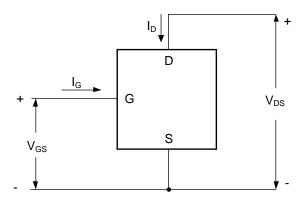


SGM42401Q

Automotive Low-side Driver with Self-Protection **Featuring Temperature and Current Limit**


GENERAL DESCRIPTION

The SGM42401Q is a low-side smart discrete device with three terminals that provides protections against over-current, over-temperature and ESD. It also features integrated drain-to-gate clamping for over-voltage protection. This device is well-suited for harsh automotive environments and offers reliable protection.

The SGM42401Q is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

The SGM42401Q is available in a Green SOT-223-3 package.

SIMPLIFIED SCHEMATIC

FEATURES

- AEC-Q100 Qualified for Automotive Applications **Device Temperature Grade 1**
 - $T_A = -40^{\circ}C$ to $+125^{\circ}C$
- Full Set of Protections
 - Short-Circuit Protection
 - Over-Voltage Protection
 - ESD Protection
 - Thermal Shutdown with Automatic Restart
- Clamp Integrated for Switching of Inductive Loads
- Support Gate Threshold Voltage: 1.75V (TYP)
- dV/dt Robustness
- Output Clamp Voltage: 42V
- Static Drain-to-Source On-Resistance: 90mΩ (TYP) at 10V
- Continuous Drain Current: 3.5A (TYP)
- Output Peak Current (Thermal Limited): 8.5A
- Logic Level Input Capable of Analog Driving
- Available in a Green SOT-223-3 Package

APPLICATIONS

Switch Resistance, Inductance and Capacitance Loads Substitute Discrete Circuits and Electromechanical Relays Automotive/Industrial

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM42401Q	SOT-223-3	-40°C to +125°C	SGM42401QKC3G/TR	MF6 XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Internally Clamped Drain-to-Source Voltage
V _{DSS}
V_{DSS} ($T_J = -40^{\circ}$ C)
Internally Clamped Drain-to-Gate Voltage
V_{DGR}
Gate-to-Source Voltage, V _{GS} ±14V
Continuous Drain Current, I _{DS} Internally Limited
Maximum Continuous Drain Current, I _{DS} (T _A = +25°C)3.5A
Single Pulse Drain-to-Source Avalanche Energy ($V_{DD} = 32V$,
$V_G = 5.0V$, $I_{PK} = 1.0A$, $L = 300mH$, $R_{G_EXT} = 25\Omega$), E_{AS} (1)
430mJ
Load Dump Voltage (V_{GS} = 0V and 10V, R_I = 2.0 Ω , R_L = 9.0 Ω ,
$t_d = 400ms$), V_{LD} 40V
Package Thermal Resistance
SOT-223-3, θ _{JA}
SOT-223-3, θ _{JB}
SOT-223-3, θ _{JC}
Package Thermal Characterization Parameter
SOT-223-3, ψ _{JT}
SOT-223-3, Ψ _{JB}
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (2) (3)
HBM8000V
CDM2000V

NOTES:

$$1. \ E_{\text{AS}} = \frac{1}{2} \times L \times {I_{\text{PK}}}^2 \times \left(1 - \frac{V_{\text{BAT}}}{V_{\text{BAT}} - V_{\text{CLAMP}}}\right)$$

- 2. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
- 3. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.

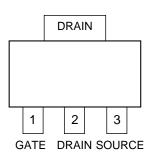
RECOMMENDED OPERATING CONDITIONS

Operating Ambient Temperature Range -40°C to +125°C Operating Junction Temperature Range -40°C to +150°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

(TOP VIEW)

SOT-223-3

PIN DESCRIPTION

PIN	NAME	SYMBOL	FUNCTION
1	GATE	G	Gate Input.
2	DRAIN	D	Drain.
3	SOURCE	S	Source.

ELECTRICAL CHARACTERISTICS

 $(T_J = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Off Characteristics							
D 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.,	$V_{GS} = 0V, I_{DS} = 10mA, T_J = +25^{\circ}C^{(2)}$		38 ⁽³⁾	42	44	
Drain-to-Source Breakdown Voltage (1)	V_{BR_DSS}	$V_{GS} = 0V, I_{DS}$	40	42.5	45	V	
		$V_{GS} = 0V, V_{D}$		25	300	nA	
Drain Current at Zero Gate Voltage	I _{DSS}	$V_{GS} = 0V, V_{D}$	$V_{GS} = 0V$, $V_{DS} = 32V$, $T_{J} = +125$ °C		200	500	nA
Gate Input Current	I _{GSSF}	$V_{DS} = 0V, V_{G}$			220	290	μA
On Characteristics (1)		1	<u> </u>		ı	I	<u> </u>
Gate Threshold Voltage	V_{GS_TH}	$V_{GS} = V_{DS}, I_{D}$	os = 150µA	1.35	1.75	2.25	V
Gate Threshold Temperature Coefficient	V _{GS_TH} /T _J		•		3.0		-mV/°C
•	_	V _{GS} = 10V, I ₀	_{DS} = 1.7A, T _J = +25°C		90	140	
			os = 1.7A, T _J = +125°C		130	160	1
			_{DS} = 1.7A, T _J = +25°C		90	140	-
Static Drain-to-Source On-Resistance	R _{DSON}		$_{DS} = 1.7A, T_{J} = +125$ °C		130	160	mΩ
					90	140	-
			$_{DS} = 0.5A, T_{J} = +25^{\circ}C$			_	-
On the Day's Francisch On Vallance		$V_{GS} = 5.0V$, $I_{DS} = 0.5A$, $T_{J} = +125$ °C			130	160	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Source-Drain Forward On Voltage	V _{SD}	$V_{GS} = 0V, I_S$	= /A		1.1		V
Switching Characteristics			400/ \/ 1- 000/ \		00	F0	
Turn-On Time	t _{ON}	4	10% V _{IN} to 90% I _{DS}		33	50	μs
Turn-Off Time	t _{OFF}	$V_{GS} = 10V$,	90% V _{IN} to 10% I _{DS}		87	110	μs
Turn-On Rise Time	t _{RISE}	$V_{DD} = 12V$,	10% I _{DS} to 90% I _{DS}		20	32	μs
Turn-Off Fall Time	t _{FALL}	$I_{DS} = 2.5A,$ $R_{L} = 4.7\Omega$	90% I _{DS} to 10% I _{DS}		41	55	μs
Slew-Rate On	-dV _{DS} /dt _{ON}		70% to 50% V _{DD}		0.67	1.06	V/µs
Slew-Rate Off	dV_{DS}/dt_{OFF}		50% to 70% V _{DD}		0.28	0.45	V/µs
Self-Protection Characteristics (4)							
		$V_{DS} = 10V, V_{GS} = 5V, T_{J} = +25^{\circ}C$		6	8.5		
Current Limit	1	$V_{DS} = 10V, V_{GS} = 5V, T_{J} = +125^{\circ}C$		4.2	5.2	6.2	
Current Limit	I _{LIM}	$V_{DS} = 10V, V_{GS} = 10V, T_{J} = +25^{\circ}C$		6	8.5		A
		$V_{DS} = 10V, V_{GS} = 10V, T_{J} = +125^{\circ}C$		4.7	5.7	6.7	
Temperature Limit (Turn-Off)	T _{LIM_OFF}	$V_{GS} = 5V^{(5)}$		135	150	165	
Thermal Hysteresis	$\Delta T_{\text{LIM ON}}$	$V_{GS} = 5V$			15		1
Temperature Limit (Turn-Off)	T _{LIM_OFF}	V _{GS} = 10V (5)		135	150	165	- ℃
Thermal Hysteresis	$\Delta T_{\text{LIM_ON}}$	V _{GS} = 10V			15		
Gate Input Characteristics (5)	1				I	I	
•		$V_{GS} = 5V$, $I_{DS} = 1A$			220		
Gate Input Current in Device On State	I_{GON}	V _{GS} = 10V, I _{DS} = 1A			220		μA
		$V_{GS} = 5V, V_{D}$			220		
Gate Input Current in Current Limit State	I _{GCL}	V _{GS} = 10V, V			220		μΑ
Gate Input Current in Thermal Limit Fault		V _{GS} = 5V, V _{DS} = 10V			70		1
State	I _{GTL}	$V_{GS} = 10V, V_{DS} = 10V$			70		μA

NOTES:

- 1. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
- 2. Caused by internal clamping voltage, not actual breakdown voltage, breakdown voltage is 44V.
- 3. MIN value including -40°C.
- 4. Fault conditions are considered to be outside the normal operating range of the component.
- 5. Not subject to production testing.

TEST CIRCUITS AND WAVEFORMS

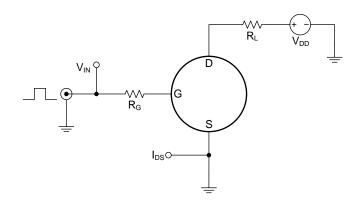


Figure 1. Test Circuit for Switching Resistive Loads

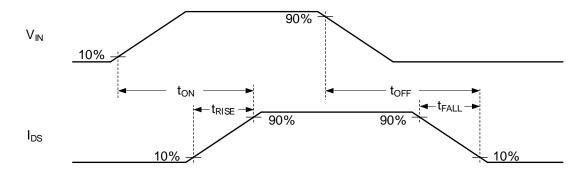


Figure 2. Waveforms for Switching Resistive Loads

TEST CIRCUITS AND WAVEFORMS (continued)

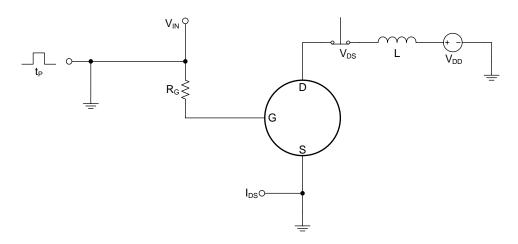


Figure 3. Test Circuit for Switching Inductive Loads

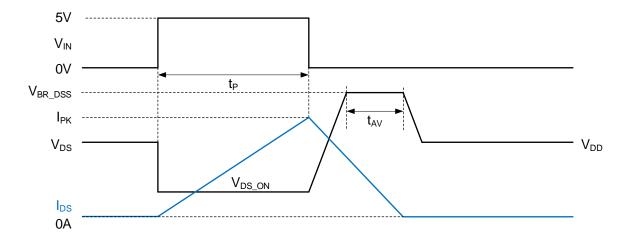
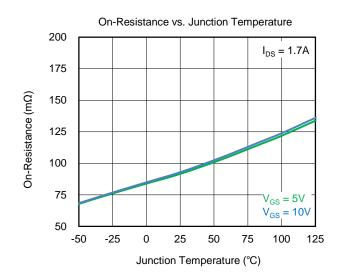
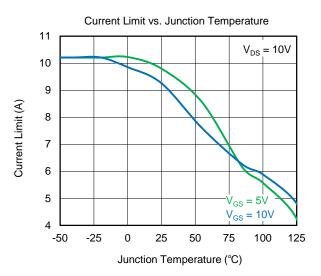
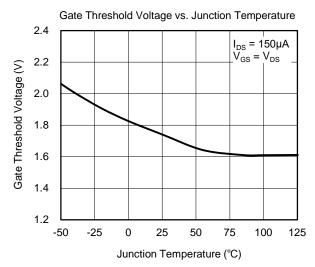
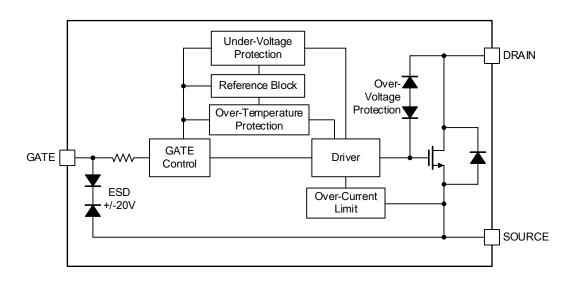
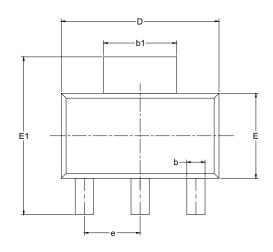





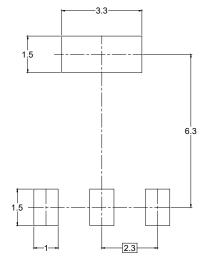
Figure 4. Waveforms for Switching Inductive Loads

TYPICAL PERFORMANCE CHARACTERISTICS

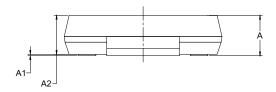


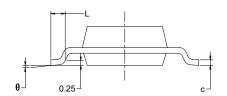
FUNCTIONAL BLOCK DIAGRAM


REVISION HISTORY

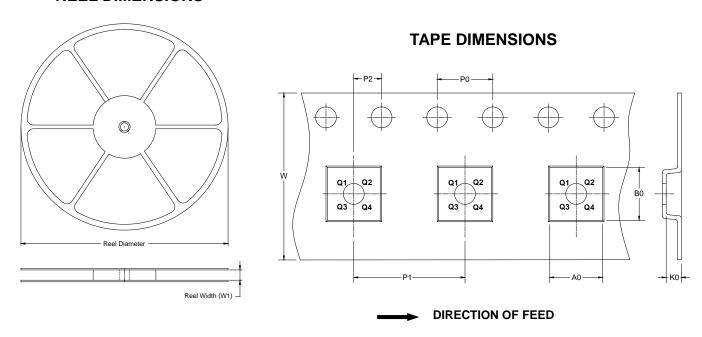

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Page




PACKAGE OUTLINE DIMENSIONS SOT-223-3

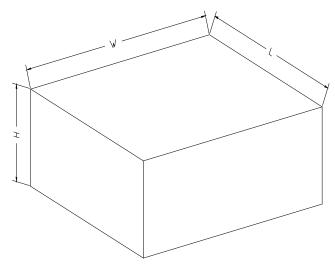
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
E	3.300	3.700	0.130	0.146	
E1	6.700	7.300	0.264	0.287	
е	2.300 BSC		0.091	BSC	
L	0.750		0.030		
θ	0°	10°	0°	10°	

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-223-3	13"	12.4	6.55	7.25	1.90	4.0	8.0	2.0	12.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton		
13″	386	280	370	5	DD0002	

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)