

SGM836 Microprocessor Supervisory Circuit with Programmable Delay Time

GENERAL DESCRIPTION

The SGM836 family can monitor system voltages from 0.4V to 5V. When the detection voltage falls below the preset threshold (V_{ITL}) or the manual reset (nMR) pin is driven low, the open-drain nRESET output is asserted. After the detection voltage and nMR voltage return higher than their respective thresholds, the nRESET output remains low within the user-adjustable delay time.

The SGM836 uses a precision reference to achieve 1% threshold accuracy. The fixed reset timeout period can be set to 20ms by leaving the C_T pin open and can be set to 300ms by connecting the C_T pin to V_{DD} through a resistor. The programmable reset timeout period can be set from 1.25ms to 10s through an external capacitor connected to the C_T pin. Low quiescent current makes the SGM836 very suitable for battery-powered applications.

The SGM836 is available in Green SOT-23-6 and TDFN-2×2-6AL packages.

FEATURES

- Adjustable Reset Timeout Period: 1.25ms to 10s
- Low Quiescent Current: 0.6µA (TYP)
- High Threshold Accuracy: 1% (TYP)
- Factory-Set Detection Voltages: 0.9V to 5V
- Adjustable Detection Voltage Down to 0.4V
- Manual Reset (nMR) Input
- Open-Drain nRESET Output
- Available in Green SOT-23-6 and TDFN-2×2-6AL Packages

APPLICATIONS

Computers Portable Equipment Intelligent Instruments Microprocessor Systems Critical µP Power Monitoring

TYPICAL APPLICATION

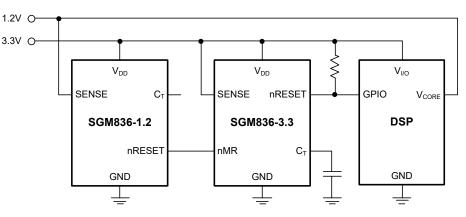


Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	THRESHOLD VOLTAGE (V _{ITL}) (V)	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
CCM02C 0.0	0.04	SOT-23-6	-40°C to +125°C	SGM836-0.9XN6G/TR	R6AXX	Tape and Reel, 3000
SGM836-0.9	0.84	TDFN-2×2-6AL	-40°C to +125°C	SGM836-0.9XTDI6G/TR	R18 XXXX	Tape and Reel, 3000
	4.40	SOT-23-6	-40°C to +125°C	SGM836-1.2XN6G/TR	R6BXX	Tape and Reel, 3000
SGM836-1.2	1.12	TDFN-2×2-6AL	-40°C to +125°C	SGM836-1.2XTDI6G/TR	R19 XXXX	Tape and Reel, 3000
		SOT-23-6	-40°C to +125°C	SGM836-1.25XN6G/TR	R6CXX	Tape and Reel, 3000
SGM836-1.25	1.16	TDFN-2×2-6AL	-40°C to +125°C	SGM836-1.25XTDI6G/TR	R1A XXXX	Tape and Reel, 3000
001000 4 5	4.40	SOT-23-6	-40°C to +125°C	SGM836-1.5XN6G/TR	R6EXX	Tape and Reel, 3000
SGM836-1.5	1.40	TDFN-2×2-6AL	-40°C to +125°C	SGM836-1.5XTDI6G/TR	R1B XXXX	Tape and Reel, 3000
0014000 4 0	4.07	SOT-23-6	-40°C to +125°C	SGM836-1.8XN6G/TR	R71XX	Tape and Reel, 3000
SGM836-1.8	1.67	TDFN-2×2-6AL	-40°C to +125°C	SGM836-1.8XTDI6G/TR	R1C XXXX	Tape and Reel, 3000
0014000 4 0	4.77	SOT-23-6	-40°C to +125°C	SGM836-1.9XN6G/TR	R73XX	Tape and Reel, 3000
SGIM836-1.9	SGM836-1.9 1.77		-40°C to +125°C	SGM836-1.9XTDI6G/TR	R1D XXXX	Tape and Reel, 3000
0014000.0.5	0.00	SOT-23-6	-40°C to +125°C	SGM836-2.5XN6G/TR	R76XX	Tape and Reel, 3000
SGIM830-2.5	GM836-2.5 2.33 GM836-2.7 2.52	TDFN-2×2-6AL	-40°C to +125°C	SGM836-2.5XTDI6G/TR	R1E XXXX	Tape and Reel, 3000
001/000 0 7	0.50	SOT-23-6	-40°C to +125°C	SGM836-2.7XN6G/TR	R78XX	Tape and Reel, 3000
SGIVI830-2.7	2.52	TDFN-2×2-6AL	-40°C to +125°C	SGM836-2.7XTDI6G/TR	R1F XXXX	Tape and Reel, 3000
0.01/000.0.0	0.7	SOT-23-6	-40°C to +125°C	SGM836-2.9XN6G/TR	R7AXX	Tape and Reel, 3000
SGM836-2.9	2.7	TDFN-2×2-6AL	-40°C to +125°C	SGM836-2.9XTDI6G/TR	R20 XXXX	Tape and Reel, 3000
COM020 2 0	0.70	SOT-23-6	-40°C to +125°C	SGM836-3.0XN6G/TR	R3DXX	Tape and Reel, 3000
SGM836-3.0	2.79	TDFN-2×2-6AL	-40°C to +125°C	SGM836-3.0XTDI6G/TR	R21 XXXX	Tape and Reel, 3000
0.01/000.0.0	0.07	SOT-23-6	-40°C to +125°C	SGM836-3.3XN6G/TR	R7CXX	Tape and Reel, 3000
SGM836-3.3	3.07	TDFN-2×2-6AL	-40°C to +125°C	SGM836-3.3XTDI6G/TR	R22 XXXX	Tape and Reel, 3000
001/000 0 7	0.45	SOT-23-6	-40°C to +125°C	SGM836-3.7XN6G/TR	R7EXX	Tape and Reel, 3000
SGM836-3.7	3.45	TDFN-2×2-6AL	-40°C to +125°C	SGM836-3.7XTDI6G/TR	R23 XXXX	Tape and Reel, 3000
	0.70	SOT-23-6	-40°C to +125°C	SGM836-4.0XN6G/TR	R80XX	Tape and Reel, 3000
SGM836-4.0	3.73	TDFN-2×2-6AL	-40°C to +125°C	SGM836-4.0XTDI6G/TR	R24 XXXX	Tape and Reel, 3000
	4.0	SOT-23-6	-40°C to +125°C	SGM836-4.5XN6G/TR	R82XX	Tape and Reel, 3000
SGM836-4.5	4.2	TDFN-2×2-6AL	-40°C to +125°C	SGM836-4.5XTDI6G/TR	R25 XXXX	Tape and Reel, 3000

PACKAGE/ORDERING INFORMATION (continued)

MODEL	THRESHOLD VOLTAGE (V _{ITL}) (V)	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
		SOT-23-6	-40°C to +125°C	SGM836-5.0XN6G/TR	R84XX	Tape and Reel, 3000
SGM836-5.0 4.65	TDFN-2×2-6AL	-40°C to +125°C	SGM836-5.0XTDI6G/TR	R26 XXXX	Tape and Reel, 3000	
	0.405	SOT-23-6	-40°C to +125°C	SGM836-ADJXN6G/TR	R85XX	Tape and Reel, 3000
SGM836-ADJ	0.405	TDFN-2×2-6AL	-40°C to +125°C	SGM836-ADJXTDI6G/TR	R27 XXXX	Tape and Reel, 3000

MARKING INFORMATION

SGM836

NOTE: XX = Date Code. XXXX = Date Code and Trace Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to 7V
C_T to GND	0.3V to V _{DD} + 0.3V
nRESET, nMR, SENSE to GND	0.3V to 7V
nRESET Pin Current	±5mA
Package Thermal Resistance	
SOT-23-6, θ _{JA}	243°C/W
TDFN-2×2-6AL, θ _{JA}	124°C/W
TDFN-2×2-6AL, θ _{JC(TOP)}	129°C/W
TDFN-2×2-6AL,θ _{JC(BOT)}	
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	4000V
CDM	

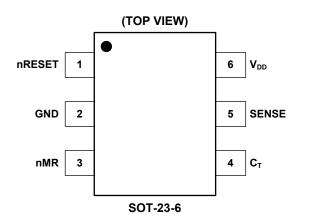
RECOMMENDED OPERATING CONDITIONS

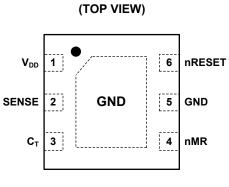
Input Supply Voltage Range, VDD	1.65V to 6.5V
SENSE Pin Voltage, V _{SENSE}	0V to 6.5V
C _T Pin Voltage, V _{CT}	V _{DD} (MAX)
nMR Pin Voltage, V _{nMR}	0V to 6.5V
nRESET Pin Voltage, V _{nRESET}	0V to 6.5V
nRESET Pin Current, InRESET	0.0003mA to 5mA
Operating Junction Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

TDFN-2×2-6AL

PIN DESCRIPTION

PIN		NAME	1/0	FUNCTION
SOT-23-6	TDFN-2×2-6AL	nRESET O	FUNCTION	
1	6	nRESET	0	Active-Low Reset Output Pin. nRESET remains low if the SENSE input is below V _{ITL} or nMR is logic low. It goes (or remains) low for the reset timeout period after the SENSE voltage exceeds V _{ITL} and nMR pin is driven high. It is recommended to connect a 10k Ω to 1M Ω pull-up resistor to this pin which enables the reset voltages greater than V _{DD} .
2	5	GND		Ground.
3	4	nMR	I	Manual Reset Input Pin. Pulling this pin (nMR) low will assert nRESET. nMR is internally pulled up to V_{DD} by a 100k Ω resistor.
4	3	Ст	Ι	Reset Timeout Delay Programming Pin. The fixed delay time can be set by connecting a $40k\Omega$ to $200k\Omega$ resistor between C _T pin and V _{DD} or leaving it open. And the programmable delay time can be set by connecting a capacitor no less than 100pF to the ground.
5	2	SENSE	Ι	The Dedicated Voltage Monitor Pin. If the SENSE voltage falls below $V_{\text{ITL}},$ the nRESET will be asserted.
6	1	V_{DD}	Ι	Supply Voltage.
_	Exposed Pad	GND	_	Exposed Pad. Connect it to the ground.

NOTE: I: input, O: output.

ELECTRICAL CHARACTERISTICS

(V_{DD} = 1.65V to 6.5V, R_{LRESET} = $100k\Omega^{(1)}$, T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise noted.)

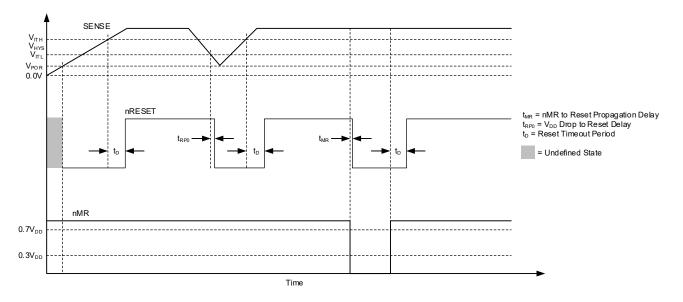
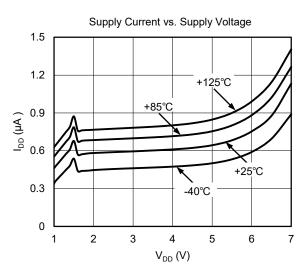
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
Input Supply Range	V _{DD}		1.65		6.5	V			
Supply Current (Current into VDD Pin)	I _{DD}	V _{DD} = 3.3V, nRESET not asserted, nMR, nRESET, C _T open V _{DD} = 6.5V, nRESET not asserted,		0.6	1.5	μA			
		$v_{DD} = 0.5V$, IRESET not asserted, INR, IRESET, C _T open		0.9	2				
Low-Level Output Voltage	M	$1.3V \le V_{DD} < 1.8V$, $I_{OL} = 0.4mA$			0.2	V			
Low-Level Output voltage	V _{OL}	$1.8V \le V_{DD} \le 6.5V$, $I_{OL} = 1mA$			0.3	V			
Power-Up Reset Voltage (2)	V_{POR}	V_{OL} (MAX) = 0.2V, I_{nRESET} = 15 μ A			0.8	V			
		All versions, T _J = +25°C	-1.0		1.0				
		$V_{ITL} \leq 3.3V$	-1.5		1.5				
Negative-Going Input Threshold Accuracy	V_{ITL}	$3.3V < V_{ITL} \le 5.0V$	-1.8		1.8	%			
		$V_{ITL} \le 3.3V$, $T_J = -40^{\circ}C$ to $+85^{\circ}C$	-1.25		1.25				
Positive Coing Input Threshold Assures		$3.3V < V_{ITL} \le 5.0V, T_J = -40^{\circ}C$ to +85°C	-1.3		1.3				
Positive-Going Input Threshold Accuracy	VITH	All versions			3.5	%			
Hysteresis On V _{ITL}	V_{HYS}	All versions			3.5	%			
nMR Internal Pull-Up Resistance	R_{nMR}		50	100		kΩ			
nput Current at SENSE Pin	I _{SENSE}	SGM836-ADJ, V _{SENSE} = V _{ITL}	-25		25	nA			
Input Current at SENSE PIN		Fixed versions, V _{SENSE} = 6.5V		235					
nRESET Leakage Current	I _{OH}	V _{nRESET} = 6.5V, nRESET not asserted			1	μA			
Innut Consoitance Any Din	0	C_T pin, V_{IN} = 0V to V_{DD}		5		pF			
Input Capacitance, Any Pin	C _{IN}	Other pins, V_{IN} = 0V to 6.5V		5					
nMD Innut	VIL	Logic Low	0		$0.3 \times V_{DD}$	V			
nMR Input	V _{IH}	Logic High	$0.7 \times V_{DD}$		V _{DD}	v			
Innut Dulas Width to aDESET	t _{SENSE}	$V_{IH} = 1.05 \times V_{ITL}, V_{IL} = 0.95 \times V_{ITL}$		25		μs			
Input Pulse Width to nRESET	t _{nMR}	$V_{IH} = 0.7 \times V_{DD}, V_{IL} = 0.3 \times V_{DD}$		100		ns			
C_T Source Threshold Voltage	$V_{\text{TH-RAMP}}$			1.206		V			
		C _T = Open	12	20	28				
nRESET Delay Time	t _D	C _T = V _{DD}	180	300	420	ms			
		C _T = 100pF	0.8	1.3	1.8				
Propagation Delay	t _{MR}	nMR to nRESET		250		ns			
High-to-Low Level nRESET Delay	t _{RP0}	SENSE to nRESET		100		μs			

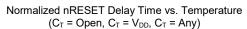
NOTE:

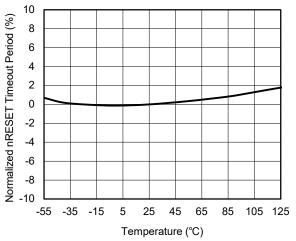
1. R_{LRESET} is the resistor connected to the nRESET pin.

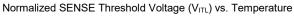
SGM836

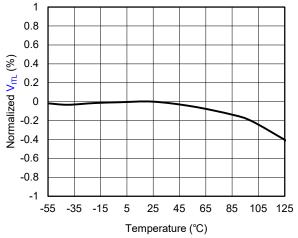
TIMING DIAGRAM

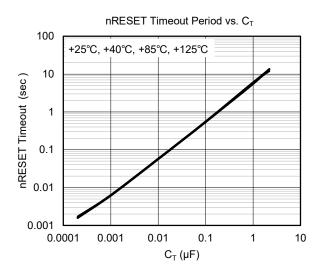



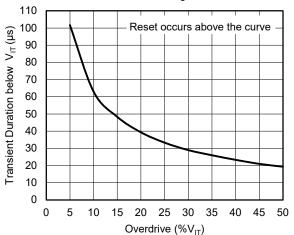

Figure 2. SGM836 Timing Diagram Showing nMR and SENSE Reset Timing

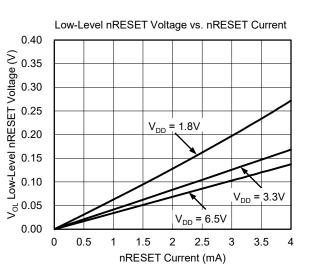



TYPICAL PERFORMANCE CHARACTERISTICS


 T_J = +25°C, V_{DD} = 3.3V and R_{LRESET} = 100k Ω , unless otherwise noted.







Maximum Transient Duration at SENSE vs. SENSE Threshold Overdrive Voltage

SG Micro Corp

FUNCTIONAL BLOCK DIAGRAM

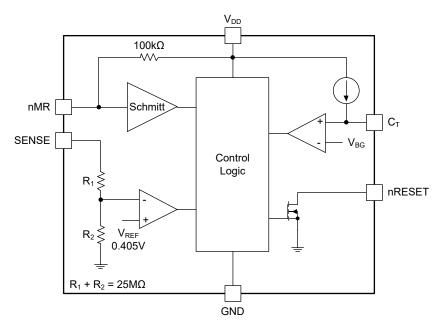
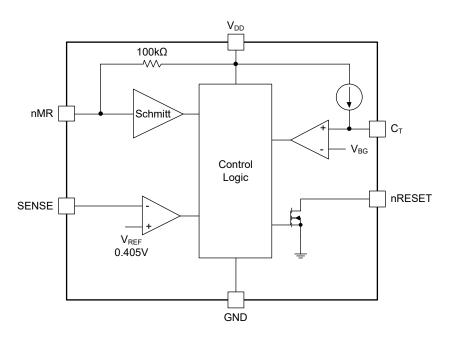
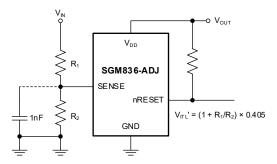



Figure 3. Fixed Voltage Version Block Diagram

DETAILED DESCRIPTION


When the SENSE voltage falls below V_{ITL} or the nMR pin is driven low, the open-drain nRESET output is asserted. After the SENSE and nMR voltages exceed their respective thresholds, the nRESET output remains low within the user-adjustable delay time.

Feature Description

The SGM836 device has a reset delay time adjustment function and a wide range of detection thresholds, so it can be widely used in various applications. The detection threshold voltages are factory-set from 0.9V to 5V, while the SGM836-ADJ detection threshold voltages must be set above 0.405V through an external resistance divider. The fixed 20ms reset timeout period can be set by leaving the C_T pin open, and it also can be set to 300ms by connecting the C_T pin to V_{DD} through a resistor. The reset timeout period can be set from 1.25ms to 10s through programming an external capacitor which is connected to the C_T pin.

SENSE Input

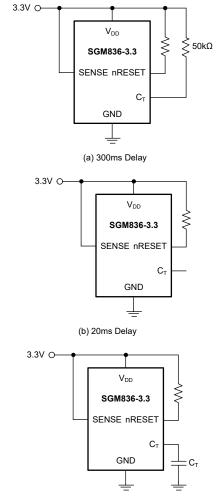

The SENSE pin is dedicated for voltage monitor. The nRESET will be asserted if the SENSE voltage falls below V_{ITL} . The internal comparator has built-in hysteresis to ensure smooth nRESET. It is recommended to connect a bypass capacitor from 1nF to 10nF at the SENSE pin to reduce the sensitivity to voltage transient and PCB layout parasitic. The SGM836 immunes to short negative transients on the SENSE pin. Sensitivity to transients is dependent on the voltage overdrive on this pin. The SGM836-ADJ typical circuit shown in Figure 5, it can monitor any voltage rail as low as 0.405V.

Figure 5. The SGM836-ADJ is used to monitor a User-Defined Threshold Voltage

Setting the Reset Delay Time

There are 3 typical applications to set the reset timeout delay in Figure 6, Figure 6 (a) shows the C_T pin is connected to V_{DD} through a resistor (from 40k Ω to 200k Ω must be used) to configure for a fixed 300ms delay time. Figure 6 (b) shows leaving the C_T pin open to set a fixed 20ms delay time. Figure 6 (c) shows that the user-defined time can be set through programming the capacitor between the C_T pin and the ground. t_D is always between 1.25ms and 10s.

(c) Programmable delay

Figure 6. Different Setting methods of the nRESET Delay Time

The nominal value of C_T should be at least 100pF, so that the SGM836 can identify the presence of the capacitor. The reset timeout delay can be calculated by using Equation 1:

$$t_D (\mu s) = (5.58 \times 10^6) \times C_T (\mu F) + 520 \mu s$$
 (1)

SGM836

DETAILED DESCRIPTION (continued)

Internally there is a precise 216nA current source, which charges the external capacitor C_T to 1.206V threshold, and this charge time will determine the reset timeout delay.

The capacitor will be discharged if nRESET is asserted. After clearing the nRESET condition, the internal current source will be enabled and the external capacitor will be recharged. When the voltage on the capacitor reaches 1.206V, nRESET is set to invalid. It is recommended to use low leakage capacitors such as ceramics, and the stray capacitance around the pins may cause errors in the reset delay time.

Manual Reset (nMR) Input

The manual reset (nMR) input allows the operator, test technician, or external logic circuit to initiate a reset. A logic low ($0.3 \times V_{DD}$) on nMR forces the nRESET low. After nMR returns to a logic high and the SENSE voltage rises above its reset threshold, nRESET is deasserted after a reset delay time period (t_D). nMR is pulled up to V_{DD} with an internal 100k Ω resistor. This pin can be left floating if nMR is not used.

Figure 7 shows how to use nMR to monitor multiple system voltages. If the logic signal does not drive nMR fully to V_{DD} , some extra current will flow into V_{DD} due to the pull-up resistor on nMR. Figure 8 shows how to use an external FET to minimize the current draw.

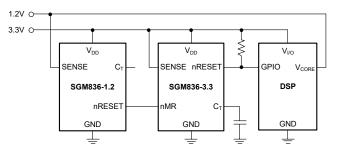


Figure 7. Monitor Multiple System Voltages Using the nMR Pin

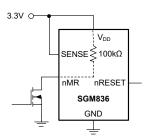


Figure 8. An External MOSFET is used to Minimize IDD

nRESET Output

As long as SENSE voltage exceeds V_{ITL} and the nMR is logic high, nRESET remains high (deasserted). Either V_{SENSE} is lower than V_{ITL} or nMR is set low, nRESET will be low (asserted).

If nMR returns to logic high again and SENSE voltage exceeds V_{ITH} ($V_{ITL} + V_{HYS}$), nRESET will remain low for a fixed reset delay time due to the delay circuit function. As soon as the reset delay has expired, the nRESET turns into logic high. The pull-up resistor between nRESET and V_{DD} can be used to reset the microprocessor signal to obtain a voltage above V_{DD} voltage. The pull-up resistor should be no less than 10k Ω due to the limited nRESET pull-down ability.

Device Functional Modes

Table 1. Matrices of the nRESET Output

nMR	SENSE > VITL	nRESET
L	0	L
L	1	L
Н	0	L
Н	1	Н

Normal Operation ($V_{DD} > V_{DD_{MIN}}$)

When the V_{DD} voltage is higher than $V_{\text{DD}_\text{MIN}},$ the logic state of nRESET is determined by V_{SENSE} and the logic state of nMR.

• nMR high: When V_{DD} voltage is higher than 1.65V for a selected time (t_D), the nRESET logic state corresponds to V_{SENSE} relative to V_{ITL} .

- nMR low: nRESET is held low regardless of $\mathsf{V}_{\mathsf{SENSE}}$ in this mode.

Above Power-On Reset but Lower than $V_{DD_{MIN}}$ ($V_{POR} < V_{DD} < V_{DD_{MIN}}$)

When the V_{DD} voltage is lower than V_{DD_MIN} and higher than the power-on reset voltage (V_{POR}), the nRESET is asserted and driven to a low-impedance state.

Below Power-On Reset (V_{DD} < V_{POR})

When the V_{DD} voltage is lower than the required voltage (V_{POR}), the nRESET voltage is undefined. In the case of nRESET pulling up to V_{DD} through a 100k Ω resistor, nRESET voltage is equal to or lower than V_{DD} voltage.

APPLICATION INFORMATION

The SGM836 requires a voltage supply within 1.65V and 6.5V. Figure 9 shows a typical application of the SGM836-2.5 used with a 2.5V microprocessor. Normally, the nRESET output is connected to the nRESET input of the microprocessor. It is necessary to connect a 1M Ω pull-up resistor between nRESET and V_{DD} to keep the nRESET logic high if it is not asserted.

The reset delay time can be set by C_T while it depends on the requirement of microprocessor. If left it open, a typical 20ms of reset delay time is set.

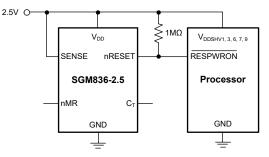


Figure 9. SGM836 Typical Application circuit with a Microprocessor

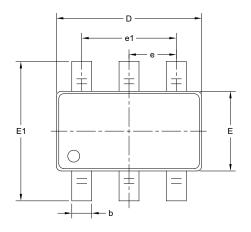
Voltage Transient on SENSE Pin

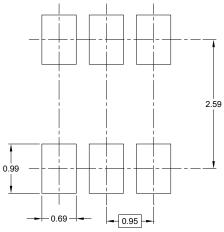
The short negative transient on the SENSE pin of the SGM836 can be relatively immune. The sensitivity to voltage transients depends on the value of threshold overdrive. The larger the overdrive is, the faster the nRESET responses. V_{ITL} is the threshold voltage in Equation 2. Use the percent of the sense voltage threshold to calculate the threshold overdrive.

Overdrive =
$$|(V_{SENSE} / V_{ITL} - 1) \times 100\%|$$
 (2)

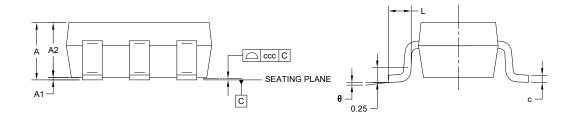
Layout Guide

It is recommended to connect a 0.1μ F ceramic capacitor to the V_{DD} pin as close as possible. If there is no connection capacitor, minimize the parasitic capacitor to avoid a significant impact on the nRESET delay time.


REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

APRIL 2023 – REV.A.2 to REV.A.3	Page
Updated Electrical Characteristics section	5
AUGUST 2022 – REV.A.1 to REV.A.2	Page
Updated Detail Description section	9-11
Added Application Information section	
Updated Tape and Reel Information section	
MAY 2022 – REV.A to REV.A.1	Page
Updated General Description section	
Updated Detail Description section	
Updated Detail Description section	


PACKAGE OUTLINE DIMENSIONS

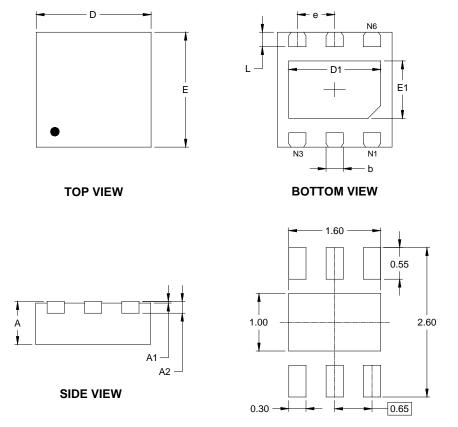
SOT-23-6

RECOMMENDED LAND PATTERN (Unit: mm)

Sympol	Di	mensions In Millimete	ers
Symbol	MIN	MOD	МАХ
A	-	-	1.450
A1	0.000	-	0.150
A2	0.900	-	1.300
b	0.300	-	0.500
С	0.080	-	0.220
D	2.750	-	3.050
E	1.450	-	1.750
E1	2.600	-	3.000
e		0.950 BSC	
e1		1.900 BSC	
L	0.300	-	0.600
θ	0°	-	8°
CCC		0.100	

NOTES:

1. This drawing is subject to change without notice.

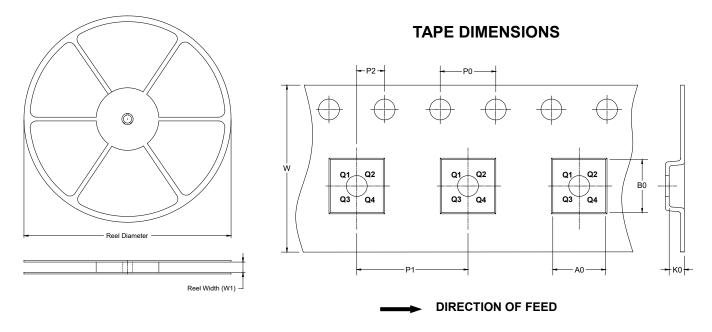

2. The dimensions do not include mold flashes, protrusions or gate burrs.

3. Reference JEDEC MO-178.

PACKAGE OUTLINE DIMENSIONS

TDFN-2×2-6AL

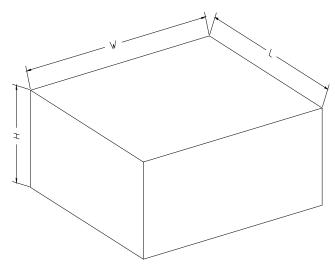
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	B REF	0.008 REF		
D	1.900	2.100	0.075	0.083	
D1	1.500	1.700	0.059	0.067	
E	1.900	2.100	0.075	0.083	
E1	0.900	1.100	0.035	0.043	
b	0.250	0.350	0.010	0.014	
е	0.650	BSC	0.026	BSC	
L	0.174	0.326	0.007	0.013	

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-6	7"	9.5	3.23	3.17	1.37	4.0	4.0	2.0	8.0	Q3
TDFN-2×2-6AL	7"	9.5	2.30	2.30	1.10	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

单击下面可查看定价,库存,交付和生命周期等信息

>>SGMICRO(圣邦微电子)