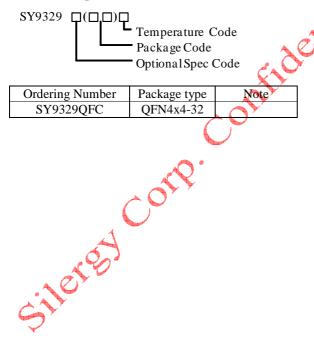


Application Note: SY9329 High Efficiency, 28V Input Single Inductor Synchronous Step Up/Down Regulator Preliminary Specification

General Description:


The SY9329 is a high voltage buck-boost converter for USB type C applications. With user-selectable source mode and sink mode, it features bidirectional power delivery. In source mode, the output voltage V_{VBUS} is 5V, 7V, 9V, 12V, 15V, 20V selectable. In sink mode, the output voltage V_{BAT} is adjustable with an external resistor divider.

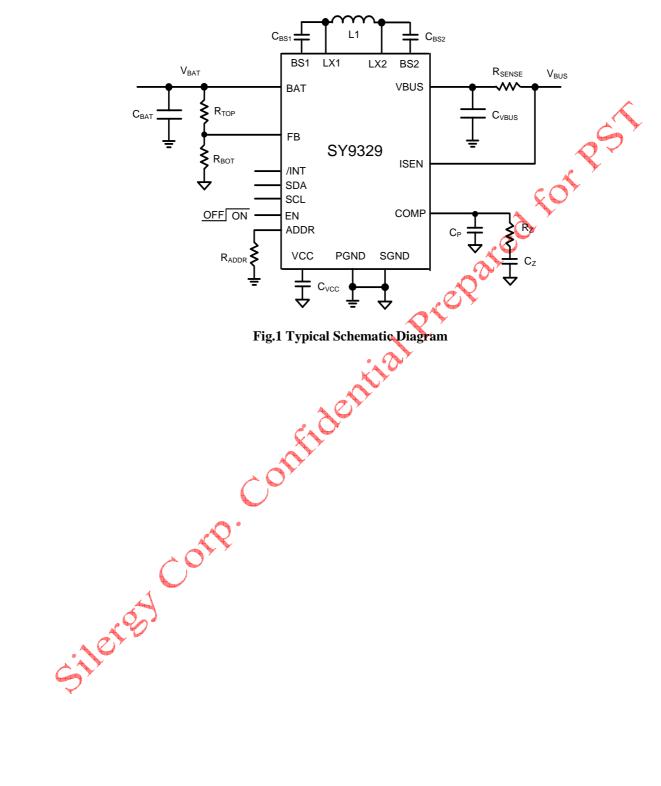
The device operates over a wide input voltage range from 4V to 28V and the maximum average inductor current is limited to a typical value of 10A. The four integrated low $R_{DS}(on)$ switches minimize the conduction loss.

The SY9329 integrates an I^2C compatible interface for mode selecting, output voltage setting, frequency setting, protection setting, and etc.

The device is available in compact QFN4x4-32 package.

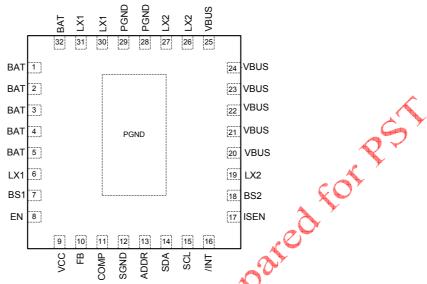
Ordering Information

Features:

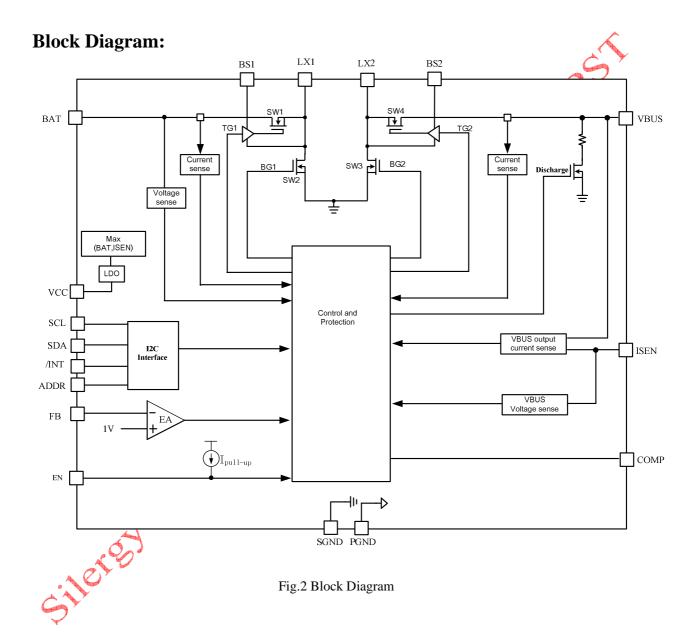

- Bidirectional power delivery: source mode and sink mode
- 4V to 28V input voltage range.
- Low $R_{DS(ON)}$ for internal switches: $25m\Omega$
- Internal soft start
- 8-bit ADC for output voltage, input voltage and VBUS output current detection.
- Fully protected for output over current, shortcircuit and over-temperature
- I²C compatible interface
 - Support interrupt for status feedback
 - Selectable switching frequency: 250 kHz, 500kHz, 750kHz, 1MHz
 - Selectable VBUS output voltage: 5V,7V,9V,12V,15V,20V
 - Selectable inductor current limit and VBUS
 Output current limit
 - Compact package: QFN4x4-32

Applications:

- Docking Station
- Laptop
- High-End Power Bank
- Monitor
- Car Charger
- USB PD


Typical Application

PINOUT (Top View)



Top Mark: BEDxyz (Device code: BED, x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Description
BAT	1,2,3,4,5,32	Power input/output pin, decouple this pin to PGND with at least 10µF ceramic
		capacitor. This pin is power input in source mode and power output in sink
		mode.
LX1	6,30,31	Switching node 1
BS1	7	Boot-Strap pin. Supply high side gate driver. Decouple this pin to LX1 pin
		with 0.1uR cetamic cap.
EN	8	IC Enable control pin, logic high enable. This pin is internally pulled high by
		400nA pull-up current.
VCC	9	3.3V LDO output, power supply for internal driver and control circuits.
		Decouple this pin to SGND with a minimum of 4.7µF ceramic capacitor.
FB	10	Sink mode output feedback pin. Connect this pin to the center point of the
		output resistor divider to adjust the V _{BAT} output voltage:
		$V_{BAT} = 1V*(R_{TOP}+R_{BOT})/R_{BOT}.$
COMP	(Compensation pin. Connect RC network between this pin and ground.
SGND	12	Signal ground.
ADDR 🖌	13	The device address set pin. Grounding this pin selects 0x70, connecting this
6		pin to GND with an external resistor selects $0x71(50k\Omega < R_{ADDR} < 100k\Omega)$ or
A C	2	$0x72(400k\Omega < R_{ADDR} < 500k\Omega)$, and floating this pin selects 0x73.
SDA	14	I ² C interface serial data pin. Logic level input/output
SCL	15	I ² C interface serial clock pin. Logic level input.
INT	16	The /INT pin is an open-drain output. When an interrupt event happens, the
\checkmark		/INT pin is internally pulled low to inform the host about fault condition. After
		the host reads the interrupt register, the /INT pin is externally pulled high. A
		10 k Ω pull-up resistor is recommended.
ISEN	17	Current sense pin. Connect a $10m\Omega$ resistor R_{SENSE} between VBUS and ISEN
		to detect source mode output current.
BS2	18	Boot-strap pin. Supply high side gate driver. Decouple this pin to LX2 pin
		with 0.1uF ceramic cap.
LX2	19,26,27	Switching node 2.

PGND	28,29, Exposed Pad	Power ground.
VBUS	20,21,22,23, 24,25	Power input/output pin, decouple this pin to PGND with at least 10μ F ceramic capacitor. This pin is power output in source mode and power input in sink mode.

Absolute Maximum Ratings (Note 1)

Absolute Maximum Ratings (1000-1)	
BAT, LX1, LX2, VBUS, ISEN, EN, SDA, SCL, FB, COMP	
BS-LX, VCC, ADDR, /INT	0.3V to 4V
Power Dissipation, PD @ TA = 25°C QFN4X4-32	4W
Package Thermal Resistance (Note 2)	
heta _{JA}	28°C/W
θ _{JC}	2.8°C/W
Junction Temperature Range	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C
	A Y
	COY
Recommended Operating Conditions (Note 3)	
BAT Input Voltage	4V to 28V
VRUS Voltage	/ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$ $/$

Recommended Operating Conditions (Note 3)

BAT Input Voltage		4V to 28V
VBUS Voltage		4V to 25V
0		
Junction Temperature Range		40°C to 125°C
Ambient Temperature Range	€ <u>7</u> ♥ ⁷	40°C to 85°C
Thiblent Temperature Range		40 C 10 05 C

Electrical Characteristics

Electrical Characteri		- 10	292		10	°C to 85°C
$(V_{BAT} = 12V, V_{VBUS} = 12V, T_A = 25^{\circ}C, u$		ecified)				
Parameter $(V_{BAT} = 12V, V_{BUS} = 12V, T_A = 25V, T$	Symbol	Test Conditions	Min	Тур	Max	Unit
BAT Voltage Range	V _{BAT}		4	- 7 F	28	V
VBUS Voltage Range	V _{BUS}	X	4		25	V
LDO Voltage	VCC	I _{LDO} =50mA	3.2	3.3	3.37	V
LDO Current Limit	I _{LMT_LDO}			100		mA
LDO Dropout Voltage	V _{DROPOUT}	LDO=50mA		250		mV
Quiescent Current	I _o	No switching		280	380	μA
Shutdown Current	I _{SD}	IC is disabled		9.6	15.5	μA
Feedback Reference Voltage	VREF		0.985	1	1.015	V
FB Input Current	/ JFB		-50		50	nA
VBUS Voltage Set-Point	V _{BUS,SET}	Source mode, VBUS voltage setting register 0x01[5:3]='000'	4.925	5	5.075	V
VBUS OVP Threshold	V _{BUS,OVP}	VBUS OVP point 0x02[4:3]='10'		120		% V _{BUS,SET}
Internal Power MOSFET R _{DS(ON)}	R _{DS(ON)}			25		mΩ
Inductor Average Current Limit	I _{AVG}	0x03[7:6]='00'		6		А
Inductor Peak Current Limit	I _{PK}	0x03[7:6]='00'	6.8	8.8	10.8	А
VBUS/BAT Input UVLO	V _{UVLO}		3.3		3.7	v
UVLO Hysteresis	V _{HYS}			0.2		V
EN Logic High Threshold	V _{ENH}	Rising		1.2	1.4	V
EN Logic Low Threshold	V _{ENL}	Falling	0.6	0.8		V
VBUS Output Current Limit		0x02[7:5]='000'	13.6	18	22	mV
		0x02[7:5]='001'	17.8	22	27	mV
	V	0x02[7:5]='010'	22.4	27	31.3	mV
	V _{BUS.ILIM}	0x02[7:5]='011'	27	31	35.2	mV
		0x02[7:5]='100'	31.6	36	40.1	mV
		0x02[7:5]='101'	40.5	45	49.1	mV

Silergy Corp. Confidential- Prepared for Customer Use Only AN_SY9329 Rev0.1A 5

		0x02[7:5]='110'	49.7	54	58	mV
		0x02[7:5]='111'	58.9	64	68.7	mV
Oscillator Frequency	Fosc	0x01[7:6]='01'	425	500	575	kHz
Min On Time	t _{ON_MIN}			150		ns
Thermal Shutdown Temperature	T _{SD}			150		°C
Thermal Shutdown Hysteresis	T _{HYS}			15		°C
Soft-Start Time	T _{ss}	Source mode, V _{VBUS} =5V		1.5		ms
ADC Control						×
ADC Resolution				8		Bits 🥂
ADC Voltage Sense Accuracy		V _{BAT} =23V	-5		5	₩ %
ADC Current Sense Accuracy		V _{VBUS} -V _{ISEN} =67mV	-11		11	%
V _{BAT} Full Scale Range			0	<i>P</i>	25	V
V _{BUS} Full Scale Range			0	X	25	V
Sense Current Full Scale Range			0		67	mV
I2C COMPATIBLE INTERFAC	E					
Maximum Operating Frequency			1 A A	400		kHz
SDA and SCL Input Logic	Logic_L				1	V
Threshold	Logic_H		2			V
SDA Output Low Voltage		(\mathbf{A}		1	V
			- · ·			

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ JA is measured in the natural convection at TA = 25°C on a two-layer Silergy Evaluation Board.

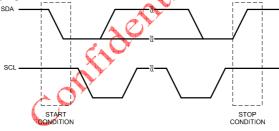
Note 3: The device is not guaranteed to function outside its operating conditions.

Silerey corp

Silergy Corp. Confidential- Prepared for Customer Use Only AN_SY9329 Rev0.1A 6

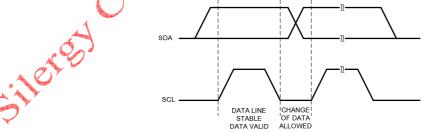
I²C Compatible Interface

SY9329 integrates an I^2C compatible interface. To ensure compatibility with a wide range of system processors, the I^2C interface supports clock speeds of up to 400kHz ("Fast-Mode") and uses standard I^2C commands. The SY9329 always operates as a slave device, and is addressed using a 7-bit slave address followed by an 8th bit, which indicates whether the transaction is a read-operation or a write-operation.


I²C Device Address:

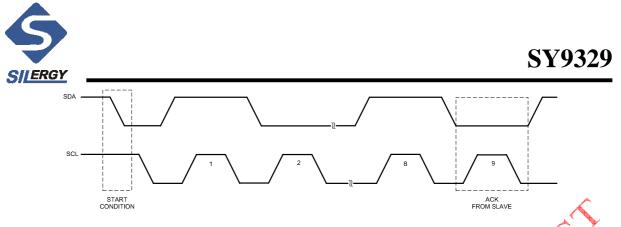
When communicating with multiple devices using the I^2C interface, each device must have its own unique address so the host can distinguish between the devices. The most significant 4-bits of the device address is '110' The 5th,6th and 7th-bit device address is selected by ADDR pin.

ADDR	Device Address	2
ADDR short to GND	1110000	5
$50k\Omega < R_{ADDR} < 100k\Omega$	1110001	
$400k\Omega < R_{ADDR} < 500k\Omega$	1110010	
Floating or connect to VCC	1110011	
	A	

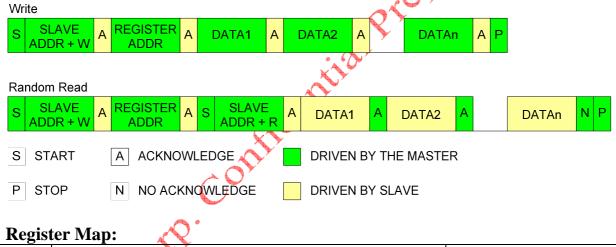

START and STOP Conditions:

The START condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The STOP condition is a LOW to HIGH transition on the SDA line while SCL is HIGH. ASTOP condition must be sent before each START condition. The I²C master always generates the START and STOP conditions.

Data Validity:


The data on the SDA line must be stable during the HIGH period of the SCL, unless generating a START or STOP condition. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Acknowledge:


Each address and data transmission uses 9-clock pulses. The ninth pulse is the acknowledge bit (ACK). After the

START condition, the master sends 7-slave address bits and an R/W bit during the next 8-clock pulses. During the ninth clock pulse, the device that recognizes its own address holds the data line low to acknowledge. The acknowledge bit is also used by both the master and the slave to acknowledge receipt of register addresses and data.

Data Transactions:

All transactions start with a control byte sent from the I^2C master device. The control byte begins with a START condition, followed by 7-bits of slave address followed by the R/W bit. The R/W bit is 0 for a write or 1 for a read. If any slave devices on the I^2C bus recognize their address, they will acknowledge by pulling the SDA line low for the last clock cycle in the control byte. If no slaves exist at that address or are not ready to communicate, the data line will be 1, indicating a Not Acknowledge condition. Once the control byte is sent, and the slave acknowledges it, the 2^{nd} byte sent by the master must be a register address byte. The register address byte it responds with an acknowledge. If a STOP condition is detected after the register address byte is received, the SY9329 takes no further action but storing the register address byte. The register address byte auto increase when multiple date bytes are transited.

Address	Data	Note
00	Control Register 1	R/W
01	Control Register 2	R/W
02	Protection setting 1	R/W
03	Protection setting 2	R/W
04	State Register	R
05 🔨	/INT Register	Read then Clear
06	BAT Voltage Value Register	
07	VBUS Voltage Value Register	R
08	VBUS Output Current Sense Voltage Register	

Control Register1 (0x00)

Name	# of Bits	Access	Default	Description
Regulator Enable	7	R/W	0	0:Disable
Regulator Ellable	/	K/ W	0	1:Enable
		DAU	0	000:10.2V[12V Car Battery]
	6	R/W	0	001:10.7V[12V Car Battery]
				010:11.2V [12V Car Battery]
Low Battery Voltage	5	R/W	0	011:11.7V [12V Car battery]
Setting			100: 22.0V [24V Car Battery]	
				101: 22.5V [24V Car Battery]
	4	R/W	0	110: 23V [24V Car Battery]
				111:23.5V [24V Car Battery]
ADC ON/OFF	3	R/W	0	0:Inactive; 1:Active
ADC Mode Select	2	R/W	0	0: Single detect mode; 1: Auto detect mode
VBUS Discharge	1	R/W	0	0: Active discharge when regulator is disabled
Control	1	N/ W	0	1: Inactive discharge when regulator is disabled
Reserved	0	R/W	0	

-0

Control Register2 (0x01)

Name	# of Bits	Access	Default	Description
	7	R/W	1	00: 250KHz
Switching Frequency	,	IC W	CAC	01: 500KHz
	6	R/W	\mathbf{x}	10: 750KHz
	-			11: 1MHz
	F	RW	0	000:5V
	5	RAW	0	001:5V
) —		010:5V
VBUS Voltage Setting	R/W	R/W	0	011:7V
		, , , , , , , , , , , , , , , , , , ,	100:9V	
4				101:12V
				110:15V
x 40	3	R/W	0	111: 20V
07				If 0x00[7]='0', this bit is reset to '0' and cannot be overwritten
CN				000: -2.5%
\sim	2	R/W	0	001: -1.25%
				010: ±0%
VBUS Voltage Adjust	1	R/W	1	011: +1.25%
				100:+2.5%
	0	DAV	0	101: +3.75%
	0	R/W	0	110:+5%

		111:+6.25%

Protection setting 1 (0x02)

Name	# of Bits	Access	Default	Description
				000: 18mV
				001: 22mV
				010: 27mV
Output current Limit	7.5	DAV	011	011: 31mV
Voltage Threshold	7:5	R/W	011	100: 36mV
(Source mode)				101: 45mV
				110: 54mV
				111: 64mV
4 VBUS OVP Threshold	R/W	1	00:110% V _{BUS,SET}	
	1 10	10.11		01:115% V _{BUS,SET}
	3	3 R/W	0	10:120% V _{BUS,SET}
	U U			11:125% V _{BUS.SET}
	2	R/W	1	00:50% V _{BUS,SET}
VBUS UVP Threshold	_	10.11	-	01:60% V _{BUSSET}
v bob o vi micsiola	1	R/W	0	10:70% Vels.set
	-		-	11:80% V _{BUS,SET}
Reserved	0	R/W	0	

Protection setting 2 (0x03)

Name	# of Bits	Access	Default	Description
Inductor Average	7	RW	0	00: 6A 01: 6A
Current Limit Setting	6	R/W	0	10: 8A 11: 10A
Inductor Average Current Limit Protection Mode	5	R/W	0	0: Latch off: 0x00[7] is reset to '0' 1: Auto recover: 0x01[5:3] is reset to '000'
VBUS Under Voltage Protection Mode	4	R/W	0	0: Latch off: 0x00[7] is reset to '0'1: Auto recover: hiccup mode, 0x01[5:3] is reset to '000'
Over Temperature Protection Mode	3	R/W	0	0: Latch off: 0x00[7] is reset to '0' 1: Auto recover, 0x01[5:3] is reset to '000'
Bidirectional Mode	2	R/W	0	0: Source mode 1: Sink mode If 0x00[7]='0', this bit is reset to '0' and cannot be overwritten
Reserved	1	R/W	0	
Reserved	0	R/W	0	

Silergy Corp. Confidential- Prepared for Customer Use Only 10 AN_SY9329 Rev0.1A

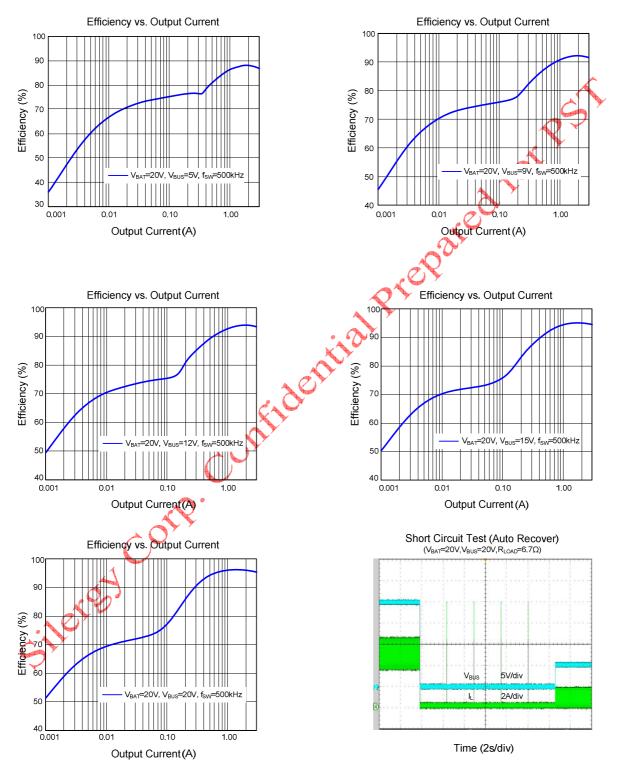
State Register (0x04)

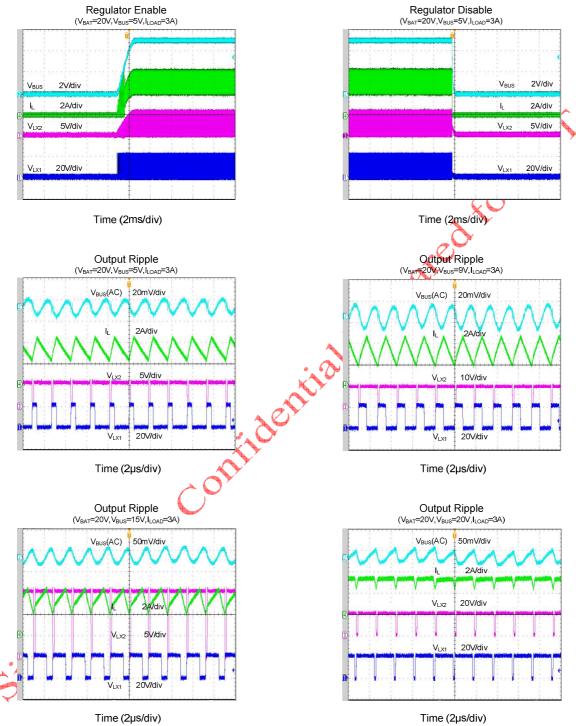
Name	# of Bits	Access	Description
Power Good State	7	R	0: Power is not in good range 1: Power good (feedback is 90%~120% Vref)
BAT/VBUS Voltage Relation	6	R	0:BAT voltage > VBUS voltage 1: BAT voltage < VBUS voltage
BAT Power State	5	R	0: Normal 1: Low BAT voltage
Reserved	4:0	R	
Interrupt Registe	1		dtu
Name	# of Bits	Access	Description

Interrupt Register (0x05)

Name	# of Bits	Access	Description
ADC Data Ready	7	Read then Clear	0: None 1: Data ready
VBUS Over Current Limit	6	Read then Clear	0: Normal 1:VBUS output current OCP
Inductor Current Protection	5	Read then Clear	0: Normal 1: Inductor OCP
VBUS UVP	4	Read then Clear	0: Normal
Over Temperature Protection	3	Read then Clear	0: Normal 1: OTP
Reserved	2:0	Read then Clear	

BAT Voltage Register (0x06)

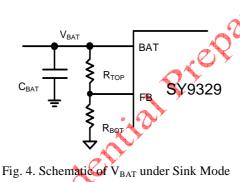

Name	# of Bits	Access	Description
BAT Voltage Value	7:0	R	00000000: 0V 11111111: 25V
		<u> </u>	


Name		Access	Description	
	# of Bits	1100000		
			00000000: 0V	
VBUS Voltage Value	7:0	R		
			11111111: 25V	
				<u> </u>
VBUS Output Cu				Ś
Name	# of Bits	Access	Description	\bigtriangledown \checkmark
			00000000: 0mV	>
VBUS Output Current	7:0	R		
Sense Voltage	7.0	ĸ		
			11111111: 67mV	
			A Y	
			NY .	
			and a second	
			A OF	
			A DOT	
			ELDET	
			fider	
			nfider	
		~	mider	
		65	miler	
		C	miler	
		C ^c	miler	
		°.	miler	
		S.	miler	
	- 05	S. S.	miler	
		S.	IIIIIII: 67mV	
		S.	miler	
		S.	miler	
		S.	miler	
s Or		S.	miler	
at of		S.	miler	
tere		S.	miler	
tere		S.	miler	
Silere		S.	miler	
s Of		S.	miler	

Typical Performance Characteristics

(1)

Applications Information


Bidirectional Buck-Boost Regulator Operation Mode

The SY9329 is a bidirectional device which can be operated under both source mode and sink mode. 0x03[2]='0' selects source mode while 0x03[2]='1' selects sink mode.

Under source mode, which is also the default mode, the BAT pin is connected to the power input and the VBUS pin is the power output. The output voltage V_{VBUS} is configured by 'VBUS Voltage Setting' register 0x01[5:3]. Once the 'Regulator Enable' bit is cleared (0x00[7]='0'), operation mode will be reset to source mode(0x03[2] is reset to '0' and cannot be overwritten).

Under sink mode, the VBUS pin is connected to the power input, the BAT pin is the power output and the FB pin is the feedback input. The output voltage V_{BAT} is programmed by external voltage divider (see Fig. 4) with the 1V internal voltage reference as given in equation (1)

$$V_{BAT} = 1V \times \frac{R_{TOP} + R_{BOT}}{R_{BOT}}$$

Interrupt

When an interrupt event happens, the open drain /INT pin is pulled low to inform the host. After the host reads the interrupt register, the /INT pin will be pulled high by external pull-up resistor.

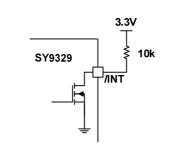


Fig .5 Description of Interrupt Function.

Under Voltage Protection

The SY9329 activates UVP(under voltage protection) function when output short occurs. There are two UVP protection modes. One is latch off operation by setting 0x03[4]=0', the other is auto recover operation with 0x03[4]='1'.

(2)

Latch off operation. Once the output voltage is lower than UVP threshold for 1ms, the regulator will be disabled(0x00[7]='0').

Auto recover operation (hiccup mode). When output voltage is lower than UVP threshold for 1ms, and the device will shut down for approximately 2.6s. The device will then restart with a complete soft-start cycle. If the short circuit condition remains another 'hiccup' cycle of shutdown and restart will continue indefinitely unless the OTP threshold is reached.

Average Inductor current limit

When average inductor current is greater than the threshold, the internal control loop will regulate the average inductor current by decreasing duty cycle. Both latch off operation and auto recover operation are provided by the device: 0x03[5]='0' enters latch off operation, and 0x03[5]='1' enters auto recover operation.

Latch off operation: When average inductor current exceeds a certain threshold for 1ms, the regulator is disabled(0x00[7]='0').

Auto recover operation: The device will regulate the average inductor current to the setting value. IC resumes normal operation when the fault condition is removed.

VBUS Output Current Limit

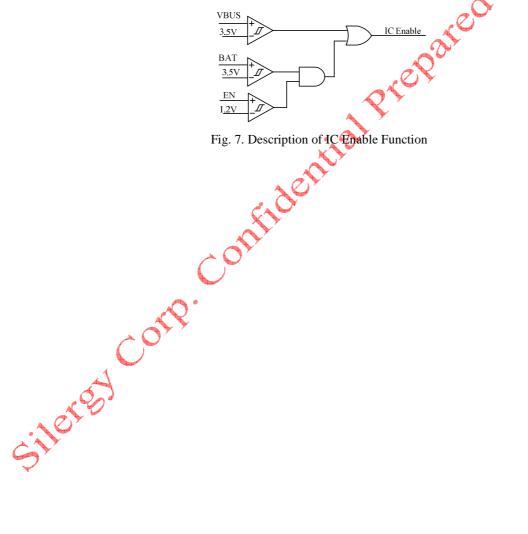
The SY9329 provides a function for VBUS output current limit by sensing the voltage drop between VBUS pin and ISEN pin (as shown in fig.6). Once the voltage difference ($V_{VBUS}V_{ISEN}$) exceeds the voltage threshold, which can be configured by register 0x02[7:5], the internal control loop will regulate the output current by decreasing duty cycle until UVP or OTP is triggered. Noticing that the effects of R_{PIN} and R_{WIRE} cannot be ignored, the actual limit current I_{LIMIT} can be calculated as given in Equation (2):

$$I_{LIMIT} = \frac{V_{VBUS} - V_{ISEN}}{R_{SENSE} + R_{PIN} + R_{WRIE}}$$
where R_{PIN} $\approx 1.65 \text{m}\Omega$.
R_{WIRE} depends on PCB layout..
BAT

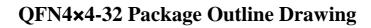
Fig. 6. Description of VBUS Output Current Limit

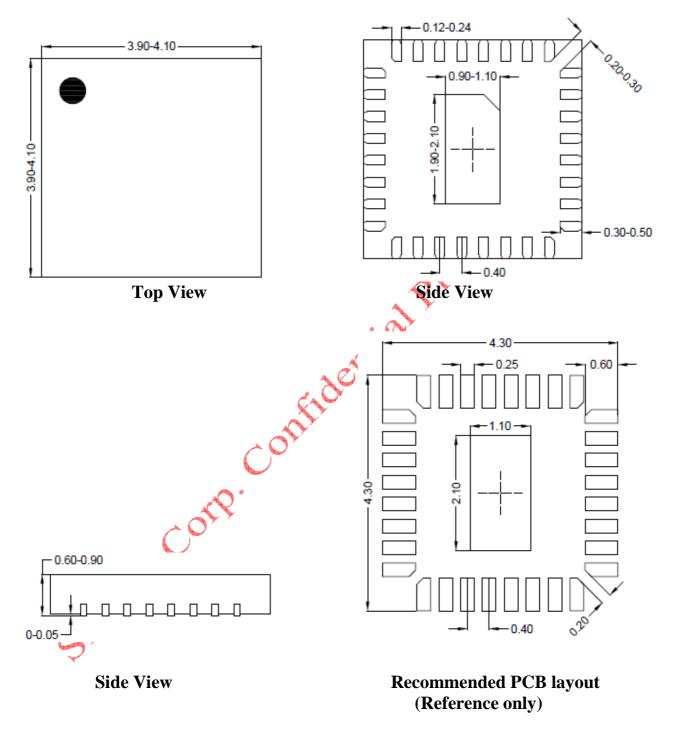
Note: The VBUS output current limit only functions under source mode, after finishing soft-start.

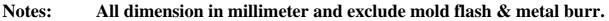
Over Temperature Protection

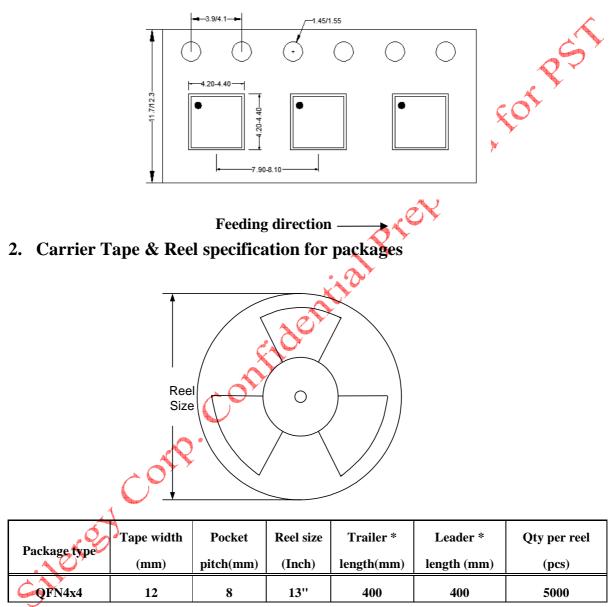

The device provides two protection modes for OTP(over temperature protection). If 0x03[5]=0', it selects latch off operation , and if 0x03[3]=1', it is auto recover operation

Latch off operation: The regulator is disabled when the junction temperature exceeds 150°C.


Auto recover operation: The regulator stops switching when the junction temperature exceeds 150° C. Once the junction temperature falls below 135° C, the device will resume operation.


Device Enable


When the device is enabled, LDO is turned on, and then I^2C interface is fully functional. The device can be enabled when BAT voltage is above 3.5V and EN voltage is greater than 1.2V, or VBUS voltage exceeds 3.5V (see Fig. 7). To disable the device, the regulator should be disabled through I^2C first, and then the device will automatically discharge VBUS. After VBUS falls below 3.5 V, pull EN low to totally disable the device.



1. Taping orientation

QFN4×4

3. Others: NA

单击下面可查看定价,库存,交付和生命周期等信息

>>SILERGY(矽力杰)