

PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	- 25	Vdc	
Collector-Base Voltage	V _{CBO}	- 40	Vdc	
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc	
Collector Current — Continuous	1c	- 500	mAdc	

• THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR -5 Board (1)	Pο	225	mW
T _A =25 °C			
Derate above 25°C		1.8	mW/°C
Thermal Resistance Junction to Ambient	R _{eJA}	556	°C/W
	D	300	mW
Alumina Substrate (2) T A = 25°C			
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{eJA}	417	°C/W
Junction and Storage Temperature	T J, T stg	-55 to +150	°C

• ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (3)	V (BR)CEO			Vdc
$(I_{C} = -1.0 \text{ mAdc}, I_{B} = 0)$		-25	_	
Collector-Base Breakdown Voltage	V (BR)CBO			Vdc
$(I_{c} = -0.1 \text{mAdc}, I_{E} = 0)$		-40	_	
Emitter-Base Breakdown Voltage	V (BR)EBO			Vdc
$(I_E = -0.1 \text{mAdc}, I_C = 0)$		-5.0		
Base Cutoff Current	I BEV			μAdc
$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$		_	- 0.1	
Collector Cutoff Current	I CEX			μAdc
$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$:	- 0.1	

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
- 3. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

● ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
CHARACTERISTICS				
DC Current Gain	h _{FE}			_
$(I_{C} = -0.1 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		30	_	
$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		60		
$(I_{C} = -10 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$		100	<u></u>	
$(I_{C} = -150 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc})(3)$		180	390	
$(I_{\odot} = -500 \text{ mAdc}, V_{\odot E} = -2.0 \text{ Vdc})(3)$		20	(
Collector–Emitter Saturation Voltage(3)	V _{CE(sat)}			Vdc
$(I_{C} = -150 \text{mAdc}, I_{B} = -15 \text{ mAdc})$		_	-0.4	
(I $_{\text{C}}$ = -500 mAdc, I $_{\text{B}}$ = -50 mAdc)		_	- 0.75	
Base-Emitter Saturation Voltage (3)	V BE(sat)	_		Vdc
$(I_{C} = -150 \text{ mAdc}, I_{B} = -15 \text{ mAdc})$		-0.75	- 0.95	
$(I_{c} = -500 \text{ mAdc}, I_{B} = -50 \text{ mAdc})$		-	- 1.3	

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product	f _T		_	MHz
$(I_{C} = -20 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 100 \text{ MHz})$		200	-	
Collector-Base Capacitance	C cb			pF
$(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$		_	8.5	
Emitter-Base Capacitance	C _{eb}			pF
$(V_{BE} = -0.5 \text{ Vdc}, I_{C} = 0, f = 1.0 \text{ MHz})$		*******	30	
Input Impedance	h _{ie}			kΩ
$(V_{CE} = -10 \text{ Vdc}, I_C = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		1.5	15	
Voltage Feedback Ratio	h re			X 10 ⁻¹
(V $_{\text{CE}}$ = -10 Vdc, I $_{\text{C}}$ = -1.0 mAdc, f = 1.0 kHz)		0.1	8.0	
Small-Signal Current Gain	h _{fe}			-
(V $_{CE}$ = -10 Vdc, I $_{C}$ = -1.0 mAdc, f = 1.0 kHz)		60	500	
Output Admittance	h oe			μmhos
$(V_{CE} = -10 \text{ Vdc}, I_C = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$		1.0	100	

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = -30 \text{ Vdc}, V_{EB} = -2.0 \text{ Vdc},$	t d	_	15	
Rise Time	I _C = -150mAdc, I _{B1} = -15 mAdc)	t _d	:	20	ns
Storage Time	$(V_{CC} = -30 \text{ Vdc}, I_{C} = -150 \text{ mAdc},$	t _s	_	225	ns
Fall Time	I _{B1} = I _{B2} = -15 mAdc)	t _f	2-	30	

^{3.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

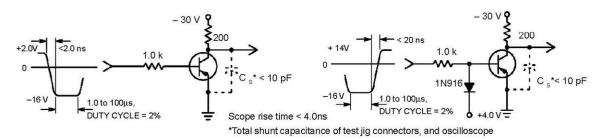


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

2SA1036K

TYPICAL TRANSIENT CHARACTERISTICS

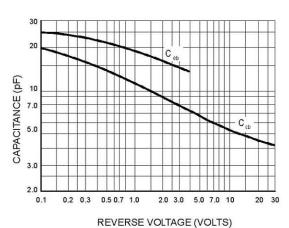


Figure 3. Capacitance

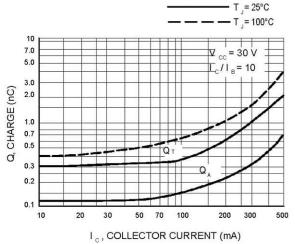


Figure 4. Charge Data

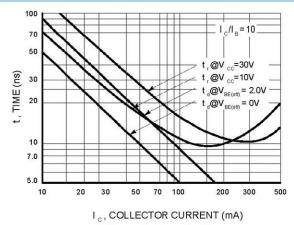
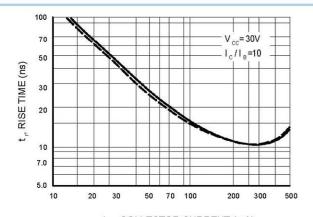



Figure 5. Turn-On Time

I c, COLLECTOR CURRENT (mA)

Figure 6. Rise Time

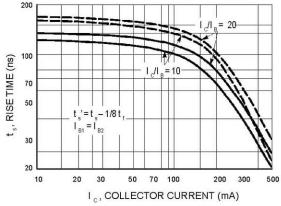
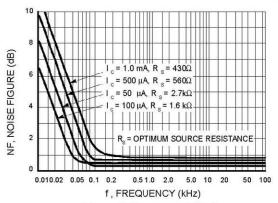
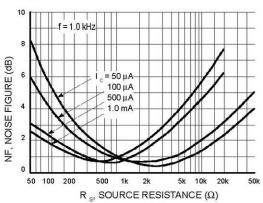



Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

V _{CE} = -10 Vdc, T _A = 25°C Bandwidth = 1.0 Hz



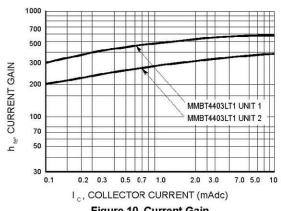

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

This group of graphs illustrates the relationship between h fe and other "h" parameters for this series of ransistors. To obtain these curves, a high-gain and a low-gain unit were selected from the MMBT4401LT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

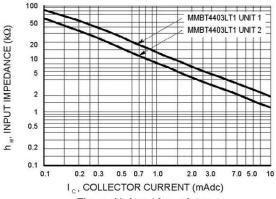
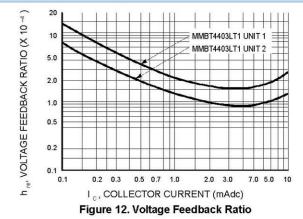



Figure 10. Current Gain

Figure 11. Input Impedance

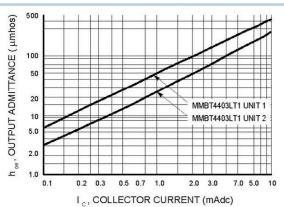


Figure 13. Output Admittance

STATIC CHARACTERISTICS

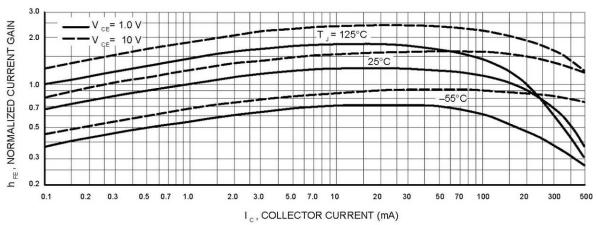


Figure 14. DC Current Gain

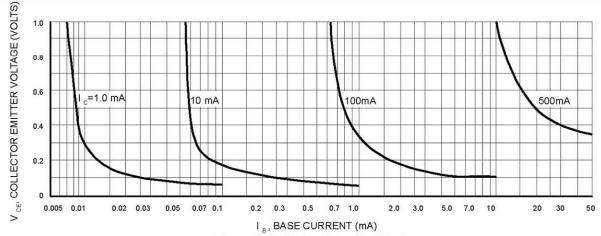


Figure 15. Collector Saturation Region

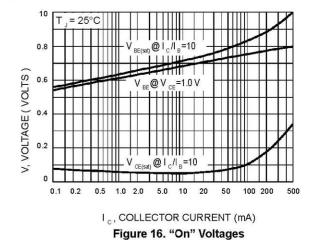


Figure 17. Temperature Coefficients

单击下面可查看定价,库存,交付和生命周期等信息

>>SHIKUES(时科)