

Г

SWR60P02

20V Single P-Channel Enhancement-Mode MOSFET			
General Description	Product Summary		
• Low gate charge.	• BV _{DSS} -20V		
 Uses advanced trench process technology. 	• R _{DS(on)} @VGS = -10V < 8.5mΩ		
Use in PWM applications	• R _{DS(on)} @VGS = -4.5V < 12mΩ		
TO-252 D-PAK			
G			

Absolute Maximum Ratings (T _A = 25°C unless otherwise noted)				
Parameter	Symbol	Maximum	Units	
Drain-Source Voltage	V _{DS}	-20	V	
Gate-Source Voltage	V _{GS}	±12	V	
Drain Current (T _c =25°C)		-60	A	
Drain Current (T _C =75°C)		-39		
Drain Current (T _A =25°C)	I _D	-35		
Drain Current (T _A =75°C)		-15		
Pulsed Drain Current ^a	I _{DM}	-240	А	
Power Dissipation ^b (T _C =25°C)	2	70	W	
Power Dissipation ^b (T _A =25°C)	P _D	2.5	W	
Junction and Storage Temperature Range	T _{J,} T _{STG}	-55 ~ +150	°C	

Thermal Characteristics					
Parameter	Symbol	Maximum	Units		
Junction-to-Ambient ^a (t \leq 10s)	5	15	°C/W		
Junction-to-Ambient ^{a,d} (Steady-State)	R _{θJA}	45	°C/W		
Junction-to-Lead (Steady-State)	R _{θJL}	5	°C/W		

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V , I_{D} = -250 uA	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -20V , V_{GS} = 0V			-1	uA
I _{GSS}	Gate-Body Leakage Current	V_{GS} = ±12V, V_{DS} = 0V			±100	nA
On Chara	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = -250 uA	-0.35		-1.0	V
D	Drain-Source On-State Resistance	V_{GS} = -10V , I_D = -15A		6.6	8.5	mΩ
R _{DS(ON))}		V_{GS} = -4.5V , I _D = -10A		8	12	mΩ
g fs	Forward Transconductance	V_{DS} = -5V , I_D = -15A		30		S
Drain-So	ource Diode Characteristics					
V_{SD}	Diode Forward Voltage	V_{GS} = 0V , I_{S} = -20A			-1.2	V
Is	Maximum Body-Diode Continuous Current				-60	А
Dynamic	Characteristics					
C _{iss}	Input Capacitance			4210		pF
C _{oss}	Output Capacitance	V _{DS} = -10V , V _{GS} = 0V f = 1.0MHz		515		pF
C _{rss}	Reverse Transfer Capacitance			440		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			40.2		nC
Q_{gs}	Gate-Source Charge	V _{DS} = -10V , I _D = -15A V _{GS} = -4.5V		7.2		nC
Q_{gd}	Gate-Drain Charge			13		nC
t _{D(ON})	Turn-On Delay Time			9		ns
tr	Turn-On Rise Time	$V_{DD} = -10V$		56		ns
$t_{D(OFF)}$	Turn-Off Delay Time	V _{GS} = -10 V R _{GEN} = -2.70hm		129		ns
t _f	Turn-Off Fall Time			48		ns

a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 °C

b. The power dissipation P_D is based on $T_{J(MAX)}\text{=}150~^{o}\text{C}$, using ${\leqslant}10\text{s}$ junction-to-ambient thermal resistance.

c. The value of $R_{\theta,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

Typical Characteristics

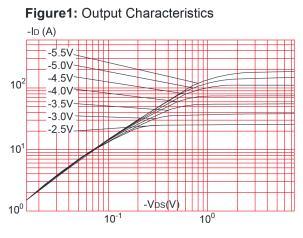
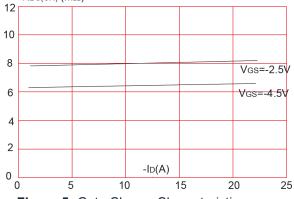



Figure 3:On-resistance vs. Drain Current $R_{DS(ON)}(m\Omega)$

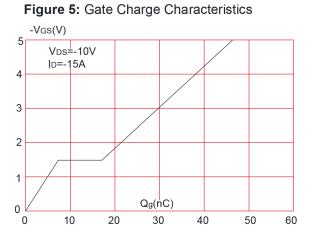
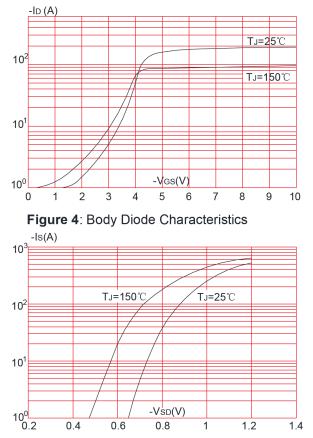
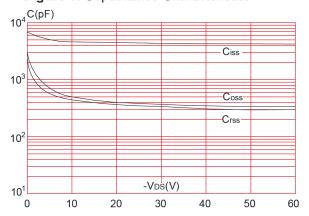




Figure 2: Typical Transfer Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

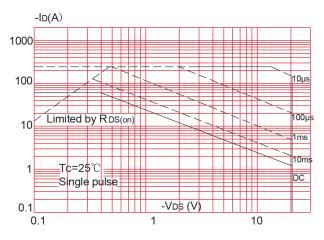
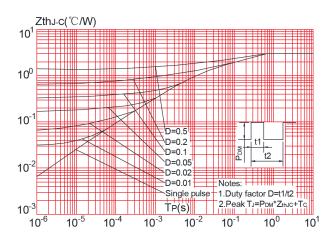
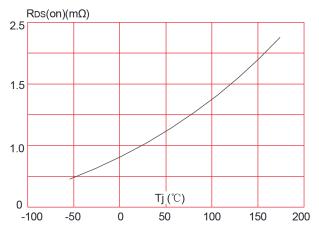
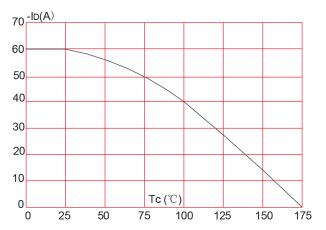
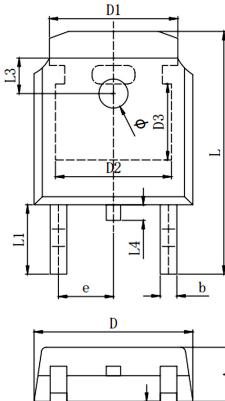
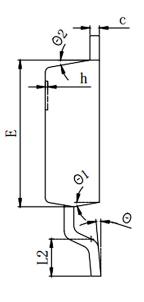
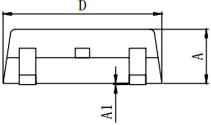




Figure 9: Maximum Safe Operating Area

Figure 8: Normalized on Resistance vs. Junction Temperature


Figure 10: Maximum Continuous Drain Current vs. Case Temperature



TO-252 D-PAK Package

C. made a la	Millimeters		
Symbols	MIN.	Mom.	MAX.
A	2.200	2.300	2.400
A1	0.000		0.127
b	0.640	0.690	0.740
c(电镀后)	0.460	0.520	0.580
D	6.500	6.600	6.700
D1	5.334 REF		
D2	4.826 REF		
D3	3.166REF		
E	6.000	6.100	6.200
e	2.286 TYP		
h	0.000	0.100	0.200
L	9.900	10.100	10.300
L1	2.888 REF		
L2	1.400	1.550	1.700
L3	1.600 REF		
L4	0.600	0.800	1.000
Φ	1.100	1.200	1.300
θ	0°		8°
θ1	9° TYP		
θ2	9° TYP		

单击下面可查看定价,库存,交付和生命周期等信息

>>SiliconWisdom(矽睿半导体)