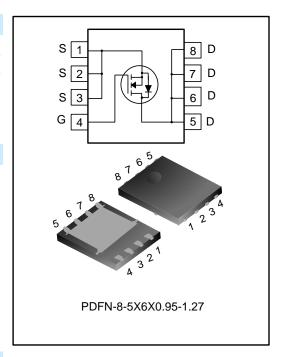


24A、200V N沟道增强型场效应管


描述

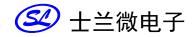
SVGP20500NL5 N 沟道增强型功率 MOS 场效应晶体管采用士 兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点

- 24A, 200V, $R_{DS(on)}$ (400) =42m Ω V_{GS} =10V
- ◆ 低栅极电荷
- ◆ 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力
- ◆ 100%雪崩测试
- 无铅管脚镀层
- ◆ 符合 RoHS 环保标准

关键特性参数

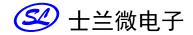

参数	参数值	单位
V _{DS}	200	V
V _{GS(th)}	2.0~4.0	V
R _{DS(on)} , max	50	mΩ
I _D	24	A
Q _{g.typ}	20	nC

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVGP20500NL5	PDFN-8-5X6X0.95-1.27	P20500NL5	无卤	编带

杭州士兰微电子股份有限公司

http://www.silan.com.cn


极限参数(除非特殊说明, $T_A=25$ °C)

参数	符号	测试条件	参数值			兴 /÷
少 蚁			最小值	典型值	最大值	单位
漏源电压	V _{DS}		200			V
栅源电压	V_{GS}		-20		20	V
漏极电流		T _C =25°C			24	Α
/解仪电视	I _D	T _C =100°C			15	Α
漏极脉冲电流(注 1)	I _{DM}	T _C =25°C			96	Α
耗散功率 (注 2)	P _D	T _C =25°C			89	W
单脉冲雪崩能量	E _{AS}	L=0.1mH,V _{DD} =80V,R _G =25Ω, 开始温度T _J =25°C			29	mJ
单脉冲电流	I _{AS}			-	24	Α
工作结温范围	TJ		-55		150	°C
贮存温度范围	T _{stg}		-55		150	°C

热特性

参数	符号	测试条件	参数值			单位
			最小值	典型值	最大值	半江
芯片对表面热阻,底部	R ₀ JC			1.2	1.4	°C/W
芯片对环境的热阻	$R_{\theta JA}$				50	°C/W
焊接温度(SMD)	T_{sold}	回流焊: 10±1 sec, 3times 波峰焊: 10 ⁺² sec, 1time			260	°C

杭州士兰微电子股份有限公司 http://www.silan.com.cn

电气参数(除非特殊说明, $T_j=25$ °C)

静态参数

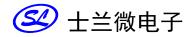
参数	符号 测试条件 —	测计久化		单位		
		最小值	典型值	最大值	一 工	
漏源击穿电压	BV _{DSS}	V_{GS} =0 V , I_D =250 μ A	200	212		V
漏源漏电流	I _{DSS}	V _{DS} =200V, V _{GS} =0V, T _J =25°C	-	0.1	1.0	μΑ
		V _{DS} =200V, V _{GS} =0V, T _J =125°C		6.0	100	
栅源漏电流	I _{GSS}	$V_{GS}=\pm20V$, $V_{DS}=0V$		1.0	±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =22A		42	50	mΩ
栅极电阻	Rg	f=1MHz		5.19	10	Ω

动态参数

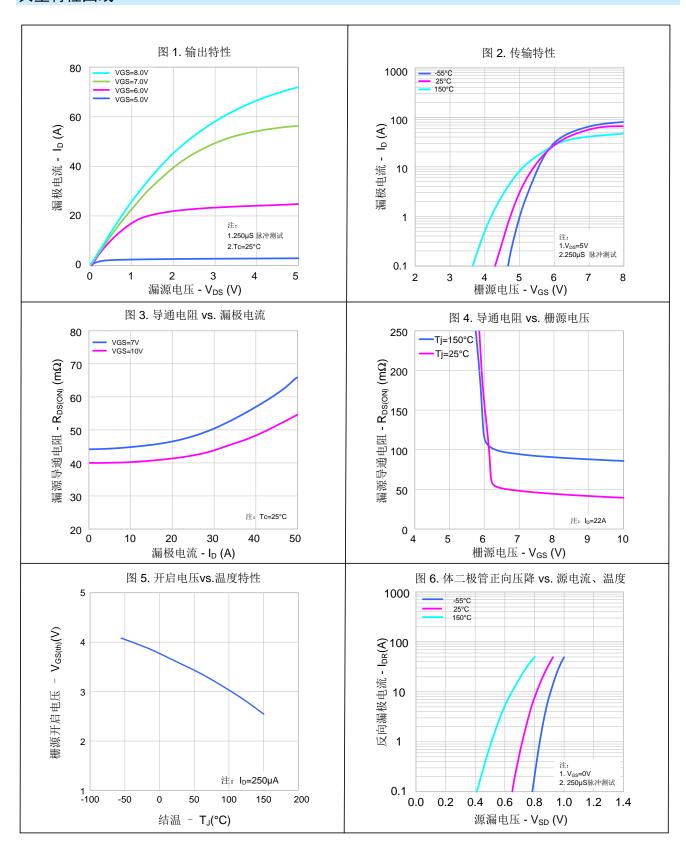
参数	<i>የተ</i> 🗆	河上七夕 (小		参数值		☆ /÷
多奴	1寸写	符号 测试条件	最小值	典型值	最大值	单位
输入电容	C _{iss}		942	1225	1593	
输出电容	C _{oss}	f=1MHz,V _{GS} =0V,V _{DS} =100V	74	96	125	pF
反向传输电容	C _{rss}		3.2	6.3	13	
开启延迟时间	t _{d(on)}		7.3	11	17	
开启上升时间	t _r	V_{DD} =100V, V_{GS} =10V, R_{G} =6 Ω , I_{D} =12A	20	26	34	
关断延迟时间	t _{d(off)}	(注 3, 4)	26	34	44	ns
关断下降时间	t _f		17	22	29	
栅极电荷量	Qg		15	20	26	
栅极-源极电荷量	Q _{gs}	V _{DD} =100V, V _{GS} =10V, I _D =12A	5.7	8.5	13	nC
栅极-漏极电荷量	Q_{gd}	(注 3,4)	2.3	4.6	9.2	
栅极-平台电压	V _{plateau}			5.4		V

源-漏二极管特性参数

W VIII — W II 14 III > 30						
参数	符号	测试条件	最小值	典型值	最大值	单位
连续二极管正向电流	Is	T _C =25°C, MOS 管中源极、漏极构成			24	۸
二极管脉冲电流	I _S , pulse	的反偏 P-N 结			96	Α
源-漏二极管压降	V _{SD}	I _S =22A, V _{GS} =0V	0.5	0.86	1.4	V
反向恢复时间	T _{rr}	I _S =12A, V _{GS} =0V,	65	85	111	ns
反向恢复电荷	Q _{rr}	dIF/dt=100A/µs (注 3)	0.24	0.31	0.40	μC

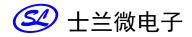

注:

- 1. 脉冲时间5µs;
- 2. 耗散功率值会随着温度变化而变化, 当大于25°C时耗散功率值随着温度每上升1度减少0.7W/℃;
- 3. 脉冲测试: 脉冲宽度≤300μs, 占空比≤2%;
- 4. 基本上不受工作温度的影响。

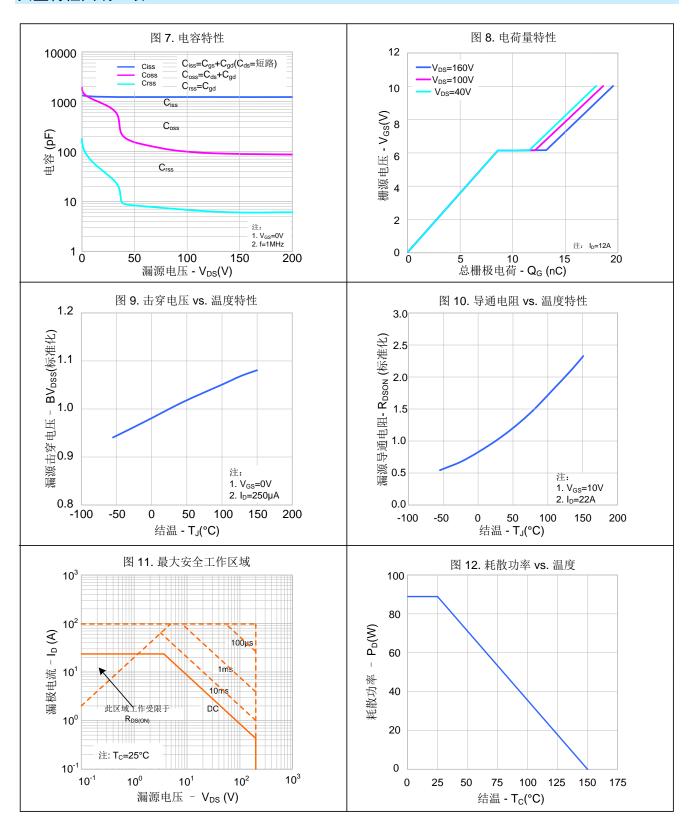

杭州士兰微电子股份有限公司

http://www.silan.com.cn

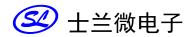
版本号: 1.1



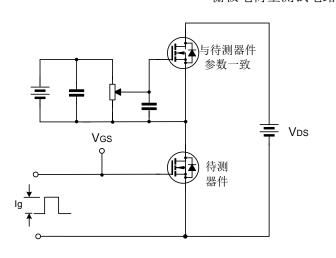
典型特性曲线

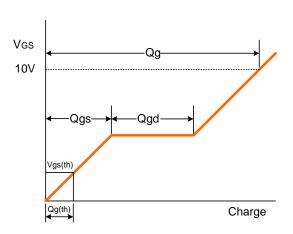


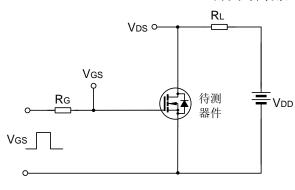
http://www.silan.com.cn

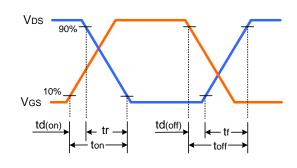

版本号: 1.1 共8页 第4页

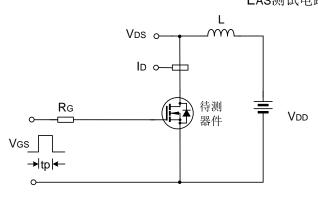
典型特性曲线 (续)

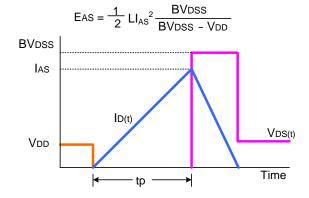


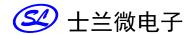

http://www.silan.com.cn

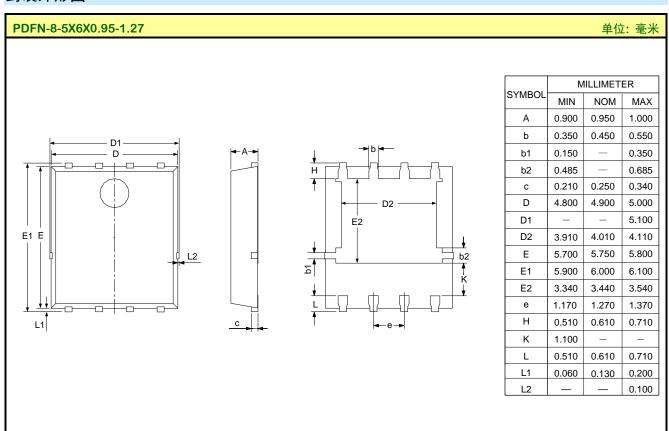

典型测试电路


栅极电荷量测试电路及波形图

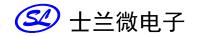



开关时间测试电路及波形图




EAS测试电路及波形图

封装外形图



重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- ◆ 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http: //www.silan.com.cn

杭州士兰微电子股份有限公司 http://www.silan.com.cn

版本号: 1.1

SVGP20500NL5 说明书

文档类型: 产品名称: 说明书 SVGP20500NL5

杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 更新规格书模板

2. 增加曲线图 4、图 5、图 12

3. 修改图 11

4. 修改参数

版 本: 1.0

修改记录:

1. 正式版本发布

版本号: 1.1 共8页 第8页

单击下面可查看定价,库存,交付和生命周期等信息

>>SILAN(士兰微)