

SWR20P06

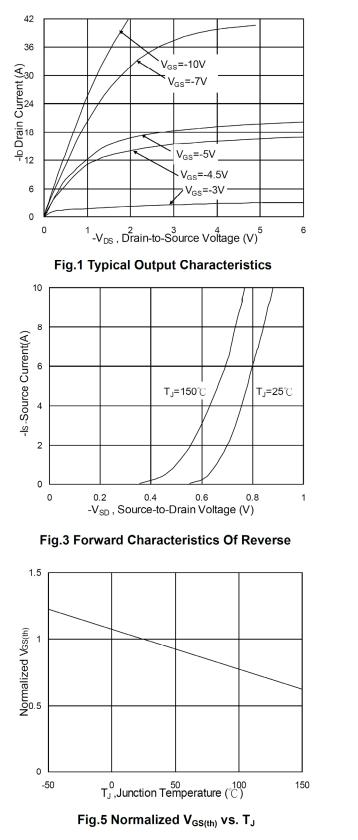
60V Single P-Channel Enhancement-Mode MOSFET			
General Description	eneral Description Product Summary		
• Low gate charge.	• BV _{DSS} -60V		
 Uses advanced trench process technology. 	• R _{DS(on)} @VGS = -10V < 58mΩ		
Use in PWM applications	• $R_{DS(on)}$ @VGS = -4.5V < 67m Ω		
TO-252 D-PAK			
G			

Absolute Maximum Ratings (T _A = 25°C unless otherwise noted)					
Parameter	Symbol	Maximum	Units		
Drain-Source Voltage	V _{DS}	-60	V		
Gate-Source Voltage	V _{GS}	±20	V		
Drain Current (T _A =25°C)		-20	А		
Drain Current (T _A =75°C)	l _D	-15	А		
Pulsed Drain Current ^a	I _{DM}	-60	А		
Power Dissipation ^b (T _C =25°C)		25	W		
Power Dissipation ^b (T _A =25°C)	PD	2.5	W		
Junction and Storage Temperature Range	T _{J,} T _{STG}	-55 ~ +150	°C		

Thermal Characteristics					
Parameter	Symbol	Maximum	Units		
Junction-to-Ambient ^a (t \leq 10s)	5	25	°C/W		
Junction-to-Ambient ^{a,d} (Steady-State)	R _{θJA}	50	°C/W		
Junction-to-Lead (Steady-State)	$R_{ ext{ heta}JL}$	5	°C/W		

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Char	acteristics		·			
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0V , I_{D} = -250 uA	-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = -60V , V_{GS} = 0V			-1	uA
I _{GSS}	Gate-Body Leakage Current	V_{GS} = ±20V, V_{DS} = 0V			±100	nA
On Chara	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} , I_D = -250 uA	-2		-4	V
D	Drain-Source On-State Resistance	V_{GS} = -10V , I_D = -20A		48	58	mΩ
R _{DS(ON))}		V_{GS} = -4.5V , I_D = -15A		56	67	mΩ
g fs	Forward Transconductance	$V_{DS} = -10V$, $I_{D} = -15A$		15		S
Drain-So	ource Diode Characteristics					
V_{SD}	Diode Forward Voltage	V_{GS} = 0V , I_{S} = -25A			-1.3	V
Is	Maximum Body-Diode Continuous Current				-20	А
Dynamic	Characteristics					
Ciss	Input Capacitance			896		pF
C _{oss}	Output Capacitance	V _{DS} = -30V , V _{GS} = 0V f = 1.0MHz		142		pF
C _{rss}	Reverse Transfer Capacitance			83		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			5.4		nC
Q_{gs}	Gate-Source Charge	V _{DS} = -30V , I _D = -20A V _{GS} = -10V		3.5		nC
Q_{gd}	Gate-Drain Charge			2.3		nC
t _{D(ON})	Turn-On Delay Time			2.7		ns
tr	Turn-On Rise Time	$V_{DD} = -30V$, ID = -20A		8.5		ns
$t_{D(OFF)}$	Turn-Off Delay Time	V _{GS} = -10 V R _{GEN} = -3 ohm		33.5		ns
t _f	Turn-Off Fall Time			6		ns

a. Repetitive rating, Pulse width limited by junction temperature T_{J(MAX)}=150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J=25 °C


b. The power dissipation P_D is based on $T_{J(MAX)}\text{=}150~^{o}\text{C}$, using ${\leqslant}10\text{s}$ junction-to-ambient thermal resistance.

c. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

Typical Characteristics

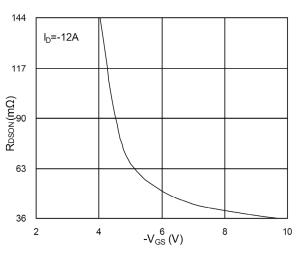


Fig.2 On-Resistance v.s Gate-Source

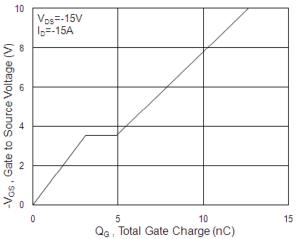


Fig.4 Gate Charge Characteristics

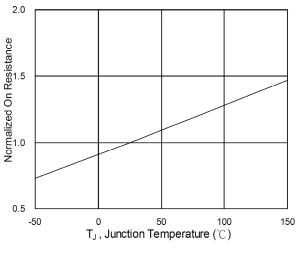


Fig.6 Normalized R_{DSON} vs. T_J

Typical Characteristics

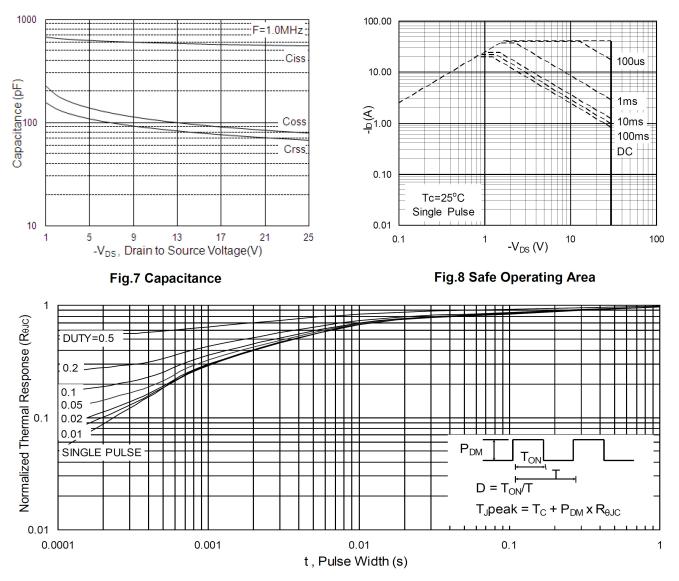
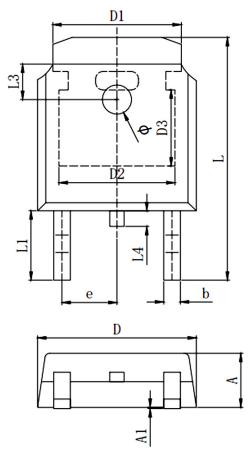



Fig.9 Normalized Maximum Transient Thermal Impedance

TO-252 D-PAK Package

Sumpholo	Millimeters			
Symbols	MIN.	Mom.	MAX.	
A	2.200	2.300	2.400	
A1	0.000		0.127	
b	0.640	0.690	0.740	
c(电镀后)	0.460	0.520	0.580	
D	6.500 6.600 6.700			
D1	5.334 REF			
D2	4.826 REF			
D3	3.166REF			
E	6.000	6.100	6.200	
е	2.286 TYP			
h	0.000	0.100	0.200	
L	9.900	10.100	10.300	
L1	2.888 REF			
L2	1.400	1.550	1.700	
L3	1.600 REF			
L4	0.600	0.800	1.000	
Φ	1.100	1.200	1.300	
θ	0°		8°	
θ1	9° TYP			
θ2	9° TYP			

单击下面可查看定价,库存,交付和生命周期等信息

>>SiliconWisdom(矽睿半导体)