SGM8910 4Vrms High Performance Audio Line and SGMICRO Headphone Driver with Click-Pop Noise Cancellation

GENERAL DESCRIPTION

The SGM8910 is a high performance 4Vrms stereo audio line driver with click-pop noise cancellation. The device is ideal for single supply applications. The SGM8910 can drive 32Ω impedance headphone directly, so it can be used as the high performance driver of line out and headphone in different applications. Capless design can eliminate output DC-blocking capacitors for less-component count and low-cost.

The SGM8910 is capable of driving 4Vrms into a 600Ω load when V_{DD} is 10V or 20mW into a 32Ω headphone when V_{DD} is 3.3V. An integrated charge pump generates a negative power rail that provides a clean, pop-free ground offset.

For some special applications where AC coupling output is necessary, the SGM8910 provides MUTEOUT driver to drive external click-pop noise cancellation circuit during power-on and power-off.

The SGM8910 will be in mute status during power-on blanking time. External mute control signal can take over the mute status before power-on blanking time is over. The SGM8910 can eliminate power-up click-pop noise perfectly. Using under-voltage protection (UVP), the SGM8910 will suppress the turn-off click-pop noise.

The SGM8910 is available in Green TSSOP-20 and TQFN-4×4-20L packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Supply Voltage: 2.8V to 12V
- Capless Structure to Eliminate Pop-Clicks and Output DC-Blocking Capacitors
- Low Noise, Low THD and Low Crosstalk:
 - Typical $V_N = 6\mu V_{RMS}$ from 22Hz to 22kHz at Gain = -1
 - ◆THD+N = 0.0008% for 10kΩ Load and Gain = -1 at 1kHz
 - Crosstalk = -89dB at 1kHz
- 4Vrms Output Voltage into 600 Load for 10V V_{DD}
- 1Vrms Output Voltage into 600 Load for 3.3 V_{DD}
- Supports to Drive 32 Ω to 600 Ω Headphone: THD+N = 0.006% for 32 Ω Headphone and P₀ = 20mW at V_{DD} = 3.3V
- Single-Ended Output
- Differential or Single-Ended Input
- UVP Function to Cancel Turn-Off Click-Pop Noise
- Adjustable Power-On Blanking Time to Eliminate
 Turn-On Click-Pop Noise
- Short-Circuit and Thermal Protection for Audio Driver
- Negative LDO with Output Auto-Discharge Function in Disable Status
- 1.8V Logical Control for EN and MUTE
- -40°C to +85°C Operating Temperature Range
- Available in Green TSSOP-20 and TQFN-4×4-20L Packages

APPLICATIONS

LCD TVs Mini/Micro Combo Systems Soundcards DVD Players

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8910	TSSOP-20	-40°C to +85°C	SGM8910YTS20G/TR	SGM8910YTS20 XXXXX	Tape and Reel, 4000
	TQFN-4×4-20L	-40°C to +85°C	SGM8910YTQI20G/TR	SGM8910 YTQI20 XXXXX	Tape and Reel, 3000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range	0.3V to 13.2V
Input Voltage Range	V_{SS} - 0.3V to V _{DD} + 0.3V
MUTE, EN and UVP to GND	0.3V to 6V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	250V
CDM	

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2.8V to 12V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN			FUNCTION		
TSSOP-20	TQFN-4×4-20L	NAME	FUNCTION		
1	19	OUTA	Output of driver A.		
2	20	-INA	Negative input of driver A.		
3	1	+INA	Positive input of driver A.		
4	2	MUTE	Mute control input, active low. When $\overline{\text{MUTE}}$ = "Low", chip enters into mute status; when $\overline{\text{MUTE}}$ = "High", chip works normally. There is a 5M Ω pull-low resistor at $\overline{\text{MUTE}}$ pin.		
5	3	MUTEOUT	Open drain output of mute. When the SGM8910 is in mute status, MUTEOUT will be in high-impedance state; when the SGM8910 is not in mute status, MUTEOUT will be in low logical output to drive external mute circuit.		
6	4	V _{SS}	Negative power supply of drivers.		
7	5	V _N	Output of negative low dropout regulator.		
8	6	V _{DD}	Positive supply voltage of drivers. When V_{DD} under-voltage event happens, chip will enter into mute status.		
9	7		Power supply of negative charge pump.		
10	8	CP	Positive terminal for charge pump flying capacitor.		
11	9	CN	Negative terminal for charge pump flying capacitor.		
12	10	CPV _{SS}	Output of negative charge pump.		
13	11	CPGND	Ground of charge pump.		
14	12	GND	Ground.		
15	13	UVP	Under-voltage protection input. When UVP event happens, chip will be in mute status.		
16	14	C_{pb}	Power-on blanking time adjusting. Connect a capacitor from C_{pb} pin to GND to program the power-on blanking time. Chip is in mute status during power-on blanking time.		
17	15	EN	Enable control input of chip. EN = "High" to enable chip, the SGM8910 is in active status; EN = "Low" to disable chip, the SGM8910 is in shutdown status.		
18	16	+INB	Positive input of driver B.		
19	17	-INB	Negative input of driver B.		
20	18	OUTB	Output of driver B.		
	Thermal Pad	CPV _{SS}	Output of negative charge pump.		

ELECTRICAL CHARACTERISTICS

(At T_A = +25°C and V_{DD} = 2.8V to 12V, unless otherwise noted.)

PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS
Recommended Operating Conditions					
Supply Voltage (V _{DD})		2.8		12	V
RLOAD		32			Ω
$\overline{\text{MUTE}}$, EN Low-Level Input Voltage (V _{IL})				0.6	V
$\overline{\text{MUTE}}$, EN High-Level Input Voltage (V_{IH})		1.4			V
Electrical Characteristics (V _{DD} = 2.8V to 12V,	$R_{LOAD} = 10k\Omega, C_{FLY} = 1\mu F$				
Output Offset Voltage ($ V_{os} $)	Input AC-coupled		100	550	μV
Power Supply Rejection Ratio (PSRR)			1	5	μV/V
High Lovel Output Veltage (V()	V _{DD} = 3.3V	3.27	3.29		V
	V _{DD} = 12V	11.9	11.95		V
	V _{DD} = 3.3V		-1.75	-1.6	V
	V _{DD} = 12V		-10.65	-10.3	V
External Under-Voltage Detection (VUVP)		1.12	1.21	1.29	V
Charge Pump Switching Frequency (f_{CP})		315	495	700	kHz
High-Level Input Current, $\overline{\text{MUTE}}$ ($ I_{\mathbb{H}} $)	V_{DD} = 3.3V, V_{IH} = V_{DD}			1	μA
Low-Level Input Current, $\overline{\text{MUTE}}$ ($ I_{L} $)	V _{DD} = 3.3V, V _{IL} = 0V			1	μA
High-Level Input Current, EN $(\left I_{H} \right)$	V_{DD} = 3.3V, V_{IH} = V_{DD}			1	μA
Low-Level Input Current, EN $(_{L})$	$V_{DD} = 3.3V, V_{IL} = 0V$			1	μA
Supply Current (I _{VDD})	$\overline{\text{MUTE}}$ = 3.3V, EN = 3.3V, no load		17	21	mA
	$\overline{\text{MUTE}}$ = 0V, EN = 3.3V, no load		5.2	6.5	mA
	$\overline{\text{MUTE}}$ = 3.3V, EN = 0V, no load		470		μA
Thermal Shutdown (T _{TSD})			155		°C
Thermal Shutdown Hysteresis (T _{HYS})			25		°C
Operating Characteristics (Gain = -1, R _{IN} = 10	$0k\Omega, R_F = 10k\Omega, C_{FLY} = 1\mu F$		T		
Output Voltage, Outputs in Phase (V_{\circ})	V_{DD} = 3.3V, f = 1kHz, R _{LOAD} = 10k Ω , THD+N = 1%		1.2		Vrms
	V_{DD} = 12V, f = 1kHz, R_{LOAD} = 10k Ω , THD+N = 1%		7.2		Vrms
	V_{DD} = 3.3V, f = 1kHz, R _{LOAD} = 10k Ω , V ₀ = 1Vrms,		0.0008		%
	BW = 22Hz to 22kHz		-102		dB
Total Harmonic Distortion Plus Noise (THD+N)	V_{DD} = 5V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 2Vrms,		0.0005		%
	BW = 22Hz to 22kHz		-106		dB
	V_{DD} = 12V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 4Vrms,		0.0003		%
	BW = 22Hz to 22kHz		-110		dB
	V_{DD} = 3.3V, f = 1kHz, R _{LOAD} = 32 Ω , THD+N < 0.01%, BW = 22Hz to 22kHz		20		mW
Output Power (P _o)	$V_{DD} = 5V, f = 1kHz, R_{LOAD} = 32\Omega, THD+N < 0.01\%,$ BW = 22Hz to 22kHz		50		mW
	V_{DD} = 12V, f = 1kHz, R _{LOAD} = 32Ω, 1HD+N < 0.01%, BW = 22Hz to 22kHz		80		mW
	V_{DD} = 3.3V, R_{LOAD} = 10k Ω , V_{O} = 1Vrms, A-weighted, AES17 filter		104		dB
Dynamic Range (DNR)	$V_{DD} = 5V$, $R_{LOAD} = 10k\Omega$, $V_O = 2Vrms$, A-weighted, AES17 filter		110		dB
	V_{DD} = 12V, R_{LOAD} = 10k Ω , V_{O} = 4Vrms, A-weighted, AES17 filter		116		dB

ELECTRICAL CHARACTERISTICS (continued)

(At $T_A = +25^{\circ}C$ and $V_{DD} = 2.8V$ to 12V, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
	V_{DD} = 3.3V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 1Vrms,		404		.10
	BW = 22Hz to 22kHz, A-weighted, AES17 filter		104		aв
Cirrel to Naiss Datis (CND)	V_{DD} = 5V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 2Vrms,		110		40
Signal-to-Noise Ratio (SNR)	BW = 22Hz to 22kHz, A-weighted, AES17 filter		110		aв
	V_{DD} = 12V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 4Vrms,		116		٩D
ignal-to-Noise Ratio (SNR) loise Voltage (V _N) 2utput Impedance when Muted (Z ₀) 1put-to-Output Attenuation when Muted Glew Rate Inity-Gain Bandwidth (GBP) Crosstalk-Line L-R and R-L	BW = 22Hz to 22kHz, A-weighted, AES17 filter		110		uБ
Noise Voltage (V _N)	V_{DD} = 3.3V to 12V, A-weighted, AES17 filter		6		μV_{RMS}
Output Impedance when Muted (Z_{O})	V _{DD} = 3.3V to 12V		150		Ω
Input-to-Output Attenuation when Muted	MUTE = GND		45		dB
	V_{DD} = 3.3V, f = 1kHz, R_{LOAD} = 10k Ω , V_{O} = 2 V_{PP}		15		V/µs
	V_{DD} = 3.3V, f = 1kHz, R_{LOAD} = 32 Ω , V_O = 1 V_{PP}		5		V/µs
Slaw Data	V_{DD} = 5V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 4V _{PP}		18		V/µs
Slew Rate	V_{DD} = 5V, f = 1kHz, R_{LOAD} = 32 Ω , V_O = 2 V_{PP}		9		V/µs
	V_{DD} = 12V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 4V _{PP}		20		V/µs
	V_{DD} = 12V, f = 1kHz, R _{LOAD} = 32 Ω , V _O = 2V _{PP}		9		V/µs
Unity-Gain Bandwidth (GBP)	V _{DD} = 3.3V to 12V		60		MHz
	V_{DD} = 3.3V, f = 1kHz, R _{LOAD} = 10kΩ, V _O = 1Vrms,	100			dB
	BW = 22Hz to 22kHz		-120		dВ
	V_{DD} = 3.3V, f = 1kHz, R_{LOAD} = 32 Ω , P_{O} = 10mW,		80		dD
	BW = 22Hz to 22kHz		-09		uВ
	V_{DD} = 5V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 2Vrms,		126		dB
Crosstelly Line L. P. and P. L.	BW = 22Hz to 22kHz		-120		чв
	V_{DD} = 5V, f = 1kHz, R _{LOAD} = 32 Ω , P ₀ = 20mW,		80		dB
	BW = 22Hz to 22kHz		-09		uВ
	V_{DD} = 12V, f = 1kHz, R _{LOAD} = 10k Ω , V _O = 4Vrms,		-132		dB
	BW = 22Hz to 22kHz		-132		GD
	V_{DD} = 12V, f = 1kHz, R_{LOAD} = 32 Ω , P_{O} = 20mW,	-89			dB
	BW = 22Hz to 22kHz				
Current Limit (I _{LIM})	V _{DD} = 3.3V to 12V		65		mA

4Vrms High Performance Audio Line and Headphone Driver with Click-Pop Noise Cancellation

TYPICAL PERFORMANCE CHARACTERISTICS

At $T_A = +25^{\circ}$ C, Gain = -1, $R_{IN} = 10k\Omega$, $R_F = 10k\Omega$, $C_{FLY} = 1\mu$ F and BW = 22Hz to 22kHz, unless otherwise noted.

Output Power (W)

THD+N vs. Output Power $V_{DD} = 12V, R_{LOAD} = 32\Omega,$ Total Harmonic Distortion + Noise (dB) f = 1 kHz-30 -40 -50 -60 -70 -80 -90 -100 E 10µ 20µ 50µ 100µ 200µ 500µ 1m 2m 5m 10m 20m 100m 4μ Output Power (W)

SG Micro Corp

4Vrms High Performance Audio Line and Headphone Driver with Click-Pop Noise Cancellation

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}$ C, Gain = -1, $R_{IN} = 10k\Omega$, $R_F = 10k\Omega$, $C_{FLY} = 1\mu$ F and BW = 22Hz to 22kHz, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}$ C, Gain = -1, $R_{IN} = 10k\Omega$, $R_F = 10k\Omega$, $C_{FLY} = 1\mu$ F and BW = 22Hz to 22kHz, unless otherwise noted.

Frequency (Hz)

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Block Diagram

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (FEBRUARY 2018) to REV.A

Changed from product preview to production dataAll
--

PACKAGE OUTLINE DIMENSIONS

TSSOP-20

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
A		1.100		0.043	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	6.400	6.600	0.252	0.259	
E	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650 BSC		0.026	BSC	
L	0.500	0.700	0.02	0.028	
Н	0.25 TYP		0.01	TYP	
θ	1° 7°		1°	7°	

PACKAGE OUTLINE DIMENSIONS

TQFN-4×4-20L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	3 REF	0.008 REF		
D	3.900	4.100	0.154	0.161	
D1	1.900	2.100	0.075	0.083	
E	3.900	4.100	0.154	0.161	
E1	1.900	2.100	0.075	0.083	
k	0.200	D MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.500	0.500 TYP) TYP	
L	0.300 0.500		0.012	0.020	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-20	13″	12.4	6.80	6.85	1.70	4.0	8.0	2.0	12.0	Q1
TQFN-4×4-20L	13″	12.4	4.30	4.30	1.10	4.0	8.0	2.0	12.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	00002

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)