

SGM8139 Low Power, Low Voltage PIR and Vibration Sensor AFE

GENERAL DESCRIPTION

The SGM8139 is a low voltage low power analog front end designed for PIR and vibration sensors. This part integrates two high input impedance operational amplifiers, window comparator, state control logic, a delay timer, a latch timer, a voltage reference and high current output stages. It can be used in various sensors, delay controllers as well as wake-up circuit in low power consumption systems.

Many industrial and building automation systems use motion detectors to control different functions based on human presence. Using SGM8139 with proper PIR sensor, it is easy to build a compact passive infrared detection system. The output stage of SGM8139 can easily drive different types of lights, buzzers, automatic doors, fans and white goods with programmable timers.

It is especially suitable for office buildings, hotels, shopping malls or automatic lighting and alarm systems, as well as intrusion detection. SGM8139 can be used for motion detection and room monitors in a smart home system as an ultra-low power wake-up block. SGM8139 can be used to condition the vibration sensor, providing a trigger signal to system.

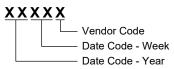
SGM8139 is specifically designed to operate over a wide range of supply voltage from 1.4V to 5.5V. SGM8139 draws only $6\mu A$ supply current. It is ideal for applications powered by single cell or dual cell alkaline battery.

With two operational amplifiers, window comparators, and delay/lockout timers adjustable through external RCs, SGM8139 can both process the PIR output signal effectively and provide good anti-interference performance.

The SGM8139 is specified for the -40°C to +85°C industrial temperature range. The SGM8139 is available in Green SOIC-16 and TQFN-2.5×2.5-16L packages. The TQFN package makes it ideal for portable electronic products with area constrained PC boards.

FEATURES

- Operating Voltage Range: 1.4V to 5.5V
- Average Quiescent Current: 6.5µA (TYP)
- Two Integrated High Input Impedance Operational Amplifiers
- Integrated Bi-directional Amplitude Discriminator
- Adjustable Delay/Lockout Timers With External R and C
- Integrated Voltage Reference
- Available in Green SOIC-16 and TQFN-2.5×2.5-16L Packages



PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8139	SOIC-16	-40°C to +85°C	SGM8139YS16G/TR	SGM8139YS16 XXXXX	Tape and Reel, 2500
3GINI0139	TQFN-2.5×2.5-16L	-40°C to +85°C	SGM8139YTQB16G/TR	8139 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range (V _{SS} = 0V)1.4V to 6V
Signal Input Terminals, Voltage (V _{DD} = 6V, V _{SS} = 0V)
-0.3V to 5.5V
Signal Input Terminals, Current ($V_{DD} = 5V$, $V_{SS} = 0V$)
±10mA
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
MM400V
CDM 1000V

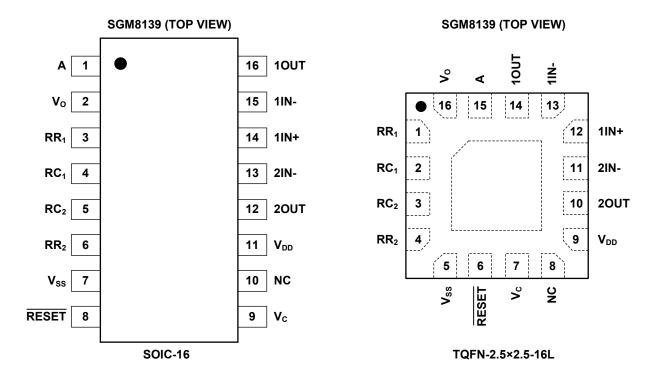
RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to

absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN NAME 6 TQFN-2.5×2.5-16L		FUNCTION
SOIC-16			FUNCTION
1	15	А	Repeatable Trigger Mode and Non-Repeatable Trigger Mode. When A = "1", repeatable trigger mode is active; when A = "0", non-repeatable trigger mode is active.
2	16	Vo	Output Terminal. Triggered by V_{S} rising edge, and kept low in t_{X} and t_{i} period.
3	1	RR₁	Set up the output delay time tx. $t_x \approx 28672R_1C_1$. The recommended resistor value is more than $3k\Omega$ for RR ₁ .
4	2	RC₁	Set up the output delay time tx. $t_x \approx 28672R_1C_1$.
5	3	RC ₂	Set up the trigger latch time ti. $t_i \approx 28R_2C_2$.
6	4	RR ₂	Set up the trigger latch time ti. $t_i \approx 28R_2C_2$. The recommended resistor value is more than $3k\Omega$ for RR ₂ .
7	5	V _{SS}	Negative Power Supply. It is normally connected to ground.
8	6	RESET	Chip Reset Input. It is normally connected to V _{DD} . Active low.
9	7	V _C	Trigger Inactive Terminal. When $V_C < V_R$, Trigger inactive; when $V_C > V_R$, Trigger active. $V_R \approx 0.2 V_{DD}$.
10	8	NC	No Connection.
11	9	V_{DD}	Positive Power Supply.
12	10	2OUT	The Output of OP2.
13	11	2IN-	The Inverting Input of OP2.
14	12	1IN+	The Non-inverting Input of OP1.
15	13	1IN-	The Inverting Input of OP1.
16	14	10UT	The Output of OP1.
	Exposed Pad	_	It should be connected to V _{SS} or left floating.

ELECTRICAL CHARACTERISTICS

 $(V_{SS} = 0V, V_{DD} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage Range	V_{DD}		1.4		5.5	V
Output Current	I _{OUT}	V _{DD} = 5V		50		mA
V _C (High Level)	V_{RH}	V _{DD} = 3.3V	0.76			V
V _C (Low Level)	V_{RL}	V _{DD} = 3.3V			0.56	V
A (High Level)	V_{AH}	V _{DD} = 3.3V	2.57			V
A (Low Level)	V_{AL}	V _{DD} = 3.3V			0.99	V
V _O (High Level)	V _{OH}	V_{DD} = 5V, I_O = 50mA		0.9	1.2	V
V _O (Low Level)	V _{OL}	V _{DD} = 5V, I _O = 50mA		0.38	0.46	V
Window Comparator Threshold V _H	V _H			$0.7V_{DD}$		
Window Comparator Threshold V _L	V_L			0.25V _{DD}		
OPA Bias Reference V _M	V _M			$0.5V_{DD}$		
V _C Input Reference V _R	V_R			$0.2V_{DD}$		

Operational Amplifiers

 $(V_{DD}$ = 1.4V, V_{SS} = 0V, T_A = +25°C, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 1M Ω connected to $V_{DD}/2$, unless otherwise noted.)

OS CMR	$V_{CM} = V_{DD}/2$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$		0.3			
			0.3			
	-40°C ≤ T _A ≤ +85°C	1		1.7	mV	
CMR				2.2	mv	
		V _{SS} - 0.1		V _{DD} + 0.1	V	
	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$	72	77		dB	
VO	-40°C ≤ T _A ≤ +85°C	63			uБ	
	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$ to $V_{DD}/2$		5	12	mV	
OH	-40°C ≤ T _A ≤ +85°C			14		
	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$ to $V_{DD}/2$		5	12	- mV	
V OL	-40°C ≤ T _A ≤ +85°C			14		
DD	V _{DD} = 1.4V to 5.5V	75	84		dB	
FORK	-40°C ≤ T _A ≤ $+85$ °C	69				
		1.4		5.5	V	
	$V_{CM} = V_{DD}/2$, $I_O = 0$		4.8	8.8		
Q	-40°C ≤ T _A ≤ +85°C			11.0	μA	
D	f = 100Hz \/ = 1\/ Stop A = 1		5		V/ms	
K	1 – 100Π2, V _{OUT} – 1V _{PP} Step, A _V – 1		2.8			
BP	$R_F = 100k\Omega, R_G = 10k\Omega, R_L = 1M\Omega, A_V = 10$		8		kHz	
	$R_F = 100k\Omega, R_G = 10k\Omega, R_L = 1M\Omega, A_V = 10$		70		0	
	f = 0.1Hz to 10Hz		4.8		μV_{PP}	
n	$f = 1kHz$, $V_{CM} = V_{DD}/2$		240		nV/ √HZ	
		$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $V_{DD} = 1.4V \text{ to } 5.5V$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $V_{CM} = V_{DD}/2, I_{O} = 0$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ R $V_{CM} = V_{DD}/2, I_{O} = 0$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ R $f = 100Hz, V_{OUT} = 1V_{PP} \text{ Step, } A_{V} = 1$ $R_{F} = 100k\Omega, R_{G} = 10k\Omega, R_{L} = 1M\Omega, A_{V} = 10$ $F_{F} = 101Hz \text{ to } 10Hz$	$ -40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $ V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2 $ $ -40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $ V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2 $ $ -40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $ V_{DD} = 1.4V \text{ to } 5.5V $ $ -40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $ 69$ $ 1.4$ $ V_{CM} = V_{DD}/2, I_{O} = 0 $ $ -40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $ RR$ $ f = 100Hz, V_{OUT} = 1V_{PP} \text{ Step, } A_{V} = 1 $ $ R_{F} = 100k\Omega, R_{G} = 10k\Omega, R_{L} = 1M\Omega, A_{V} = 10 $ $ R_{F} = 101Hz \text{ to } 10Hz $	$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2 $ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2 $ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $V_{DD} = 1.4V \text{ to } 5.5V $ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $V_{DD} = 1.4V \text{ to } 5.5V $ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $V_{CM} = V_{DD}/2, I_{O} = 0 $ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $V_{CM} = V_{DD}/2, I_{O} = 0 $ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C $ $F = 100Hz, V_{OUT} = 1V_{PP} \text{ Step, } A_{V} = 1 $ $R_{F} = 100k\Omega, R_{G} = 10k\Omega, R_{L} = 1M\Omega, A_{V} = 10 $ $R_{F} = 100k\Omega, R_{G} = 10k\Omega, R_{L} = 1M\Omega, A_{V} = 10 $ $F = 0.1Hz \text{ to } 10Hz $ $V_{CM} = V_{DD}/2, I_{O} = 0 $ $V_{CM} = V_{DD}/2, I_{O}/2, I_{O}/2, I_{O}/2, I_{O}/2, I_{O}/2, I_{O}/2, I_{O}/2, I_{O}/2, I_{O}$	$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $V_{CM} = V_{DD}/2, R_{L} = 10k\Omega \text{ to } V_{DD}/2$ $-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$ $T_{A} \leq +$	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 3.3V, V_{SS} = 0V, T_A = +25^{\circ}C, V_{CM} = V_{DD}/2, V_{OUT} \approx V_{DD}/2, R_L = 1M\Omega$ connected to $V_{DD}/2$, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC Performan	се							
Inner Office 4 Va	lk	V	$V_{CM} = V_{DD}/2$		0.3	1.6	m\/	
Input Offset Voltage		Vos	-40°C ≤ T _A ≤ +85°C			1.7	mV	
Input Common	Mode Voltage Range	V_{CMR}		V _{SS} - 0.1		V _{DD} + 0.1	V	
Common Mode	- Dejection Detic	CMDD	V _{CM} = -0.1V to V _{DD} - 1.5V	62	76			
Common wode	Rejection Ratio	CMRR	-40°C ≤ T _A ≤ +85°C	61			dB	
Lorgo Cianol V	oltaga Cain	Δ.	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$	84	89		٩D	
Large-Signal V	oitage Gain	A _{vo}	-40°C ≤ T _A ≤ +85°C	77			dB	
		V	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$ to $V_{DD}/2$		4	12	\/	
Otot \ / = t = ==	Curing France Dail	V _{OH}	-40°C ≤ T _A ≤ +85°C			14	mV	
Output Voltage Swing From Rail		V _{OL}	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$ to $V_{DD}/2$		4	12	mV	
			-40°C ≤ T _A ≤ +85°C			14		
Output Short Circuit Current		I _{SOURCE}	$V_{CM} = V_{DD}/2$, $R_L = 10\Omega$ to $V_{DD}/2$	9	11		mA	
Output Short C	ircuit Current	I _{SINK}	$V_{CM} = V_{DD}/2$, $R_L = 10\Omega$ to $V_{DD}/2$	9	11		mA	
Dower Cumply	Poinction Datio	PSRR	V _{DD} = 1.4V to 5.5V	75	84		dB	
Power Supply I	Rejection Ratio		-40°C ≤ T _A ≤ +85°C	69				
Operating Volta	age Range			1.4		5.5	V	
Ouissant Curr	ront.		$V_{CM} = V_{DD}/2, I_{O} = 0$		5.8	10.5	μА	
Quiescent Curr	ent	IQ	-40°C ≤ T _A ≤ +85°C			12.5		
AC Performan	ce (V _{DD} = 3V)							
Claus Data	UP	CD	f = 4001 = 1/4 Ct-r A = 4		5			
Slew Rate	DOWN	SR	$f = 100Hz, V_{OUT} = 1V_{PP} Step, A_V = 1$		3		V/ms	
Gain-Bandwidth Product		GBP	$R_F = 100k\Omega$, $R_G = 10k\Omega$, $R_L = 1M\Omega$, $A_V = 10$		11		kHz	
Phase Margin			$R_F = 100k\Omega$, $R_G = 10k\Omega$, $R_L = 1M\Omega$, $A_V = 10$		70		0	
Input Voltage N	loise		f = 0.1Hz to 10Hz		4.8		μV_{PP}	
Input Voltage N	loise Density	e _n	$f = 1kHz$, $V_{CM} = V_{DD}/2$		260		nV/ √HZ	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 5V, V_{SS} = 0V, T_A = +25^{\circ}C, V_{CM} = V_{DD}/2, V_{OUT} \approx V_{DD}/2, R_L = 1M\Omega$ connected to $V_{DD}/2$, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC Performan	ce	•						
Immust Office at 1/a	lk	Vos	$V_{CM} = V_{DD}/2$		0.3	1.6	m\/	
input Oliset voi	Input Offset Voltage		-40°C ≤ T _A ≤ +85°C			1.7	mV	
Input Common	Mode Voltage Range	V_{CMR}		V _{SS} - 0.1		V _{DD} + 0.1	V	
Common Modo	- Dejection Datie	CMRR	V _{CM} = -0.1V to V _{DD} - 1.5V	65	78			
Common wode	Rejection Ratio	CIVIRR	-40°C ≤ T _A ≤ +85°C	63			dB	
Larga Cianal V	oltaga Cain	^	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$	87	92		dB	
Large-Signal Vo	ollage Gain	A _{vo}	-40°C ≤ T _A ≤ +85°C	80			иь	
		V _{OH}	$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$ to $V_{DD}/2$		4	12	mV	
Output Valtaga	Curing From Dail	VOH	-40°C ≤ T _A ≤ +85°C			14		
Output voltage	Swing From Rail		$V_{CM} = V_{DD}/2$, $R_L = 10k\Omega$ to $V_{DD}/2$		4	12	mV	
		V _{OL}	-40°C ≤ T _A ≤ +85°C			14	IIIV	
			$V_{CM} = V_{DD}/2$, $R_L = 10\Omega$ to $V_{DD}/2$	19	24		mA	
Output Short Ci	irouit Current	I _{SOURCE}	-40°C ≤ T _A ≤ +85°C	15			1117 (
Output Short C	ircuit Gurrent	I _{SINK}	$V_{CM} = V_{DD}/2$, $R_L = 10\Omega$ to $V_{DD}/2$	19	24		mA	
			-40°C ≤ T _A ≤ +85°C	14			IIIA	
Dower Supply F	Pointing Patin	PSRR	V _{DD} = 1.4V to 5.5V	75	84		dB	
Power Supply F	Rejection Ratio		-40°C ≤ T _A ≤ +85°C	69				
Operating Volta	age Range			1.4		5.5	V	
Quiescent Curr	ont		$V_{CM} = V_{DD}/2, I_O = 0$		6.5	12.5	μА	
Quiescent Curr	ent	lα	-40°C ≤ T _A ≤ +85°C			14.5		
AC Performan	ce							
Slow Pato	UP	- SR	f = 100Hz, V _{OUT} = 1V _{PP} Step, A _V = 1		5.8		V/ms	
Slew Rate	DOWN	Six	1 - 100112, V _{0UT} - 1V _{PP} Step, A _V - 1		3			
Gain-Bandwidth	n Product	GBP	$R_F = 100k\Omega$, $R_G = 10k\Omega$, $R_L = 1M\Omega$, $A_V = 10$		11		kHz	
Phase Margin			$R_F = 100k\Omega$, $R_G = 10k\Omega$, $R_L = 1M\Omega$, $A_V = 10$		68		٥	
Input Voltage N	loise		f = 0.1Hz to 10Hz		4.8		μV_{PP}	
Input Voltage N	loise Density	e _n	$f = 1kHz, V_{CM} = V_{DD}/2$		200		nV/ √HZ	

FUNCTIONAL BLOCK DIAGRAM

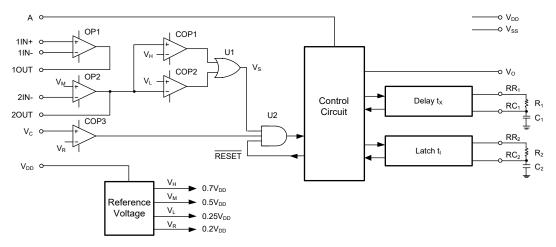


Figure 1. Functional Block Diagram

FUNCTIONAL DESCRIPTION

As shown in Figure 1, SGM8139 integrates operational amplifiers, bi-directional phase detector, status controller, delay timer, latch timer and voltage reference. SGM8139 supports two different working modes. One is non-repeatable trigger mode, and the other is repeatable trigger mode. In Figure 2, the waveforms of each pin show how SGM8139 works in non-repeatable trigger mode.

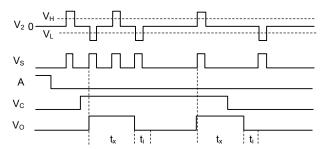
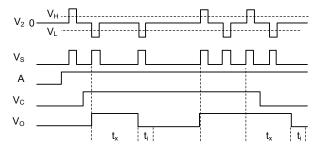


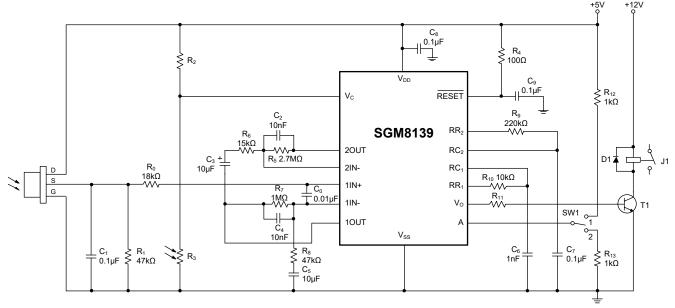
Figure 2. Non-repeatable Trigger Mode

First of all, with proper setup OP1 amplifies the output signal of PIR sensor, as the second stage OP2 conditions the signal from OP1 to an appropriate level, while the DC voltage is biased to VM ($\approx 0.5 V_{DD}$). COP1 together with COP2 form a bi-directional amplitude detector after which the effective trigger signal V_{S} will be detected. Since $V_{H}\approx 0.7 V_{DD}$ and $V_{L}\approx 0.25 V_{DD}$, when $V_{DD}=5 V$, this circuit is immune to +/-1V noise interference, improving the system reliability. COP3 is a voltage comparator. When $V_{C} < V_{R}$ ($\approx 0.2 V_{DD}$), COP3 output is low, setting AND gate U2 inactive. When $V_{C} > V_{R}$, COP3 output is high, and U2 is

active. Meanwhile, the rising edge of V_S turns on the delay timer, while output of Vo keeps high during t_x period. When A is 0, any changes in V2 will be ignored in the t_x period. It is called non-repeatable trigger mode. When t_x ends, V_O drops to 0, and at the same time, the latch timer works. In the t_i period, any changes in V2 could not set V_O active. This setup can improve the anti-interference performance when switching loads.

Figure 3 shows how SGM8139 works in repeatable trigger mode.




Figure 3. Repeatable Trigger Mode

When $V_C = 0$ and A = 0, any changes in V_S could not set V_O active. When $V_C = 1$ and A = 1, changing V_S could set V_O active and maintain active during t_x period. V_O will continue to delay another t_x period if any V_S rising edge occurs. If V_S is set to high, V_O keeps active. If V_S is set to low, V_O will be inactive after the t_x period ends, and V_O will keep inactive during t_i period while any changes in V_S could not trigger V_O to active mode.

APPLICATION CIRCUIT

In Figure 4, V_O can drive the transistor T1 to connect the supply and the load. R_3 is a photoresistance which detects the ambient light illumination. If it is in the day time, the value of R_3 decreases, thus V_C will drop to low level, and any trigger signal will be latched, saving electricity. This function can be bypassed by connecting V_C to V_{DD} directly when used in other application.

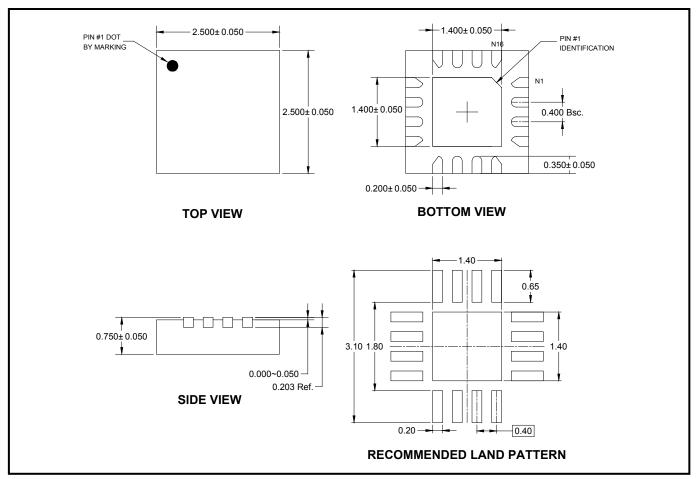
SW1 is a mode selection switch. When SW1 is connected to 1, the system is in repeatable trigger mode. When SW1 is connected to 2, the system is in non-repeatable trigger mode.

NOTES:

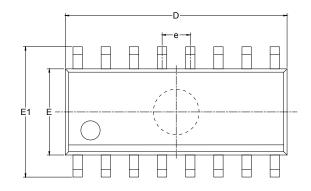
- 1. $A_{V1} = 1 + R_7/R_8 = 1 + 1000/47 \approx 22.27$
- 2. $A_{V2} = -R_5/R_6 = -2700/15 = -180$

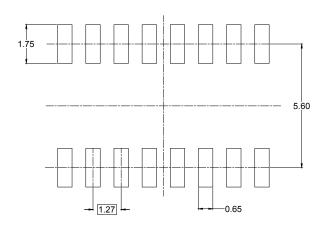
Figure 4. Schematic for PIR I_{AMP} Switch Application

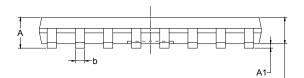
REVISION HISTORY

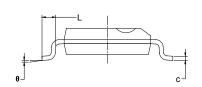

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2018 - REV.A.1 to REV.A.2	Page
Added notes to Figure 4	8
MARCH 2017 – REV.A to REV.A.1	Page
Changed Pin Description section	3
Changed Application Circuit section	
Changes from Original (DECEMBER 2016) to REV.A	Page
Changed from product preview to production data	All

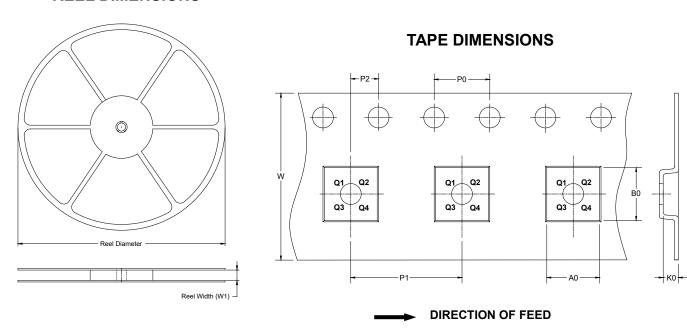

PACKAGE OUTLINE DIMENSIONS


TQFN-2.5×2.5-16L




NOTE: All linear dimensions are in millimeters.

PACKAGE OUTLINE DIMENSIONS SOIC-16

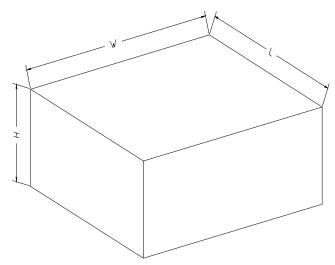


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.5×2.5-16L	7"	13.0	2.80	2.80	1.10	4.0	4.0	2.0	12.0	Q1
SOIC-16	13"	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13"	386	280	370	5

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)