

ASM6050

1. 概述

ASM6050系采用高压BCD技术开发的高耐压、低功耗、高精度输出电压的电压稳压器。可用于汽车车载设备和家电产品的稳压电源. 采用SOT-223、TO-252-5封装.

2. 特点

▶ 输入电压: 3.6 V ~ 60 V

▶ 输出电压精度: ±1.0% (Ta = 25°C)

▶ 静态电流: 4.5 uA (典型值)
休眠时: 0.14uA (典型值)

▶ 输出电流:最大600mA

> 关断时对输出电容快速放电功能(可选型号)

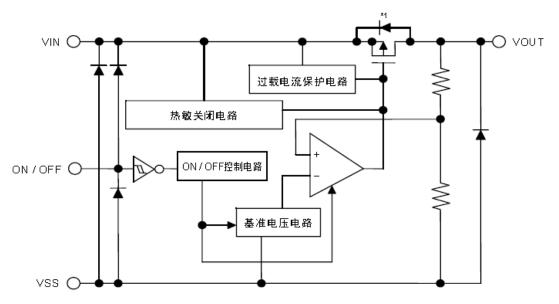
输出软启动避免巨大冲击电流

内置过载电流保护和短路保护电路:限制输出晶体管的过载电流

▶ 内置热保护电路: 防止因发热引起对产品的破坏

▶ 内置ON / OFF控制电路: 能够延长电池的使用寿命

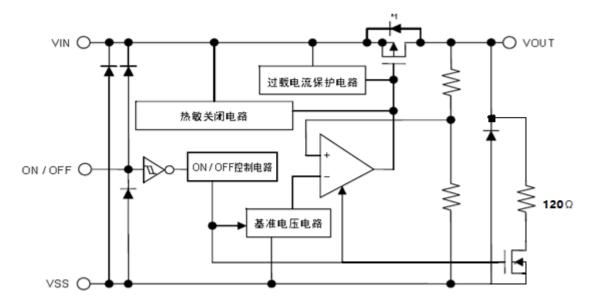
ESD: 5kV HBM/2kV CDM


▶ 工作温度范围: Ta = -40°C ~ 125°C

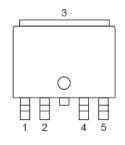
▶ 无铅(Sn 100%)、无卤素, T0-252 、S0T-223封装

➤ AEC-Q100

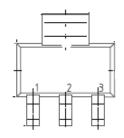
3. 功能框图


ASM6050XXX

DataSheet V1.2 1 / 10



ASM6050XXX(具有0FF时可对输出电容快速放电功能的型号)


4. 封装与PIN功能说明

4. 1 T0-252-5

引脚号	符号	描述
1	VOUT	电压输出端
2	ON/OFF	ON/OFF控制, 接GND时,允许输出;
		接1.5~20V时,输出关闭
3	VSS	接地
4	NC	空脚
5	VIN	电压输入端

4. 2 SOT-223

引脚号	符号	描述
1	VIN	电压输入端
2	VSS	接地
3	VOUT	电压输出端

5. 订购信息

产品名称	封装	输出电压(V)	关断对输出快速放电功能
ASM6050AD	T0-252-5	5. 0	√
ASM6050AD3	10-252-5	3. 3	√
ASM6050AL	COT 222	5. 0	√
ASM6050AL3 S0T-223		3. 3	√

DataSheet V1.2 2 / 10

6. 最大绝对额定值

项目	符号	绝对最大额定值	单位
输入电压	VIN	VSS-0. 3 ∽ VSS+62	٧
	V _{ON/OFF}	VSS-0. 3 ∽ VSS+15	٧
输出电压	VOUT	VSS-0. 3 ∽ VSS+6	٧
结点温度	Tj	-40 ∽ 170	°C
工作环境温度	Тор	-40 ∽ 125	°C
存储温度	Tstg	-40 ∽ 125	°C
静电释放能力	ESD HBM	5	kV
	ESD CDM	2	kV

注意:绝对最大额定值是指无论在任何条件下都不能超过的额定值。如果超过此额定值,有可能造成产品劣化等物理性损伤.

7. 热阻θ_{JA}

PCB条件	封装	θ_{JA}	单位
FR4,114.3mm*76.2mm*1.6 mm	T0-252-5	31	
2层板,覆铜:70mm*60mm*0.035mm	S0T-223	58	
FR4,114.3mm*76.2mm*1.6 mm	T0-252-5	24	°C/W
4层板,覆铜: 70mm*60mm*0.035mm	S0T-223	44	
FR4, 50mm*50mm*1.6 mm	T0-252-5	37	
2层板,覆铜: 48mm*48mm*0.035mm			

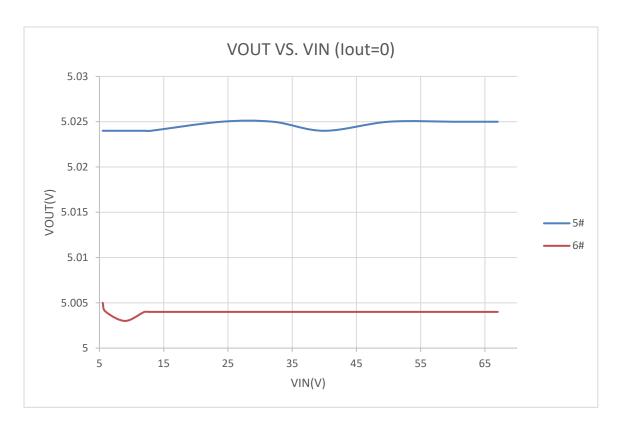
注:芯片功耗PD=(VIN-VOUT)*lout,散热条件允许的最大功耗PD $_{MX}$ =(170-Ta) $/\theta_{JA}$,Ta为环境温度。长时间持续工作最大电流Iout $_{MX}$ =PD $_{MX}$ /(VIN-VOUT)=(170-Ta) $/\theta_{JA}$ /(VIN-VOUT)。

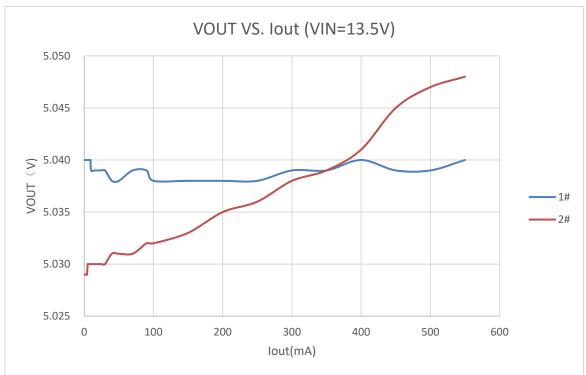
8. 电器特性参数 (除特殊注明外,Ta=25℃)

项目	符号	条件	最小值	典型值	最大值	单位	
输出电压	VOUT	VIN=13.5, Io=5mA, Ta=25°C		5. 0*0. 99	5. 0	5. 0*1. 01	٧
		VIN=13.5V, Io=5mA, -40°C≤	Ta≤125°C	5. 0*0. 98	5. 0	5. 0*1. 02	٧
输出电流	lout	VIN≥VOUT+2. OV		600			mA
		Iout=100mA, Ta=25°C			0. 16		٧
输入输出 电压差	Vdrop	lout=200mA, Ta=25°C	Iout=200mA, Ta=25°C		0. 32		٧
		lout=500mA, Ta=25°C			0. 88		V
线性调整	Δ V0UT1/	VOUT+1.0V≪VIN≪30V , lout=30mA			0. 005		%/V
率	(A VIN*						
	VOUT)						
负载调整	Δ V0UT2	VIN=13.5V,	T0-252-5封装		3		mV
率		0.1mA≤lout≤40mA	SOT-223封装		6		
工作电流	Iq	VIN=13.5V, ON/OFF端为ON, 无负载.			4. 5	8. 0	uA
		-40°C≤Ta≤125°C					
休眠电流	Isd	VIN=13.5V, ON/OFF端为	T0-252-5封装		0. 14	0.5	uA

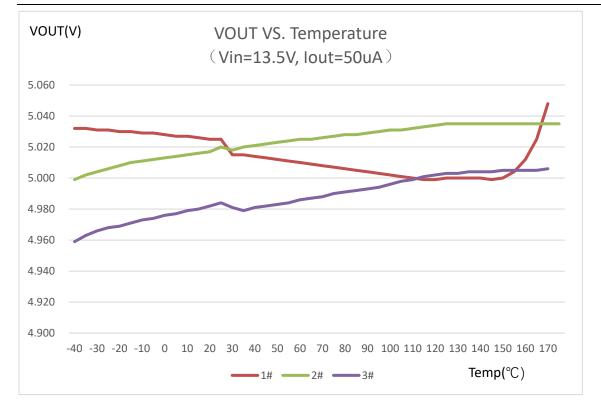
DataSheet V1.2 3 / 10

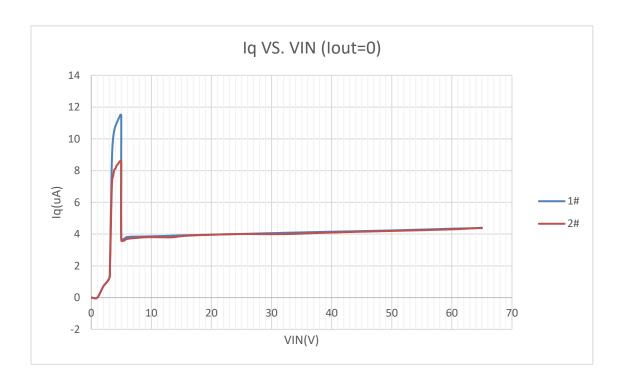
		0FF,无负载,-40°C≤Ta≤					
		125°C					
项目	符号	条件		最小值	典型值	最大值	单位
输入电压	VIN	*参考注1		3. 6		60	٧
纹波抑制	PSRR	VIN=13.5V, f=100Hz, ΔVrip	o=0.5Vrms,		68		dB
比		Iout=30mA, Ta=25°C					
限流值	llimit				950		mA
短路电流	Ishort	VIN=13.5V, ON/OFF端为ON, \	/OUT=0V		400		mA
软启动上	Trise				1		ms
升时间							
温度保护	Tsd-rise				170		°C
	Tsd-fall				140		°C


^{*}注1: VIN最大允许电压为62V,由于输入电源波动、浪涌、寄生电感或感性负载产生尖峰等,瞬间电压会高于电源电压。为保证芯片不会损坏,在任何条件下都要保证VIN不大于62V,因此推荐VIN的输入电源电压不大于40V,最终以实际应用状况决定,以满足VIN在任何条件下都小于62V的要求。

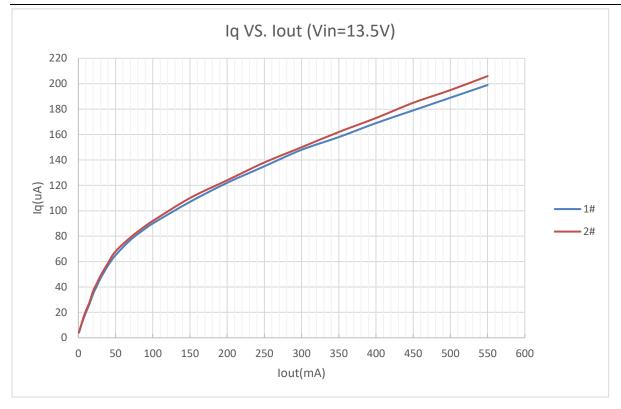

项目	符号	条件	最小值	典型值	最大值	单位
ON/OFF端	Vih	VIN=13.5V ,	1. 5			٧
输入电压		-40°C≤Ta≤125°C				
Н						
ON/OFF端	Vil	VIN=13.5V,			0. 3	٧
输入电压		-40°C≪Ta≪125°C				
L						
ON/OFF端	lih	VIN=13.5V, Von/off=13.5V,	-0.1		0. 1	uA
输入电流		-40°C≪Ta≪125°C				
Н						
ON/OFF端	Til	VIN=13.5V, Von/off=0V,	-0.1		0. 1	uA
输入电流		-40°C≪Ta≪125°C				
L						

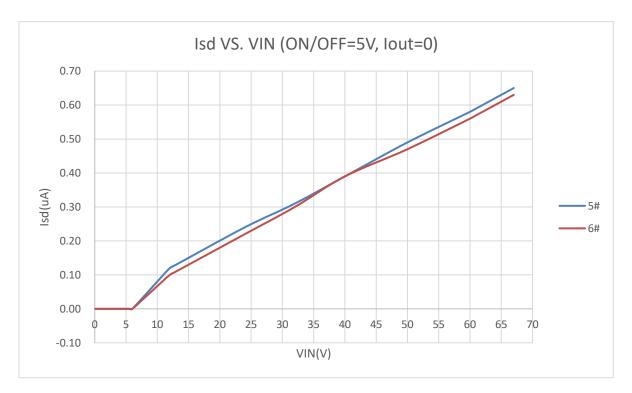
DataSheet V1.2 4 / 10


9. 测试图表(除特殊注明外, Ta=25℃)

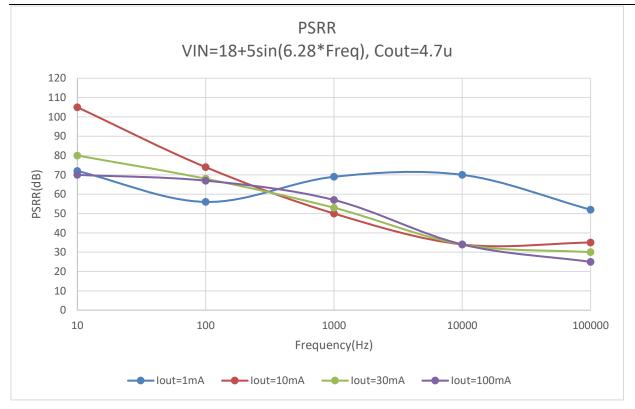


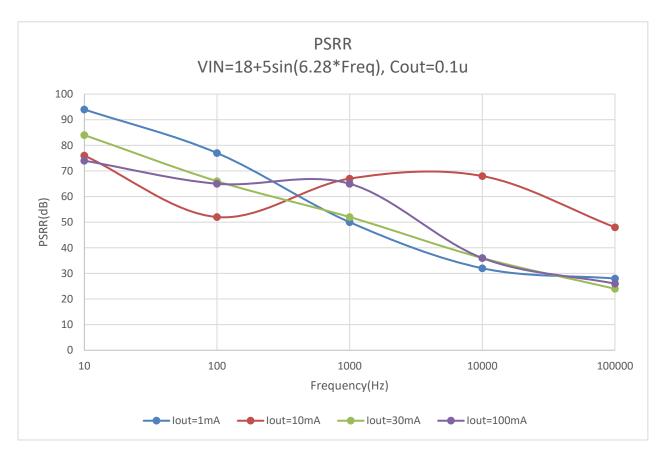
DataSheet V1.2 5 / 10



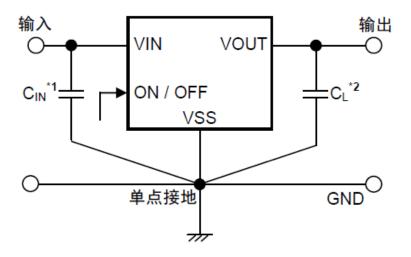


DataSheet V1.2 6 / 10



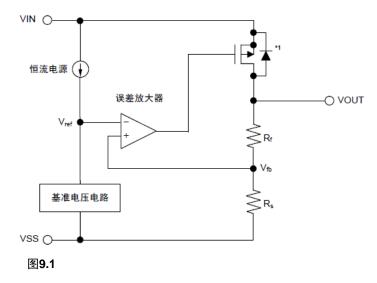


DataSheet V1.2 7 / 10



DataSheet V1.2 8 / 10

10. 应用电路


- *1 CIN是用于稳定输入的电容器,使用大于或等于0.1uF。
- *2. CL 使用有效值大于或等于0.1u F的电容器。大多数电容器随着温度和直流偏置电压变化,其容值变化都很大,例如 Murata型号GRM033R61C105ME15的电容,在直流偏置5V下,容值下降40%,16V下容值下降90%! 为了确保环路稳定性,需要CL的有效值在任何条件下都大于等于0.1uF,**因此推荐C_{III}和CL都使用大于或等于4.7uF的电容**,且电容C_{III}和CL在PCB上都尽量靠近芯片管脚放置。

11. 应用说明

11.1 基本工作

图9.1所示为AM6050系列的框图。

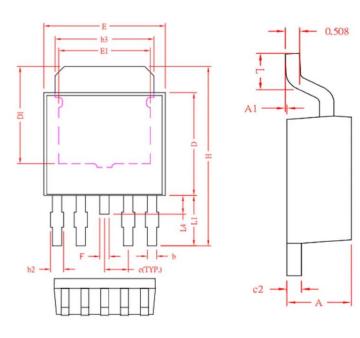
输出电压经反馈电阻 $(R_s \pi R_f)$ 分压,产生反馈电压 (V_{fb}) ,并和基准电压 (V_{ref}) 经误差放大器作比较。通过此误差放大器向输出晶体管提供必要的门极电压,从而使输出电压不受输入电压或温度变化的影响,能够保持一定。

11.2 输出晶体管

ASM6050系列的LD0输出晶体管采用了低通态电阻的P沟道MOS FET晶体管。

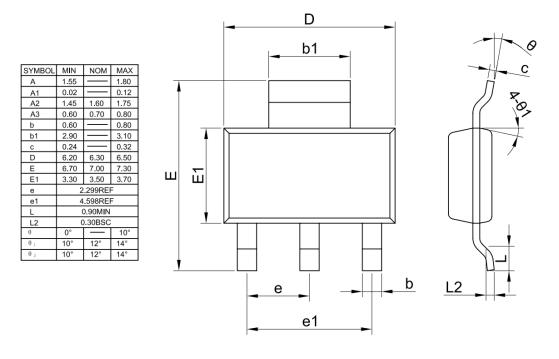
在晶体管的构造上,因在VIN端子 - VOUT端子间存在有寄生二极管,当VOUT的电位高于VIN时,有可能因反向电流而导致IC被毁坏。因此,请注意VOUT不要超过VIN+0.3 V。

DataSheet V1.2 9 / 10


11.3 ON/OFF端子, OFF时快速放电功能

启动以及停止稳压器的工作:将ON / OFF端子设定高电位后,会停止内部电路的所有工作,关闭VIN端子与VOUT端子之间内置的P沟道MOS FET输出晶体管,可以大幅度控制消耗电流。

带有0FF时快速放电功能的IC型号,在从0N切换到0FF状态时,芯片内部会通过120欧姆电阻对输出电容进行快速放电,实现输出电压快速变成0V的功能。


12. 封装尺寸

12.1 T0-252-5封装尺寸

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER) SYMBOL MIN NOM MAX 2.40 2.20 2.30 A1 0 0.08 0.15 0.53 b 0.45 0.60 0.65 b2 0.50 0.80 5.20 5.35 5.50 **b**3 0.45 0.50 0.55 c2 D 5.40 5.60 5.80 D1 4.57 E 6.40 6.60 6.80 E1 3.81 1.27 REF е 0.50 F 0.40 0.60 9.80 H 9.40 10.20 1.40 1.59 1.77 L 2.40 2.70 3.00 L10.80 1.00 1.20 L4

12.2 SOT-223封装尺寸

DataSheet V1.2 10 / 10

单击下面可查看定价,库存,交付和生命周期等信息

>>Sinemicro