFORMATION

<u>тв</u> <u>х</u> <u>х</u>

Date code - Month ("A" = Jan. "B" = Feb. ··· "L" = Dec.) Date code - Year ("A" = 2010, "B" = 2011 ···) Chip I.D.

For example: TBDJ (2013, October)

ABSOLUTE MAXIMUM RATINGS

V ₊ , IN to GND	0V to 6.0V
Analog Voltage Range (1)	2V to (V ₊) + 0.3V
Digital Voltage Range (1)	0.3V to (V ₊) + 0.3V
Continuous Current NO, NC, or COM	±250mA
Peak Current NO, NC, or COM	±350mA
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
MM	400V

NOTE: 1. Signals on NC, NO, or COM or IN exceeding V₊ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2	.5V to 5V
Operating Temperature Range	40°C	to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	V+	Power Supply.
2, 10	NO1, NO2	Normally-Open Terminal.
3, 9	COM1, COM2	Common Terminal.
4, 8	IN1, IN2	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminals.
5, 7	NC1, NC2	Normally-Closed Terminal.
6	GND	Ground.

NOTE: NO, NC and COM terminals may be an input or output.

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

Switches Shown for Logic "0" Input.

ELECTRICAL CHARACTERISTICS

(V₊ = +4.5V to +5.0V, Full = -40°C to +85°C. Typical values are at V₊ = +5.0V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMD	MIN	TVP	ΜΔΥ	
	OTMEOL	CONDITIONO			IVIIIN			UNITO
ANALOG SWITCH		251/(51)			2		V	[
Analog Signal Range	V _{NO} , V _{NC} ,	$2.5V \le V_{+} \le 5.0V$			-2		V+	V
		5.5V S V+ S 5.0V		105%0	(v+) - 5.5	0.6	V+	
On-Resistance	R _{ON}	$V_{+} = 4.5V, 0V \le V_{NO} \text{ or } V_{NC} \le V_{+},$		+25 C		0.0	0.00	Ω
			•	Full			1	
On-Resistance Match	ΔR_{ON}	$V_+ = 4.5V, 0V \le V_{NO} \text{ or } V_{NC} \le 100 \text{ m}$	≤ V+, 1	+25°C		0.15	0.22	Ω
Detween Channels		ICOM – - TOUTTA, TEST CITCUIT	I	Full			0.26	
On-Resistance Flatness	R _{ELAT(ON)}	$V_{+} = 4.5V, 0V \le V_{NO} \text{ or } V_{NC} \le 1000$	≦ V+,	+25℃		0.15	0.22	Ω
		$I_{COM} = -100$ mA, lest Circuit	1	Full			0.26	
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 5.0V, V_{NO} \text{ or } V_{NC} = 1.0V$ $V_{COM} = 4.5V, 1.0V$	/, 4.5V,	Full			1	μA
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 5.0V, V_{COM} = 1.0V, 4.5V,$ V_{NO} or $V_{NC} = 1.0V, 4.5V,$ or floating		Full			1.5	μA
DIGITAL INPUTS				•				
Input High Voltage	VINH		Full	1.5			V	
Input Low Voltage	V _{INL}			Full			0.6	V
Input Leakage Current	l _{iN}	V ₊ = 5.0V, V _{IN} = 0V or 5.0V		Full			1	μA
DYNAMIC CHARACTER	ISTICS			•				
Turn-On Time	t _{on}	V_{NO} or V_{NC} = 3.0V, V_{IH} = 1.8V, V_{IL} = 0V, R_{I} = 500, C_{I} = 35pF. Test Circuit 2		+25°C		17		ns
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 3.0V, V_{IH} = 1.0 R _L = 50 Ω , C _L = 35pF, Test C	BV, V _{IL} = 0V, tircuit 2	+25°C		24		ns
Break-Before-Make Time Delay	t⊳	V_{NO1} or $V_{NC1} = V_{NO2}$ or V_{NC2} R _L = 50 Ω , C _L = 35pF, Test C	= 3V, ∜ircuit 3	+25°C		32		ns
		$B_{\rm L} = 500$ Signal = 0dBm	f = 100kHz	+25°C		-77		dB
Off Isolation	O _{ISO}	$C_L = 5pF$, Test Circuit 4	f = 1MHz	+25°C		-57		dB
Channel-to-Channel		$R_{\rm I} = 50\Omega, C_{\rm I} = 5pF.$	f = 100kHz	+25°C		-81		dB
Crosstalk	X _{TALK}	Test Circuit 5	f = 1MHz	+25°C		-61		dB
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50 Ω , C_L = 5pF, Test Circuit 6		+25°C		80		MHz
Channel ON Capacitance	C _{ON}	f = 1MHz		+25°C		88		pF
Charge Injection Select Input to Common I/O	Q	V_G = GND, R_G = 0 Ω , C_L = 1.0nF, Test Circuit 7		+25°C		85		рС
POWER REQUIREMENT	rs	•						
Power Supply Current	I+	$V_{+} = 5.0V, V_{IN} = 0V \text{ or } 5.0V$	Full			3.5	μA	

ELECTRICAL CHARACTERISTICS

(V₊ = +2.7V to +3.6V, Full = -40°C to +85°C. Typical values are at V₊ = +3.0V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH	1							1
	VNO. VNC.	2.5V ≤ V ₊ ≤ 3.5V			-2		V+	
Analog Signal Range	V _{COM}	3.5V ≤ V+ ≤ 5.0V		Full	(V ₊) - 5.5		V+	V
On Resistance	Paul	V_{+} = 2.7V, 0V ≤ V_{NO} or V_{NC}	+25°C		1	1.3	Ω	
On-Resistance	NON	I _{COM} = -100mA, Test Circui	Full			1.4		
On-Resistance Match		V_{+} = 2.7V, 0V \leq V_{NO} or V_{NC}	$\leq V_+,$	+25°C		0.15	0.25	0
Between Channels		I _{COM} = -100mA, Test Circui	I _{COM} = -100mA, Test Circuit 1				0.3	32
On-Resistance Flatness		$V_{+} = 2.7V, 0V \le V_{NO} \text{ or } V_{NC}$	≤ V ₊ ,	+25°C		0.4	0.55	Ω
		I _{COM} = -100mA, Test Circur	$r_{COM} = -100 \text{ mA}$, rest Circuit 1				0.6	
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 3.6V, V_{NO} \text{ or } V_{NC} = 0.3$ $V_{COM} = 3.3V, 0.3V$	V, 3.3V,	Full			1	μA
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 3.6V, V_{COM} = 0.3V, 3.3$ V_{NO} or $V_{NC} = 0.3V, 3.3V$, or	3V, floating	Full			1.5	μA
DIGITAL INPUTS								
Input High Voltage	V _{INH}		Full	1.3			V	
Input Low Voltage	V _{INL}		Full			0.4	V	
Input Leakage Current	I _{IN}	V_{+} = 3.6V, V_{IN} = 0V or 3.6V	Full			1	μA	
DYNAMIC CHARACTER	ISTICS							
Turn-On Time	t _{on}	$V_{NO} \text{ or } V_{NC} = 1.5V, V_{IH} = 1.8V, V_{IL} = 0V, R_L = 50\Omega, C_L = 35pF, Test Circuit 2$		+25°C		23		ns
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 1.5V, V_{IH} = 1 R _L = 50 Ω , C _L = 35pF, Test	.8V, $V_{IL} = 0V$, Circuit 2	+25°C		24		ns
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or V_{NC} $R_L = 50\Omega$, $C_L = 35pF$, Test	₂ = 1.5V, Circuit 3	+25°C		33		ns
Off leadeting	O _{ISO}	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 4	f = 100kHz	+25°C		-77		dB
Off Isolation			f = 1MHz	+25°C		-57		dB
Channel-to-Channel	N/	Signal = 0dBm, $R_1 = 50\Omega$.	f = 100kHz	+25°C		-81		dB
Crosstalk	ATALK	$C_L = 5pF$, Test Circuit 5	f = 1MHz	+25°C		-61		dB
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, Test Circuit 6	C _L = 5pF,	+25°C		80		MHz
Charge Injection Select Input to Common I/O	Q	V_G = GND, R_G = 0 Ω , C_L = T Test Circuit 7	1.0nF,	+25°C		74		рС
Channel ON Capacitance	C _{ON}	f = 1MHz		+25°C		88		pF
		$V_{+} = 3.3V, V_{NC/NO} = 2V_{PP}, R_{L} = 600\Omega,$ f = 20Hz to 20kHz, Test Circuit 8		+25°C		0.03		
Total Harmonic	THE	V_+ = 3.3V, $V_{NC/NO}$ = 2 V_{PP} , F f = 20Hz to 20kHz, Test Cir	+25°C		0.1		%	
Distortion	THD	$V_{+} = 3.3V, V_{NC/NO} = 1V_{PP}, R_{L} = 32\Omega,$ f = 20Hz to 20kHz, Test Circuit 8		+25°C		0.035		
		V_+ = 3.3V, $V_{NC/NO}$ = 0.5 V_{PP} f = 20Hz to 20kHz, Test Cir	BV, V _{NC/NO} = 0.5V _{PP} , R _L = 32Ω, z to 20kHz. Test Circuit 8			0.027		
POWER REQUIREMENT	ſS							
Power Supply Current I+ V+ = 3.0V, VIN = 0V or 3.0V Full 1 μA								μA

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{+} = 5.0V, T_{A} = +25°C, unless otherwise specified.

TEST CIRCUITS

Test Circuit 2. Switching Times (ton, toff)

Test Circuit 3. Break-Before-Make Time Delay (t_D)

TEST CIRCUITS

Test Circuit 4. Off Isolation

Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS

Test Circuit 6. -3dB Bandwidth

Test Circuit 8. Total Harmonic Distortion (THD)

Downloaded From Oneyac.com

APPLICATION

In order to enhance the negative signal swing capability of SGM3718, the circuit in Figure 1 is recommended. R1 and R4 will prevent the device from entering into latch-up state when passing negative signal.

Figure 1. Typical Application Circuit

PACKAGE OUTLINE DIMENSIONS TQFN-1.8×1.4-10L

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-1.8×1.4-10L	7″	9.0	1.75	2.10	1.00	4.00	4.00	2.00	8.00	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)