

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted) Maximum Parameter Symbol Units **N-Channel P-Channel** Drain-Source Voltage 20 -20 V V_{DS} Gate-Source Voltage ±12 ±12 V V_{GS} Drain Current (T_A=25°C,t<10s,Vgs=10V) 4.0 -4.5 А I_D Drain Current (T_A=75°C,t<10s, Vgs=10V) 2.5 -2.5 А Pulsed Drain Current^a 20 -25 А I_{DM} Power Dissipation ^b (T_A=25°C) 1.4 W 1.4 P_D Power Dissipation ^b (T_A=75^oC) W 1.0 0.9 °С Junction and Storage Temperature Range $T_{J_{i}} T_{STG}$ -55 ~ +150 -55 ~ +150

Thermal Characteristics				
Deremeter	Sumb al	Махі	Unito	
Parameter	Symbol	N-Channel	P-Channel	Units
Junction-to-Ambient ^a (t ≤ 10s)	R _{0JA}	100	100	°C/W
Junction-to-Ambient ^{a,d} (Steady-State)		130	130	°C/W
Junction-to-Lead (Steady-State)	R _{θJL}	90	90	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V , I _D = 250uA	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 20V , V_{GS} = 0V			1	uA
I _{GSS}	Gate-Body Leakage Current	V_{GS} = ±12V, V_{DS} = 0V			±100	nA
On Char	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = 250 uA	0.6		1.2	V
Р	Drain-Source	V_{GS} = 10V , I_D = 3.0A		30	40	mΩ
R _{DS(ON))}	On-State Resistance	V_{GS} = 4.5V , I _D = 2.5A		32	45	mΩ
g fs	Forward Transconductance	V_{DS} = 5V , I_{D} = 3.0A		15		S
Drain-So	ource Diode Characteristics					
V_{SD}	Diode Forward Voltage	V_{GS} = 0V , I _S = 1.0A			1.2	V
ls	Maximum Body-Diode Continuous	Current			2.0	А
Dynamic	Characteristics					
C _{iss}	Input Capacitance			750		pF
C _{oss}	Output Capacitance	V _{DS} = 10V , V _{GS} = 0V f = 1.0MHz		100		pF
C _{rss}	Reverse Transfer Capacitance			73		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			16		nC
Q_{gs}	Gate-Source Charge	$V_{DS} = 10V$, $I_D = 3.0A$ $V_{GS} = 6V$		2.8		nC
Q_{gd}	Gate-Drain Charge			4.1		nC
t _{D(ON})	Turn-On Delay Time			15		ns
tr	Turn-On Rise Time	$V_{DD} = 10V$, ID = 1A		6		ns
$t_{D(OFF)}$	Turn-Off Delay Time	V _{GS} = 6 V R _{GEN} = 6 ohm		26		ns
tr	Turn-Off Fall Time			12		ns

a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 °C

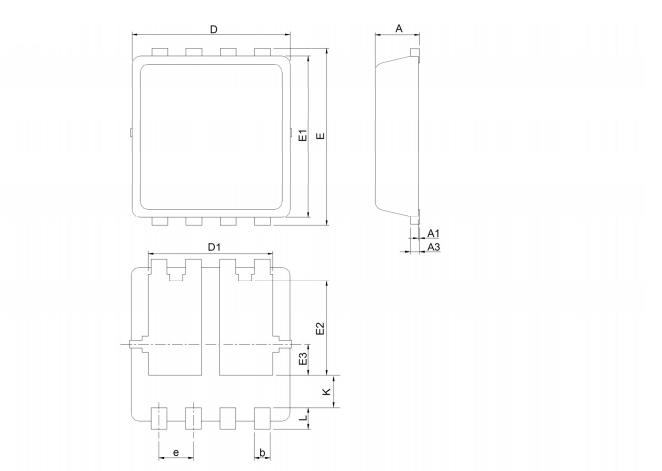
b. The power dissipation P_D is based on $T_{J(MAX)}\text{=}150~^{\circ}\text{C}$, using ${\leqslant}10\text{s}$ junction-to-ambient thermal resistance.

c. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

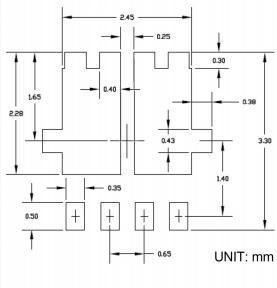
Symbol	Parameter	Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V , I _D = -250uA	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -20V , V_{GS} = 0V			-1	uA
I _{GSS}	Gate-Body Leakage Current	V_{GS} = ±12V, V_{DS} = 0V			±100	nA
On Chara	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = -250 uA	-0.4		-1.0	V
D	Drain-Source On-State Resistance	V_{GS} = -10V , I_D = -3.0A		30	42	mΩ
R _{DS(ON))}		V_{GS} = -4.5V , I_D = -2.5A		32	45	mΩ
g fs	Forward Transconductance	$V_{DS} = -10V$, $I_{D} = -3.0A$		24		S
Drain-So	ource Diode Characteristics					
V_{SD}	Diode Forward Voltage	$V_{GS} = 0V$, $I_{S} = -1.0A$			-1.2	V
Is	Maximum Body-Diode Continuous	Current			-2.0	Α
Dynamic	Characteristics					
C _{iss}	Input Capacitance			992		pF
Coss	Output Capacitance	V _{DS} = -10V , V _{GS} = 0V f = 1.0MHz		132		pF
C _{rss}	Reverse Transfer Capacitance	1 1.00012		93		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			35		nC
Q_gs	Gate-Source Charge	V_{DS} = -10V , I_D = -3.0A V_{GS} = -6V		6		nC
Q_{gd}	Gate-Drain Charge			8		nC
t _{D(ON})	Turn-On Delay Time			15		ns
tr	Turn-On Rise Time	$V_{DD} = -10V$, ID = -1A		6.4		ns
t _{D(OFF)}	Turn-Off Delay Time	V _{GS} = -6 V R _{GEN} = 6 ohm		29		ns
tr	Turn-Off Fall Time			9		ns

a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 °C


b. The power dissipation P_D is based on $T_{J(MAX)}\text{=}150~^{o}\text{C}$, using ${\leqslant}10\text{s}$ junction-to-ambient thermal resistance.

c. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.



PDFN3x3-8L Package

S	DFN3x3-8			
SY MBO L	MILLIM	ETERS	INCH	HES
6 L	MIN.	MAX.	MIN.	MAX.
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0.000	0.002
A3	0.10	0.25	0.004	0.010
b	0.24	0.35	0.009	0.014
D	2.90	3.10	0.114	0.122
D1	2.25	2.45	0.089	0.096
E	3.10	3.30	0.122	0.130
E1	2.90	3.10	0.114	0.122
E2	1.65	1.85	0.065	0.073
E3	0.56	0.58	0.022	0.023
е	0.65 BSC		0.026	BSC
к	0.475	0.775	0.019	0.031
L	0.30	0.50	0.012	0.020

RECOMMENDED LAND PATTERN

单击下面可查看定价,库存,交付和生命周期等信息

>>SiliconWisdom(矽睿半导体)