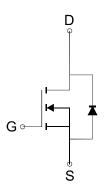


SK15N10

N-Channel 100V(D-S) MOSFET

GENERAL DESCRIPTION

The SK15N10 is a N-Channel enhancement mode power field effect transistor, using Force-MOS patented Extended Trench Gate (ETG) technology. This advanced technology is especially tailored to minimize on state resistance and gate charge, and enhance avalanche capability. These devices are particularly suited for medium voltage application such as charger, adapter, notebook computer power management and other lighting dimming powered circuits, and low in-line power loss that are needed in a very small outline surface mount package.


APPLICATIONS

- Power Management
- Synchronous Rectification
- Load Switch

FEATURES

- $RDS(ON) \leq 100m \Omega @VGS=10V$
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and maximum DC current

capability

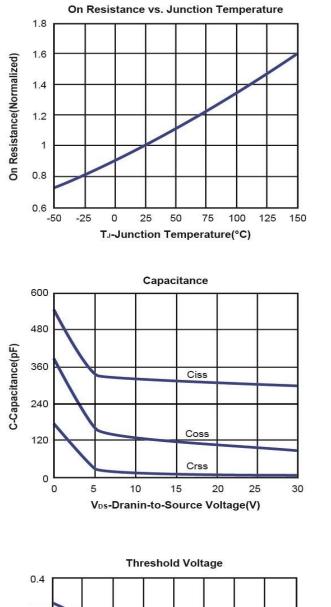
N-Channel MOSFET

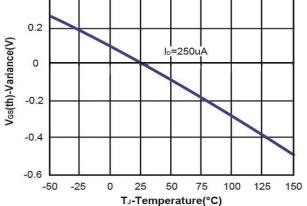
Absolute Maximum Ratings (Tc=25°C Unless Otherwise Noted)

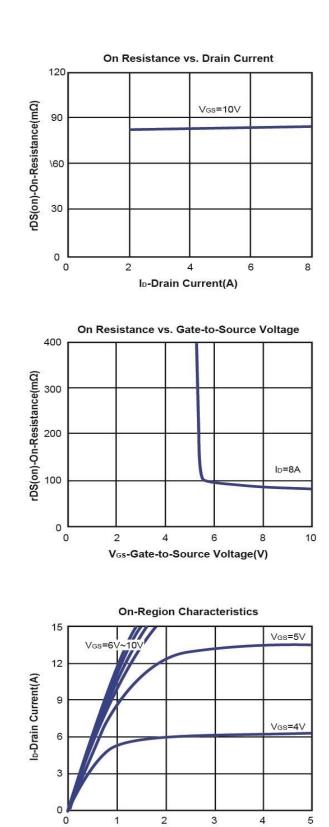
Parameter	Symbol	Rating	Unit	
Drain-Source Voltage	Vds	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current - Continues	lo	15.4	А	

Electrical Characteristics (Tj =25 $^{\circ}$ C Unless Otherwise Specified)

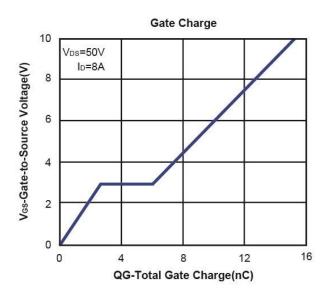
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
STATIC			•	•	•	•	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V, ID=250 μ A	100			V	
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250 μ A	1		3	V	
lgss	Gate Leakage Current	VDS=0V, VGS=±20V			±100	nA	
IDSS	Zero Gate Voltage Drain Current	VDS=100V, VGS=0V			1	μΑ	
RDS(ON)	Drain-Source On-Resistance ^a	Vgs=10V, ID= 8A		80	100	$\mathbf{m}\Omega$	
Vsd	Diode Forward Voltage	Is=8A, Vgs=0V		0.9	1.1	V	
DYNAMIC	;						
Qg	Total Gate Charge			15.5			
Qgs	Gate-Source Charge	VDS=50V, VGS=10V, ID=8A		2.6		nC	
Qgd	Gate-Drain Charge			3.6			
Ciss	Input Capacitance			314			
Coss	Output Capacitance	VDs=15V,VGs=0V,f=1MHz		119		pF	
Crss	Reverse Transfer Capacitance			15			
td(on)	Turn-On Delay Time			8.4			
tr	Turn-On Rise Time	VDS=50V, RL =50 Ω ,		24.8		- Ns	
td(off)	Turn-Off Delay Time	- VGs=10V, RG=1Ω _ ID=1A		30.7			
tf	Turn-Off Fall Time			2.5			
Trr	Reverse Recovery Time			25		ns	
Qrr	Reverse Recovery Charge	ID=7A,VGs=0V,di/dt=100A/us		24		nC	

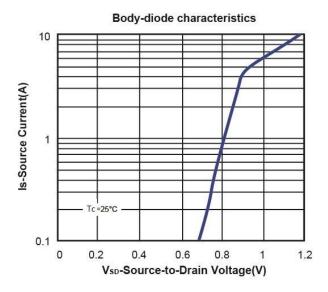

Notes: a. Based on epoxy or solder paste and bond wire Cu 1.5mil x1 (G), Al 8mil x2 (S) on each die of TO-252 package.

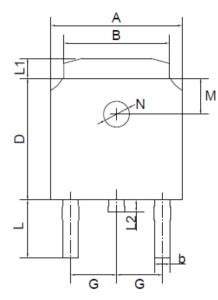

b. Pulse test; pulse width \leq 300us, duty cycle \leq 2%.

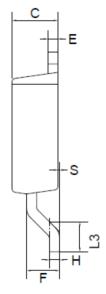

c. Force mos reserves the right to improve product design, functions and reliability without notice.

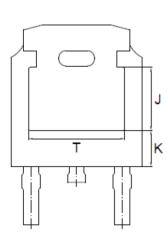
Typical Characteristics (TJ =25°C Noted)




VDs-Dranin-to-Source Voltage(V)




Typical Characteristics (TJ =25℃ Noted)


PACKAGE OUTLINE

TO-252(D-PAK)

UN	IIT	А	В	b	С	D	Е	F	G	Н	L	L1	L2	L3	S	М	N	J	К	т		
mm	max	6.7	5.5	0.8	2.5	6.3	0.6	1.8	2.29 TYPICAL	0.55	3.1	1.2	1.0	1.75	0.1	1.8 TYPICAL	1.3 TYPICAL	3.16	1.80	4.83		
	min	6.3	5.1	0.3	2.1	5.9	0.4	1.3		0.45	2.7	0.8	0.6	1.40	0.0			ref.	ref.	ref.		
mil	max	264	217	31	98	248	24	71	90	22	122	47	39	69	4	71	51	124	71	190		
mii	min	248	201	12	83	232	16	51	TYPICAL	18	106	31	24	55	0	TYPICAL T	TYPICAL	ref.	ref.	ref.		

TO-252(D-PAK) mechanical data

4 of 4

Downloaded From Oneyac.com

单击下面可查看定价,库存,交付和生命周期等信息

>>SHIKUES(时科)