

SGM8262-2 High Speed, Ultra-Low Noise, Rail-to-Rail Output, High Output Current Amplifier

GENERAL DESCRIPTION

The SGM8262-2 is a dual, low noise, high speed operational amplifier with voltage feedback function. The output swing is rail-to-rail with heavy loads. This maximizes the dynamic range and offers high linearity.

The SGM8262-2 features $3.5 \text{nV}/\sqrt{\text{Hz}}$ low voltage noise at 100kHz with ultra-low distortion. It also has 22MHz wide bandwidth at -3dB and 33V/µs high slew rate. The device is unity-gain stable and provides high output drive capability.

The SGM8262-2 is available in Green SOIC-8 and TDFN-3×3-8BL packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Ultra-Low Noise: Voltage Noise: 3.5nV/√Hz at 100kHz Current Noise: 4pA/√Hz at 100kHz
- High Speed:
 -3dB Bandwidth: 22MHz (G = +1) Slew Rate: 33V/μs (R_{LOAD} = 32Ω)
- Unity-Gain Stable
- High Output Current with Excellent Linearity: 310mA
- High Open-Loop Gain: 110dB
- Rail-to-Rail Output
- Support Single or Dual Power Supplies: 4.5V to 36V or ±2.25V to ±18V
- -40°C to +85°C Operating Temperature Range
- Available in Green SOIC-8 and TDFN-3×3-8BL Packages

APPLICATIONS

Audio Processing General-Purpose AC Equipment Twisted-Pair Wiring Drivers

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOIC-8	-40°C to +85°C	SGM8262-2YS8G/TR	SGM 82622YS8 XXXXX	Tape and Reel, 2500
SGM8262-2	TDFN-3×3-8BL	-40°C to +85°C	SGM8262-2YTDD8G/TR	SGM 82622DD XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code

—— Date Code - Week

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

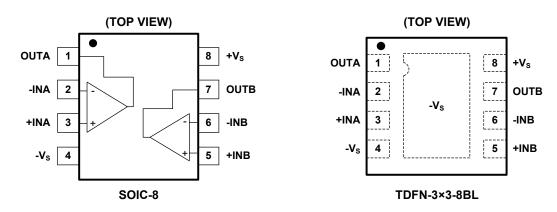
40V
′ _s) + 0.3V
±10mA
+150°C
o +150°C
+260°C
8000V
400V
1000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

NOTE: For TDFN-3×3-8BL package, connect thermal die pad to -V_s.

ELECTRICAL CHARACTERISTICS

(At $T_A = +25^{\circ}$ C, $V_S = 4.5$ V to 36V or $V_S = \pm 2.25$ V to ± 18 V, G = +1, $R_{LOAD} = 32\Omega$, $V_{CM} = V_{OUT} = V_S/2$, unless otherwise noted.)⁽¹⁾

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
DC Performance	·					
			±100	±500		
Input Offset Voltage (V _{OS})	-40°C to +85°C			±610	μV	
Input Offset Voltage Match			±100	±700	μV	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta T$)			0.5		µV/°C	
	$V_{CM} = V_S/2$		±40	±300		
Input Bias Current (I _B)	-40°C to +85°C			±370	nA	
Input Offset Current (I _{OS})	$V_{CM} = V_S/2$		±10	±120	nA	
	$V_{OUT} = \pm 1V$, $V_S = \pm 2.5V$ or 5V	109	115			
Open-Loop Voltage Gain (A _{OL})	$V_{OUT} = \pm 2V, V_{S} = \pm 5V \text{ or } 10V$	106	115		dB	
	$V_{OUT} = \pm 3V, V_{S} = \pm 18V \text{ or } 36V$	95	110			
Input Characteristics	•			1		
	V _s = ±2.25V or 4.5V		38 20			
Differential Input Impedance	V _s = ±18V or 36V		45∥15		— kΩ∥pF	
	V _s = ±2.25V or 4.5V		4∥6			
Common Mode Input Impedance	$V_s = \pm 18V \text{ or } 36V$		20 5		GΩ∥pF	
Input Common Mode Voltage Range (V _{CM})		(-V _s) + 2		(+V _S) - 2	V	
	$\Delta V_{CM} = \pm 0.5 V$, $V_{S} = \pm 2.5 V$ or 5V	107	130			
Common Mode Rejection Ratio (CMRR)	$\Delta V_{CM} = \pm 1V$, V _S = $\pm 18V$ or 36V	109	125		dB	
Output Characteristics						
Output Voltage Swing from Rail (V _{OH})			0.72	1.1	V	
Output Voltage Swing from Rail (VoL)	$R_{LOAD} = 32\Omega$, $V_S = \pm 2.5V$ to $\pm 5V$ or $V_S = 5V$ to $10V$		0.51	0.64	V	
Output Voltage Swing from Rail (V _{OH})			1.1	1.6	V	
Output Voltage Swing from Rail (VoL)	$R_{LOAD} = 100\Omega$		0.8	1	V	
Peak AC Output Current (2)	SFDR \leq -65dBc, f = 100kHz, V _{OUT} = 0.4V _{P-P} , R _{LOAD} = 1Ω, V _S = ±2.25V or 4.5V		200		mA	
	SFDR \leq -55dBc, f = 100kHz, V _{OUT} = 20V _{P-P} , R _{LOAD} = 32Ω, V _S = ±12V or 24V		310		110 (
Dynamic Performance						
-3dB Gain-Bandwidth Product	$V_{OUT} = 0.1 V_{P-P}$		22		MHz	
0.1dB Flatness	$V_{OUT} = 0.1 V_{P-P}$		1.6		MHz	
	$V_{OUT} = 0.5V_{P-P}, V_S = \pm 2.25V \text{ or } 4.5V$		23			
Large-Signal Bandwidth	$V_{OUT} = 2V_{P-P}, V_S = \pm 18V \text{ or } 36V$		12		MHz	
	V _{OUT} = 0.5V _{P-P} , V _S = ±2.25V or 4.5V		27			
	$V_{OUT} = 1V_{P-P}, V_S = \pm 2.5V \text{ or } 5V$		33		1	
Slew Rate (SR)	$V_{OUT} = 4V_{P-P}, V_S = \pm 5V \text{ or } 10V$		49		V/µs	
	$V_{OUT} = 4V_{P-P}, V_S = \pm 12V \text{ or } 24V$		34		1	
Noise/Distortion Performance						
	f_{C} = 100kHz, V _{OUT} = 1V _{P-P} , G = +2, V _S = ±2.25V or 4.5V		-95			
	f_{C} = 100kHz, V _{OUT} = 2V _{P-P} , G = +2, V _S = ±2.5V or 5V		-93			
Distortion (Worst Harmonic)	f_{C} = 100kHz, V _{OUT} = 6V _{P-P} , G = +2, V _S = ±5V or 10V		-88		dBc	
	f_{C} = 100kHz, V _{OUT} = 20V _{P-P} , G = +5, V _S = ±12V or 24V		-52			
Input Voltage Noise Density (e _n)	f = 100kHz		3.5		nV/ _{√Hz}	
Input Current Noise Density (in)	f = 100kHz	-	4	1	pA/ _{√Hz}	

4

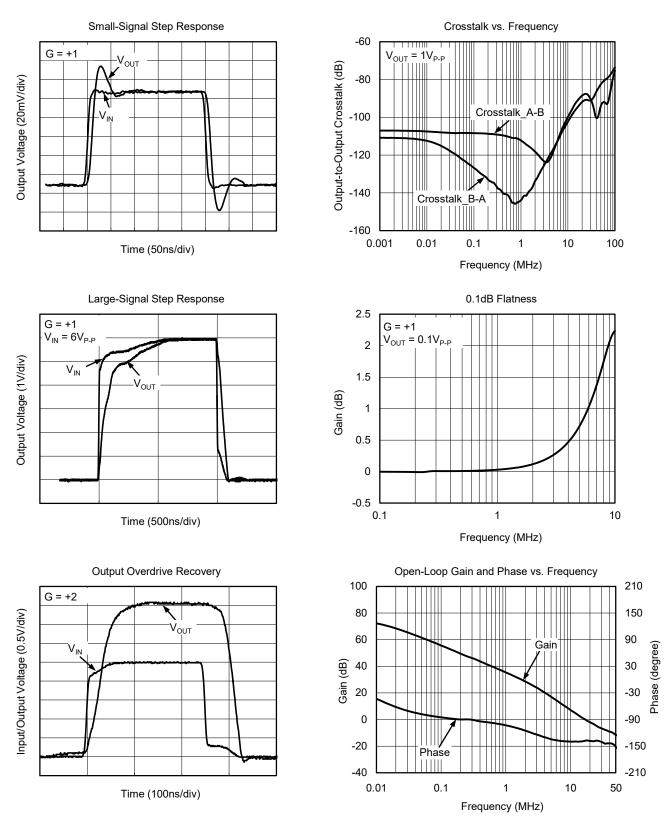
High Speed, Ultra-Low Noise, Rail-to-Rail Output, High Output Current Amplifier

ELECTRICAL CHARACTERISTICS (continued)

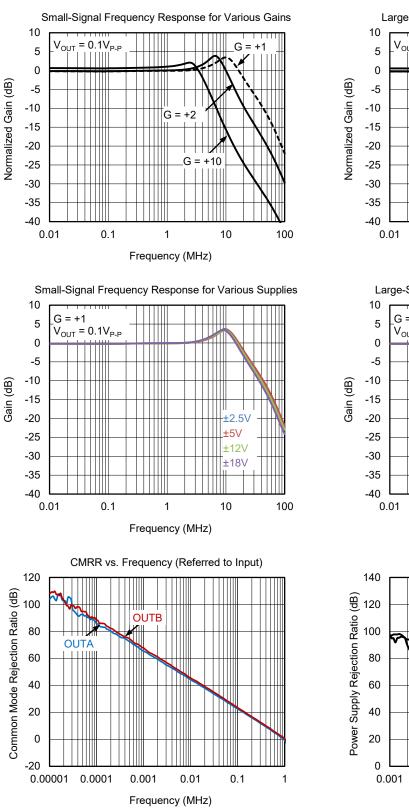
(At $T_A = +25^{\circ}$ C, $V_S = 4.5$ V to 36V or $V_S = \pm 2.25$ V to ± 18 V, G = +1, $R_{LOAD} = 32\Omega$, $V_{CM} = V_{OUT} = V_S/2$, unless otherwise noted.)⁽¹⁾

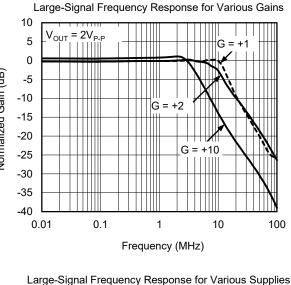
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply					
Operating Voltage Range (Dual Supply)		±2.25		±18	V
Supply Current/Amplifier (I_Q)			9	11.5	mA
Power Supply Rejection Ratio (PSRR)	$\Delta V_{\rm S} = \pm 0.5 V$	100	115		dB
Audio Performance					
	f = 1kHz, V _{OUT} = 0.5V _{P-P} , V _S = ±2.25V or 4.5V,		0.0006		%
	BW = 80kHz		-104		dB
	f = 1/(47 - 1)/(7 -		0.0003		%
Total Harmonia Distartian + Naisa (THD+N)	$f = 1kHz, V_{OUT} = 1V_{P-P}, V_S = \pm 2.5V \text{ or } 5V, BW = 80kHz$		-110		dB
Total Harmonic Distortion + Noise (THD+N)			0.00005		%
	$f = 1kHz$, $V_{OUT} = 6V_{P-P}$, $V_S = \pm 5V$ or 10V, BW = 80kHz		-126		dB
	$f = \frac{1}{2} $		0.00005		%
	$f = 1kHz$, $V_{OUT} = 3V_{RMS}$, $V_S = \pm 12V$ or 24V, BW = 80kHz		-126		dB

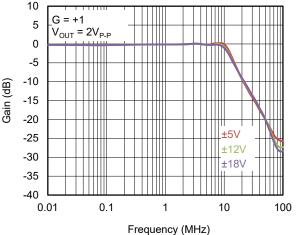
NOTES:

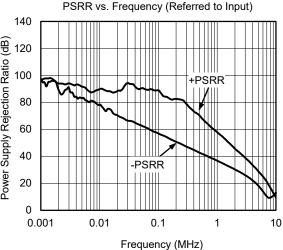

1. Unity-gain can facilitate characterization. It is recommended to use a gain of 2 or greater to improve stability.

2. Peak AC output current is only for normal AC operation, and continuous DC operation is invalid.

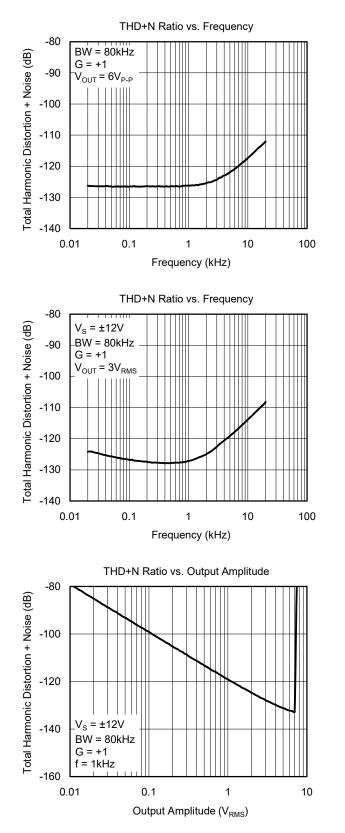

TYPICAL PERFORMANCE CHARACTERISTICS

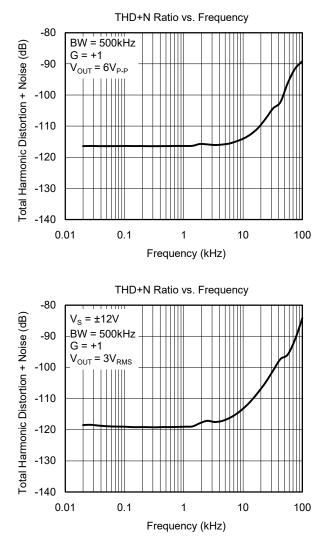

At $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_{LOAD} = 32\Omega$, unless otherwise noted.




TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_S = \pm 5V$, $R_{LOAD} = 32\Omega$, unless otherwise noted.





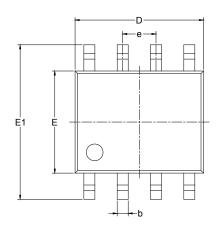
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

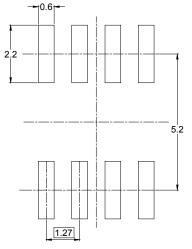
At T_A = +25°C, V_S = ±5V, R_{LOAD} = 32 Ω , unless otherwise noted.

REVISION HISTORY

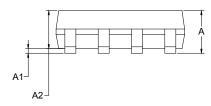
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

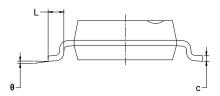
Changes from Original (JUNE 2017) to REV.A


Changed from product provide to production date
Changed from product preview to production dataAll

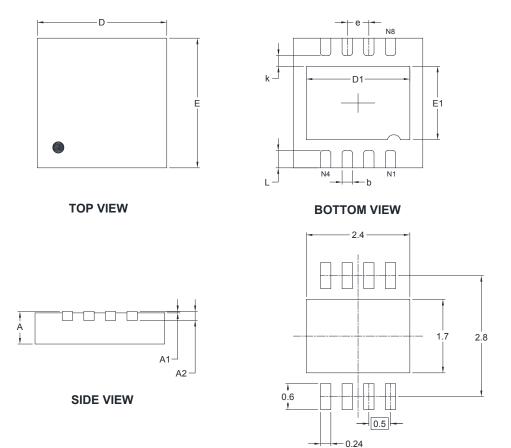


Page


PACKAGE OUTLINE DIMENSIONS


SOIC-8

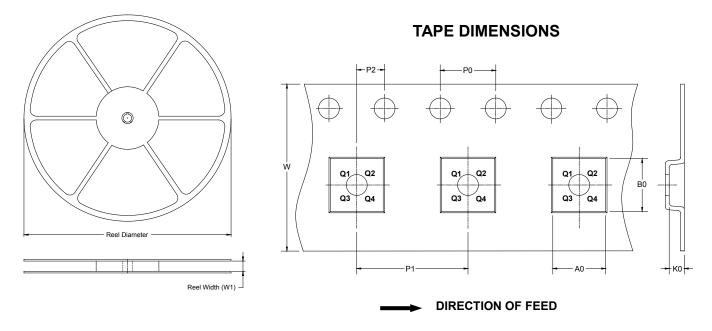
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters		nsions iches	
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS

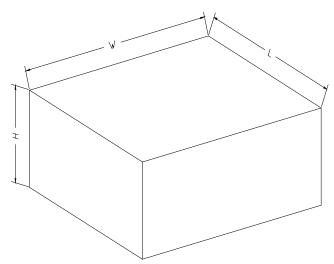
TDFN-3×3-8BL


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	B REF	0.008	B REF	
D	2.900	3.100	0.114	0.122	
D1	2.300	2.500	0.091	0.098	
E	2.900	3.100	0.114	0.122	
E1	1.600	1.800	0.063	0.071	
k	0.200) MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.500	0.500 TYP) TYP	
L	0.300	0.500	0.012	0.020	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-8BL	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)