SWK4614B ### 40V Complementary Enhancement-Mode MOSFET #### **General Description** #### • Low gate charge. - Use as a load switch. - Use in PWM applications ### **Product Summary** N-Channel • BV_{DSS} = 40V - R_{DS(on)} (@VGS= 10V) < 35mΩ - $R_{DS(on)}$ (@VGS= 4.5V) < 50m Ω P-Channel - BV_{DSS} = -40V - $R_{DS(on)}$ (@VGS= -10V) < $50m\Omega$ - $R_{DS(on)}$ (@VGS= -4.5V) < 75m Ω N-Channel P-Channel ### **Absolute Maximum Ratings** (T_A = 25°C unless otherwise noted) | Doromotor | Symbol | Maximum | | l luita | |---|-----------------------------------|------------|------------|---------| | Parameter | Symbol | N-Channel | P-Channel | Units | | Drain-Source Voltage | V _{DS} | 40 | -40 | ٧ | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | ٧ | | Drain Current (T _c =25°C) | | 7.0 | -7.5 | Α | | Drain Current (T _c =75°C) | l _D | 5.6 | -5.1 | Α | | Pulsed Drain Current ^a | I _{DM} | 14.5 | -13 | Α | | Power Dissipation ^b (T _C =25°C) | P _D | 2.5 | 3.0 | W | | Junction and Storage Temperature Range | T _J , T _{STG} | -55 ~ +150 | -55 ~ +150 | °C | #### **Thermal Characteristics** | Parameter | Symbol | Maximum | | Units | | |--|------------------|-----------|-----------|-------|--| | Faranietei | Symbol | N-Channel | P-Channel | Units | | | Junction-to-Ambient ^a (t ≤ 10s) | | 50 | 60 | °C/W | | | Junction-to-Ambient a,d (Steady-State) | $R_{\theta JA}$ | 80 | 90 | °C/W | | | Junction-to-Case | R _{θJc} | 50 | 60 | °C/W | | ## **SWK4614B** | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |---------------------|---------------------------------------|--|-----|------|------|-------| | Off Char | acteristics | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | V _{GS} = 0V , I _D = 250uA | 40 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 40V , V _{GS} = 0V | | | 1 | uA | | I_{GSS} | Gate-Body Leakage Current | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | ±100 | nA | | On Char | acteristics | | | | | | | $V_{GS(th)}$ | Gate Threshold Voltage | $V_{DS} = V_{GS}$, $I_D = 250uA$ | 1 | | 2.5 | V | | _ | Drain-Source
On-State Resistance | V _{GS} = 10V , I _D = 5A | | 28 | 35 | mΩ | | $R_{DS(ON))}$ | | V _{GS} = 4.5V , I _D = 4A | | 38 | 50 | mΩ | | g FS | Forward Transconductance | V _{DS} = 5.0V , I _D = 12A | | 14 | | S | | Drain-So | ource Diode Characteristics | | · | | | | | V_{SD} | Diode Forward Voltage | V _{GS} = 0V , I _S = 1.0A | | | 1.2 | V | | Is | Maximum Body-Diode Continuous Current | | | | 7.2 | Α | | Dynamic | Characteristics | | | | | | | C _{iss} | Input Capacitance | V _{DS} = 25V , V _{GS} = 0V
f = 1.0MHz | | 493 | | pF | | Coss | Output Capacitance | | | 56 | | pF | | C_{rss} | Reverse Transfer Capacitance | 1.00012 | | 36 | | pF | | Switchin | g Characteristics | | · | | | | | Qg | Total Gate Charge | $V_{DS} = 20V$, $I_{D} = 3A$ $V_{GS} = 10V$ | | 10.5 | | nC | | Q _{gs} | Gate-Source Charge | | | 2.25 | | nC | | Q_{gd} | Gate-Drain Charge | VGS = 10 V | | 2.5 | | nC | | t _{D(ON}) | Turn-On Delay Time | | | 9.9 | | ns | | t _r | Turn-On Rise Time | $V_{DD} = 20V$, $ID = 4A$ | | 7.2 | | ns | | t _{D(OFF)} | Turn-Off Delay Time | V_{GS} = 10 V
R_{GEN} = 3.3 ohm | | 31 | | ns | | t _f | Turn-Off Fall Time | | | 11 | | ns | a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_I=25 °C b. The power dissipation P_D is based on $T_{J(MAX)}$ =150 $^{\circ}C$, using \leq 10s junction-to-ambient thermal resistance. c. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design. d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient. ## **SWK4614B** | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |----------------------|---------------------------------------|---|-----|------|------|-------| | Off Char | acteristics | | · | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0V$, $I_D = -250uA$ | -40 | | | V | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = -40V , V _{GS} = 0V | | | -1 | uA | | I_{GSS} | Gate-Body Leakage Current | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | ±100 | nA | | On Char | acteristics | | | | | | | $V_{\text{GS(th)}}$ | Gate Threshold Voltage | $V_{DS} = V_{GS}$, $I_D = -250$ uA | -1 | | -2.5 | V | | _ | Drain-Source
On-State Resistance | $V_{GS} = -10V$, $I_D = -4.5A$ | | 40 | 50 | mΩ | | R _{DS(ON))} | | $V_{GS} = -4.5V$, $I_D = -3.5A$ | | 60 | 75 | mΩ | | g FS | Forward Transconductance | $V_{DS} = -5.0V$, $I_{D} = -6.0A$ | | 12 | | S | | Drain-So | ource Diode Characteristics | | | | | | | V_{SD} | Diode Forward Voltage | V _{GS} = 0V , I _S = -1.0A | | | -1.2 | V | | Is | Maximum Body-Diode Continuous Current | | | | -7.5 | Α | | Dynamic | Characteristics | | | | | | | C _{iss} | Input Capacitance | | | 904 | | pF | | C _{oss} | Output Capacitance | $V_{DS} = -15V$, $V_{GS} = 0V$
f = 1.0MHz | | 88 | | pF | | C_{rss} | Reverse Transfer Capacitance | 1.00012 | | 70 | | pF | | Switchin | g Characteristics | | · | | | | | Qg | Total Gate Charge | $V_{DS} = -20V$, $I_{D} = -6A$ $V_{GS} = -4.5V$ | | 13 | | nC | | Q _{gs} | Gate-Source Charge | | | 3.54 | | nC | | Q_{gd} | Gate-Drain Charge | VGS 1.5V | | 3.1 | | nC | | t _{D(ON}) | Turn-On Delay Time | | | 7.2 | | ns | | t _r | Turn-On Rise Time | $V_{DD} = -20V$, $ID = -1A$ | | 5.8 | | ns | | $t_{D(OFF)}$ | Turn-Off Delay Time | $V_{GS} = -10 \text{ V}$
$R_{GEN} = 3.3 \text{ ohm}$ | | 18.6 | | ns | | t _f | Turn-Off Fall Time | | | 6.6 | | ns | a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T₁=25 °C b. The power dissipation P_D is based on $T_{J(MAX)}$ =150 $^{\circ}C$, using \leqslant 10s junction-to-ambient thermal resistance. c. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design. d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient. # **SOP-8 Package Outline** | Symbol | Dimensions In Millimeters | | Dimensions In Inches | | |------------|---------------------------|-------|----------------------|-------| | Symbol | Min. | Max. | Min. | Max. | | Α | 1.350 | 1.750 | 0.053 | 0.069 | | A 1 | 0.100 | 0.250 | 0.004 | 0.010 | | A2 | 1.350 | 1.550 | 0.053 | 0.061 | | b | 0.330 | 0.510 | 0.013 | 0.020 | | С | 0.170 | 0.250 | 0.006 | 0.010 | | D | 4.700 | 5.100 | 0.185 | 0.200 | | E | 3.800 | 4.000 | 0.150 | 0.157 | | E1 | 5.800 | 6.200 | 0.228 | 0.244 | | е | 1.270(BSC) | | 0.050(BSC) | | | L | 0.400 | 1.270 | 0.016 | 0.050 | | θ | 0° | 8° | 0° | 8° | ### 单击下面可查看定价,库存,交付和生命周期等信息 >>SiliconWisdom(矽睿半导体)