
180A、100V N沟道增强型场效应管

描述

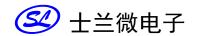
SVG103R0NT(S)(KL)(S6)(P7) N 沟道增强型功率 MOS 场效应 晶体管采用士兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得 该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。 该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点

- 180A, 100V, $R_{DS(on)}$ ($_{\oplus 20}$) =2.5m Ω @ V_{GS} =10V
- ◆ 低栅极电荷
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力
- ◆ 100%雪崩测试
- 无铅管脚镀层
- ◆ 符合 RoHS 环保标准

关键特性参数

参数	参数值	单位
V _{DS}	100	V
V _{GS(th)}	2.2~3.8	V
R _{DS(on)} , max	3.0	mΩ
I _{D.pulse}	720	A
Q _{g.typ}	171	nC


产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVG103R0NT	TO-220-3L	103R0NT	无铅	料管
SVG103R0NS	TO-263-2L	103R0NS	无卤	料管
SVG103R0NSTR	TO-263-2L	103R0NS	无卤	编带
SVG103R0NKL	TO-262L-3L	103R0NKL	无铅	料管
SVG103R0NS6TR	TO-263-6L	103R0NS6	无卤	编带
SVG103R0NP7	TO-247-3L	103R0NP7	无铅	料管

杭州士兰微电子股份有限公司

http://www.silan.com.cn

版本号: 1.5 共 11 页 第 1 页

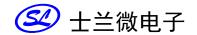
极限参数(除非特殊说明, T」=25°C)

会器	符号 测试条件	参数值			单位	
参数	10.22	测风杂件	最小值	典型值	最大值	丰加
漏源电压	V _{DS}		100			V
栅源电压	V_{GS}		-20	1	20	V
漏极电流	I _D	T _C =25°C		1	180	Α
柳牧电机	ID	T _C =100°C			128	Α
漏极脉冲电流 (注1)	I _{DM}	T _C =25°C			720	Α
耗散功率(TO-220-3L)						
(TO-263-2L)(TO-262L-3L)	P_D	T _C =25°C			223	W
(TO-263-6L) (注 2)						
耗散功率(TO-247-3L) (注 2)	P_D	T _C =25°C			278	W
单脉冲雪崩能量	E _{AS}	L=0.5mH, V_{DD} =80V, R_G =25 Ω ,			961	mJ
平冰江ヨ朋配里	∟AS	开始温度T _j =25°C			901	113
单脉冲雪崩电流	I _{AS}				62	Α
工作结温范围	T_J		-55	-	150	°C
贮存温度范围	T _{stg}		-55		150	°C

热特性

表 1. TO-220-3L/TO-263-2L/TO-262L-3L/TO-263-6L(SVG103R0NT/S/KL/S6)热特性

参数	符号	测试条件	参数值			单位
多 奴	19.5		测	最小值	典型值	最大值
芯片对表面热阻,底部	R ₀ JC				0.56	°C/W
芯片对环境的热阻	$R_{\theta JA}$				62.5	°C/W
焊接温度 (直插式)	T _{sold}	15 ⁺² ₋₀ sec, 1time			260	ô
焊接温度(SMD)	T _{sold}	回流焊: 10±1 sec, 3times 波峰焊: 10 ⁺² / ₋₀ sec, 1time			260	°C


表 2. TO-247-3L(SVG103R0NP7)热特性

V = 1 1 0 = 1 1 0 = (0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1							
	参数	符号	测试条件		参数值		单位
	多 奴	10 5	测风东门	最小值	典型值	最大值	丰四
	芯片对表面热阻,底部	$R_{ heta JC}$				0.45	°C/W
	芯片对环境的热阻	$R_{\theta JA}$				50	°C/W
	焊接温度 (直插式)	T _{sold}	15 ⁺² ₋₀ sec, 1time			260	°C

杭州士兰微电子股份有限公司

http://www.silan.com.cn

版本号: 1.5 共 11 页 第 2 页

电气参数(除非特殊说明, T」=25°C)

静态参数

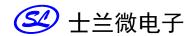
参数	符号 测试条件	参数值			单位	
少 数	打写	测风家什	最小值	典型值	最大值	半位
漏源击穿电压	BV _{DSS}	V_{GS} =0 V , I_D =250 μ A	100	-		V
是派是 由汝		V _{DS} =100V, V _{GS} =0V, T _J =25°C			1.0	
漏源漏电流	I _{DSS}	V _{DS} =100V, V _{GS} =0V, T _J =125°C		7.0		μA
栅源漏电流	I _{GSS}	$V_{GS}=\pm20V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	2.2		3.8	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =90A		2.5	3.0	mΩ
栅极电阻	R_g	f=1MHz		2.4		Ω

动态参数

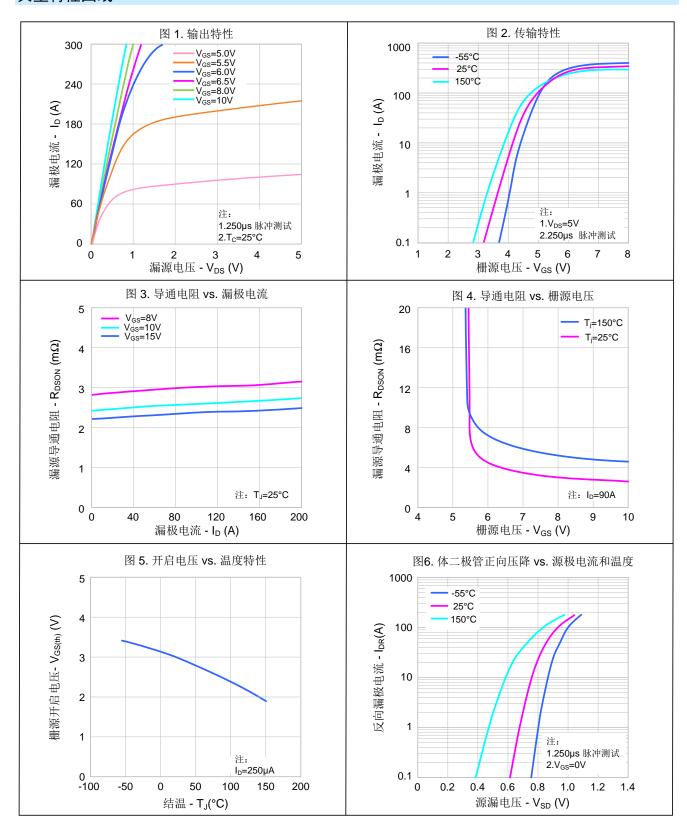
· 公心多效	<i>55</i> □	Smil-4-4-74-		参数值		公 / ÷
参数	符号	测试条件	最小值	典型值	最大值	单位
输入电容	C _{iss}			10542		
输出电容	Coss	f=1MHz,V _{GS} =0V,V _{DS} =50V		1264		pF
反向传输电容	C _{rss}			38		
开启延迟时间	t _{d(on)}			44		
开启上升时间	t _r	V_{DD} =50V, V_{GS} =10V, R_G =3 Ω , I_D =90A		70		
关断延迟时间	t _{d(off)}	(注3,4)		99		ns
关断下降时间	t _f			46		
栅极电荷量	Qg			171		
栅极-源极电荷量	Q _{gs}	V _{DD} =50V, V _{GS} =10V, I _D =90A		61		nC
栅极-漏极电荷量	Q_{gd}	(注3,4)		47		
栅极-平台电压	V _{plateau}			5.7		V

反向二极管特性参数

参数	符号 测试条件	参数值			单位	
少 数	10.2	测风家什	最小值	典型值	最大值	半四
连续二极管正向电流	Is	T _C =25°C, MOS 管中源极、漏极构成			180	Α
二极管脉冲电流	I _{S, pulse}	的反偏 P-N 结			720	A
源-漏二极管压降	V_{SD}	I _S =90A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	1 000 V 0V dlF/dt 1000/us		97		ns
反向恢复电荷	Q _{rr}	I _S =90A,V _{GS} =0V,dIF/dt=100A/μs (注 3)		0.28		μC
反向恢复峰值电流	I _{rrm}	(注3)		5.3		А

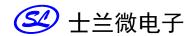

注:

1. 脉冲时间5µs;

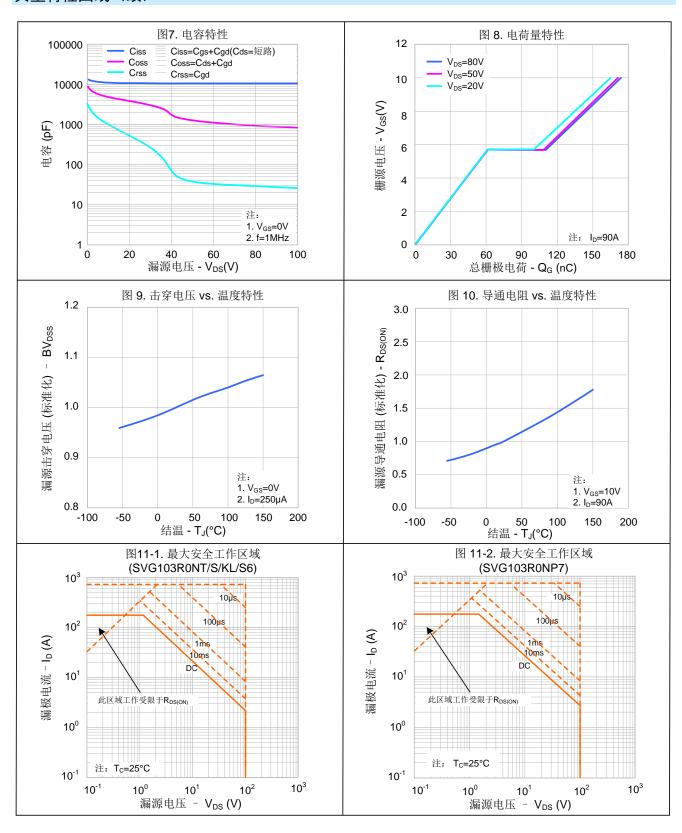

http://www.silan.com.cn

- 耗散功率值会随着温度变化而变化,当大于25°C时耗散功率值随着温度每上升1度减少: 2. $1.78W/^{\circ}C(TO\text{-}220\text{-}3L)(TO\text{-}263\text{-}2L)(TO\text{-}262L\text{-}3L)(TO\text{-}263\text{-}6L)/\ 2.22W/^{\circ}C(TO\text{-}247\text{-}3L);$
- 3. 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 基本上不受工作温度的影响。 4.

版本号: 1.5 共11页 第3页

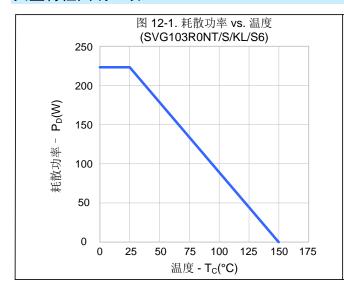


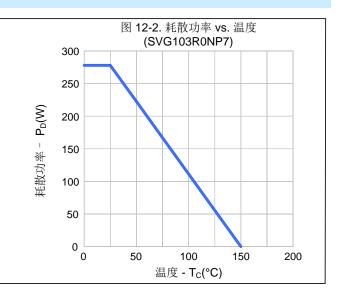
典型特性曲线



杭州士兰微电子股份有限公司

http://www.silan.com.cn 共 11 页 第 4 页

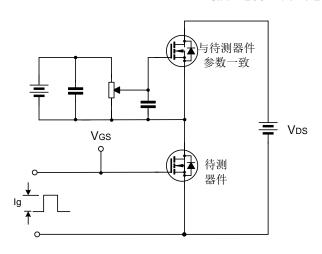

典型特性曲线 (续)

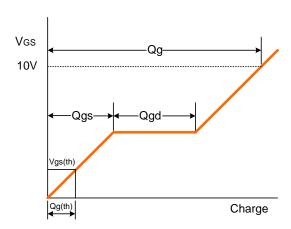


版本号: 1.5 共 11 页 第5页

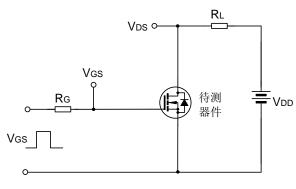
http://www.silan.com.cn

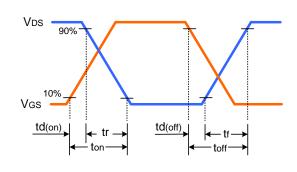
典型特性曲线 (续)

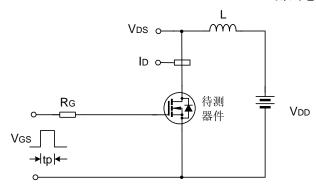


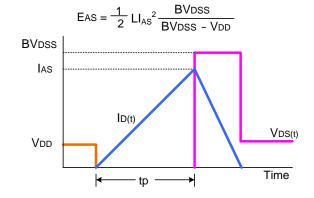


版本号: 1.5 共11页 第6页

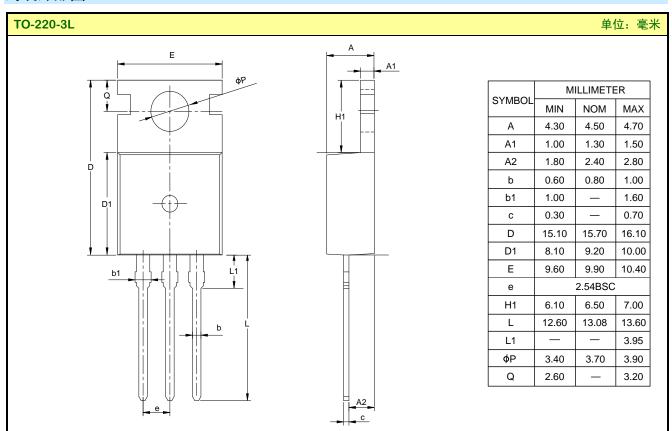

典型测试电路


栅极电荷量测试电路及波形图

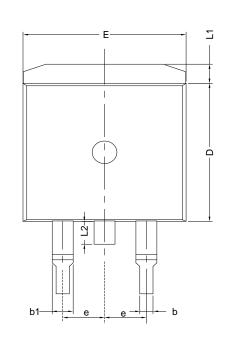


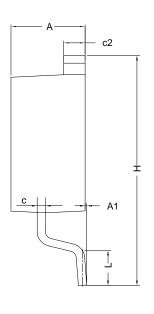

开关时间测试电路及波形图

EAS测试电路及波形图



杭州士兰微电子股份有限公司

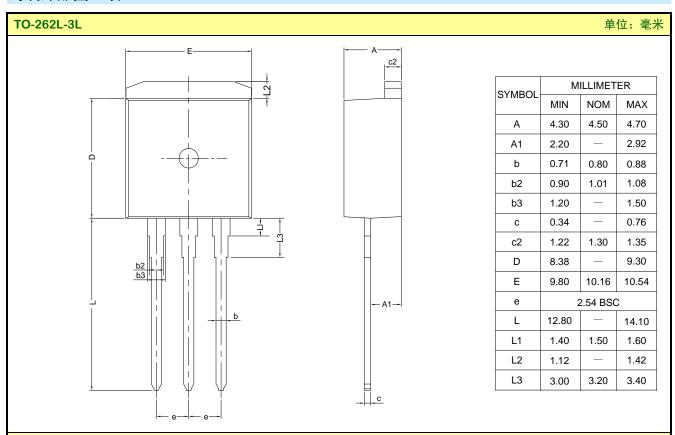

http://www.silan.com.cn


版本号: 1.5 共 11 页 第 7 页

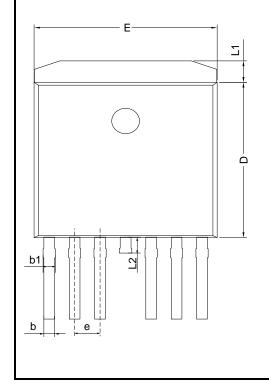
封装外形图

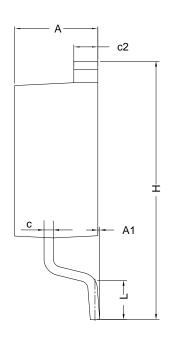
TO-263-2L 单位: 毫米

Downloaded From Oneyac.com


SYMBOL	М	ILLIMETE	ER
SYMBOL	MIN	NOM	MAX
Α	4.30	4.57	4.72
A1	0	0.10	0.25
b	0.71	0.81	0.91
b1	1.17	_	1.50
С	0.30		0.60
c2	1.17	1.27	1.37
D	8.50	I	9.35
E	9.80	_	10.45
е		2.54BSC	
Н	14.70		15.75
L	2.00	2.30	2.74
L1	1.12	1.27	1.42
L2		_	1.75

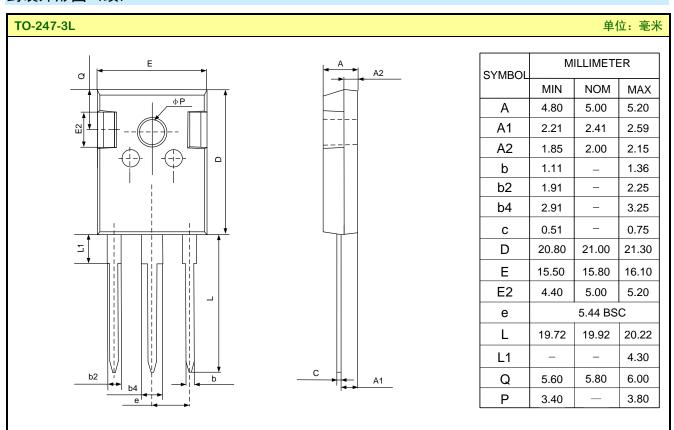
杭州士兰微电子股份有限公司


http://www.silan.com.cn


版本号: 1.5 共 11 页 第 8 页

封装外形图 (续)

TO-263-6L 单位: 毫米

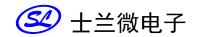

0) (1 4 1 0 0 1	М	ILLIMETE	ĒR
SYMBOL	MIN	NOM	MAX
Α	4.20	4.40	4.60
A1	0	0.13	0.25
b	0.50	0.60	0.70
b1	0.55	0.70	0.90
С	0.40	0.50	0.60
c2	1.20	1.30	1.40
D	9.00	9.25	9.50
Е	9.80	10.00	10.20
е		1.27 BSC	;
Н	14.50	15.00	15.50
L	2.40	2.70	3.00
L1	0.80	1.00	1.20
L2	0.80	1.00	1.20

杭州士兰微电子股份有限公司

http://www.silan.com.cn

版本号: 1.5 共 11 页 第 9 页

封装外形图 (续)



重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包 括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有 一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!
- 7. 我司网站 http://www.silan.com.cn

共11页 第10页

http://www.silan.com.cn

产品名称: SVG103R0NT(S)(KL)(S6)(P7) 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.5

修改记录:

1. 添加 SVG103R0NP7(TO-247-3L)封装

版 本: 1.4

修改记录:

1. 添加 SVG103R0NS6(TO-263-6L)封装

版 本: 1.3

修改记录:

1. 更正"单脉冲电流"为"单脉冲雪崩电流"

版 本: 1.2

修改记录:

1. 添加 SVG103R0NKL(TO-262L-3L)封装

版 本: 1.1

修改记录:

1. 删除图 13

2. 电参数部分的双短线统一格式

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn

版本号: 1.5 共 11 页 第 11 页

单击下面可查看定价,库存,交付和生命周期等信息

>>SILAN(士兰微)