

Description

The SiT9371 is a differential oscillator with an integrated MEMS resonator (such as ApexMEMS TM), that is engineered for ultra-low-jitter PCIe applications at 100.000000 MHz.

The SiT9371 can be factory programmed for specific combinations of stability, output signaling, voltage, and output enable functionality. Programmability enables designers to optimize clock configurations while eliminating long lead times and customization costs associated with quartz devices where each combination is custom built.

The programmability of this device makes it ideal for communications, enterprise, and industrial applications that require a variety of conditions and operate in noisy environments. This device also integrates multiple on-chip regulators to filter power supply noise, eliminating the need for an external dedicated LDO.

Refer to Manufacturing Notes for proper reflow profile, tape and reel dimension, and other manufacturing related information.

Features

- 100.00000MHz standard frequency
- PCIe Gen 1 to 6 compliant
- 15 fs RMS typical phase jitter, per PCle Gen 5 standard
- 10 fs RMS typical phase jitter, per PCle Gen 6 standard
- 9 fs/mV typical PSNR
- LVPECL, LVDS, HCSL, Low-power HCSL signaling options.
- ±20, ±25, ±30, and ±50 ppm frequency stabilities
- Wide temperature range (-40°C to 105°C)
- Factory programmable options for low lead time
- 1.8 V, 2.5 V, 3.3 V, and wide continuous power supply voltage range options
- 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5 mm x mm package

Applications

- PCIe Gen 1 to 6
- Compute Express Link (CXL)
- Universal Chiplet Interconnect Express (UCIe)
- Network switches, routers
- Industrial networking equipment
- Server and storage systems
- Test and measurement

Block Diagram

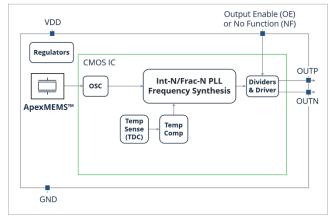


Figure 1. SiT9371 Block Diagram

Package Pinout

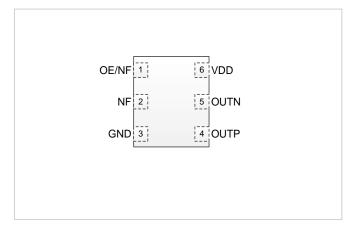
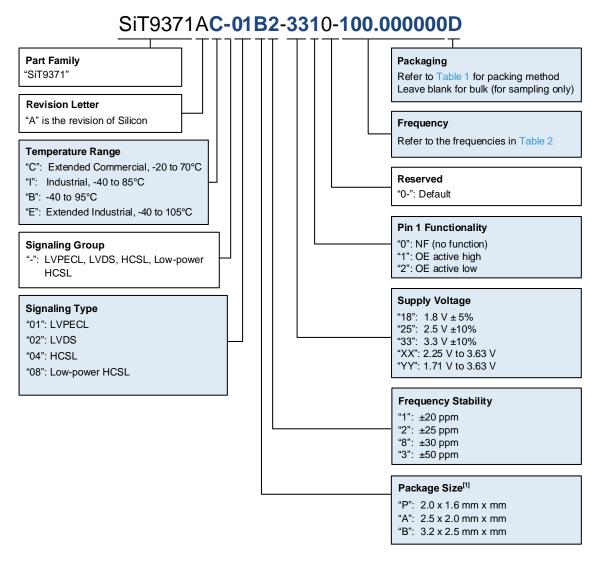



Figure 2. Pin Assignments (Top view) (Refer to Table 13 for Pin Descriptions)

Ordering Information

Note:

- 1. Contact SiTime for other package sizes.
- 2. Contact SiTime for Spread Spectrum option for EMI reduction.

Table 1. Ordering Codes for Supported Tape & Reel Packing Method

Device Size (mm x mm)	8 mm T&R (3ku)	8 mm T&R (1ku)	8 mm T&R (250u)
2.0 x 1.6	D	E	G
2.5 x 2.0	D	Е	G
3.2 x 2.5	D	E	G

Table 2. Supported Frequencies

100.000000 MHz	

Table Of Contents

Description	1
Features	1
Applications	1
Block Diagram	1
Package Pinout	1
Ordering Information	2
Electrical Characteristics	
Pin Description	
Test Circuit Diagrams	
Test Setups for LVPECL Measurements	
Test Setups for LVDS Measurements	
Test Setups for HCSL Measurements	-
Test Setups for Low-Power HCSL Measurements	15
Waveform Diagrams	16
Termination Diagrams	18
LVPECL Termination	18
LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	
HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	19
Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V	19
Dimensions and Patterns — 2.0 x 1.6 mm x mm	20
Dimensions and Patterns — 2.5 x 2.0 mm x mm	21
Dimensions and Patterns — 3.2 x 2.5 mm x mm	22
Additional Information	23
Revision History	23

Electrical Characteristics

All Min and Max limits in the Electrical Characteristics tables are specified over operating temperature and rated operating voltage with standard output termination shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage. See Test Circuit Diagrams for the test setups used with each signaling type.

Table 3. Electrical Characteristics – Common to All Output Signaling Types

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
				Frequency Ra				
Output Frequency Range	f		100.000		MHz			
	1			Frequency Sta	ability	1		
Frequency Stability	F_stab	-	_	±20	ppm	Inclusive of initial tolerance, operating temperature, rated power		
	•	-	-	±25	ppm	supply voltage, load variation of 2 pF ± 10%, and 10 years aging		
	•	-	_	±30	ppm	at 85°C		
	•	_	_	±50	ppm	1		
10 Year Aging	F_10y	_	±0.7	±2.3	ppm	Ambient temperature of 85°C		
			ı	Temperature F	Range			
Operating Temperature Range	T_use	-20	_	+70	°C	Extended commercial, ambient temperature		
	•	-40	_	+85	°C	Industrial, ambient temperature		
	•	-40	-	+95	°C	Ambient temperature		
	•	-40	_	+105	°C	Extended industrial, ambient temperature		
Supply Voltage								
Supply Voltage	Vdd	1.71	_	3.63	V	Voltage-supply order code "YY"		
		2.25	_	3.63	V	Voltage-supply order code "XX"		
		1.71	1.80	1.89	V	Voltage-supply order code "18". Contact SiTime for 1.5 V		
		2.25	2.50	2.75	V	Voltage-supply order code "25"		
	2.97 3.30 3.6		3.63	V	Voltage-supply order code "33"			
				Input Characte	ristics			
Input Voltage High	VIH	70%	-	_	Vdd	Logic High function for Pin 1		
Input Voltage Low	VIL	_	-	30%	Vdd	Logic High function for Pin 1		
Input Pull-up/Pull-down Impedance	Z_in	112.9	120	133.4	kΩ	Pin 1 for OE function		
				Output Charact	eristics			
Duty Cycle	DC	48	_	52	%	See Figure 13 for waveform.		
			St	artup, OE and S	SE Timing	9		
Startup Time	T_start	-	1.2	2	ms	Measured from the time Vdd reaches its rated minimum value		
Output Enable Time 1	T_oe	-	-	100+3 clock cycles	ns	For all signaling types except Low-Power HCSL. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 19 for waveform.		
Output Enable Time 2	T_oe	-	-	500+3 clock cycles	ns	For Low-Power HCSL signaling type. Measured from the time OE pin toggles to enable logic level to the time clock pins reach 90% of final swing. See Figure 19 for waveform.		
Output Disable Time	T_od	-	_	100+3 clock cycles	ns	Measured from the time OE pin toggles to disable logic level to the last clock edge. See Figure 20 for waveform.		
	,		Jitter	^[3] , measured at	f = 100 N	/IHz		
PCIe rms Phase Jitter, Gen 6	T_phj_g6	_	10	13	fs	Compare with PCIe Gen 6 (64 GT/s) limit of 100 fs rms		
PCIe rms Phase Jitter, Gen 5	T_phj_g5	_	15	20	fs	Compare with PCIe Gen 5 (32 GT/s) limit of 150 fs rms		
PCIe rms Phase Jitter, Gen 3 and Gen 4	T_phj_g3g4	_	40	50	fs	Compare with PCIe Gen 4 (16 GT/s) limit of 500 fs rms and Gen 3 (8 GT/s) limit of 1000 fs rms		
PCle rms Phase Jitter, Gen 2	T_phj_g2	_	140	165	fs	Compare with PCIe Gen 2 (5 GT/s) limit of 3100 fs rms		
PCle pp Phase Jitter, Gen 1	T_phj_g1	-	1500	1850	fs	Compare with PCIe Gen 1 (2.5 GT/s) limit of 86,000 fs pp		

Note:

^{3.} Measured according to PCI Express Base Specification Revision 6.0.1 common clock requirements documented in section 8.6.7 with jitter filter functions specified in section 8.6.6.2..

Table 4. Electrical Characteristics – LVPECL | Supply voltage ("order code"): 2.5 V ±10% ("25"), 3.3 V ±10% ("33"), 2.25 V to 3.63 V ("XX"). All typical specifications are measured at nominal supply voltage of 2.5 V. See Figure 4 and Figure 5 for test setups.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
	Current Consumption							
Current Consumption, Output Enabled without Termination	ldd_oe_nt	-	35.5	42.5	mA	Excluding load termination current		
Current Consumption, Output Enabled with Termination 1	ldd_oe_wt1	-	46	56	mA	Including load termination current as shown in Figure 23 for Vdd=3.3 V ±10%, Vdd=2.25 V to 3.63 V and R3=220 Ohms		
		_	46	52	mA	Including load termination current as shown in Figure 23 for Vdd=2.5 V ±10% and R3=220 Ohms		
Current Consumption, Output Enabled with Termination 2	ldd_oe_wt2	-	62	68	mA	Including load termination current. See Figure 24 for termination		
Current Consumption Output Disabled with Termination 1	ldd_od_wt1	-	53.5	65	mA	Including load termination current as shown in Figure 23 for Vdd=3.3 V ±10%, Vdd=2.25 V to 3.63 V and R3=220 Ohms. Driver output is at logic-high voltage levels.		
		-	53.5	61	mA	Including load termination current as shown in Figure 23 for Vdd=2.5 V ±10% and R3=220 Ohms. Driver output is at logic-high voltage levels.		
Current Consumption, Output Disabled with Termination 2	ldd_od_wt2	-	73.5	80	mA	Including load termination current. See Figure 24 for termination. Driver output is at logic-high voltage levels.		
			Output	Characteri	stics			
Output High Voltage	VOH	Vdd-1.075	Vdd-0.95	Vdd-0.86	V	See Figure 12 for waveform		
Output Low Voltage	VOL	Vdd-1.84	Vdd-1.7	Vdd-1.62	٧	See Figure 12 for waveform		
Output Differential Voltage Swing	V_Swing	1.4	1.5	1.65	٧	See Figure 13 for waveform		
Rise/Fall Time	Tr, Tf	-	170	200	ps	20% to 80%. See Figure 13 for waveform		
Differential Asymmetry, peak-peak	V_da	-	45	-	mV	See Figure 15 for waveform		
Differential Skew, peak	V_ds	-	±30	-	ps	See Figure 16 for waveform		
Overshoot Voltage, peak	V_ov	_	12	-	%	Measured as percent of V_Swing. See Figure 17 for waveform		
		Р	ower Supp	ly Noise Im	munity	-		
Power Supply-Induced Jitter	PSJS	-	9	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz		
Sensitivity		_	2	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 4		
Power Supply-Induced Phase	PSPN	-	-79	-	dBc	50 mV peak-peak ripple on VDD		
Noise		-	-92	_	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 4		

Table 5. Electrical Characteristics – LVDS | Supply voltage ("order code"): 2.5 V ±10% ("25"), 3.3 V ±10% ("33"), 2.25 V to 3.63 V ("XX"). All typical specifications are measured at nominal supply of 2.5. See Figure 6 and Figure 7 for test setups.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
			Currer	nt Consum	ption		
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-	32.5	39	mA	Excluding load termination current	
Current Consumption, Output Enabled with Termination	ldd_oe_wt	ı	36	42	mA	Including load termination current. See Figure 26 for termination	
Current Consumption Output Disabled with Termination	ldd_od_wt	ı	42	48	mA	Including load termination current. See Figure 26 for termination. Driver output is at logic-high voltage levels.	
			Output	Character	istics		
Differential Output Voltage	VOD	250	360	450	mV	See Figure 14 for waveform	
Delta VOD	ΔVOD	-	-	50	mV	See Figure 14 for waveform	
Offset Voltage	VOS	1.125	1.25	1.375	V	See Figure 14 for waveform	
Delta VOS	ΔVOS	-	-	50	mV	See Figure 14 for waveform	
Rise/Fall Time	Tr, Tf	-	290	330	ps	Measured 20% to 80% using Figure 26 for termination. See Figure 13 for waveform	
Differential Asymmetry, peak-peak	V_da	-	25	-	mV	See Figure 15 for waveform	
Differential Skew, peak	V_ds	-	±40	-	ps	See Figure 16 for waveform	
Overshoot Voltage, peak	V_ov	ı	8		%	Measured as percent of VOD. See Figure 18 for waveform	
			Power Sup	ply Noise	Immunity		
Power Supply-Induced Jitter	PSJS	-	15	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz	
Sensitivity		ı	3.5	-	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 6	
Power Supply-Induced Phase	PSPN	-	-75	_	dBc	50 mV peak-peak ripple on VDD	
Noise		-	-88	_	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 6	

Table 6. Electrical Characteristics – LVDS | Supply voltage ("order code"): $1.8 \text{ V} \pm 5\%$ ("18"), 1.71 V to 3.63 V ("YY"). All typical specifications are measured at nominal supply of 2.5 V. See Figure 6 and Figure 7 for test setups.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
			Currer	nt Consum	ption		
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-	32.5	39	mA	Excluding load termination current	
Current Consumption, Output Enabled with Termination	Idd_oe_wt	-	36	42	mA	Including load termination current. See Figure 26 for termination	
Current Consumption Output Disabled with Termination	ldd_od_wt	-	42	48	mA	Including load termination current. See Figure 26 for termination. Driver output is at logic-high voltage levels.	
			Output	Character	istics		
Differential Output Voltage	VOD	250	330	450	mV	See Figure 14 for waveform	
Delta VOD	ΔVOD	_	-	50	mV	See Figure 14 for waveform	
Offset Voltage	VOS	1.125	1.25	1.375	V	See Figure 14 for waveform	
Delta VOS	ΔVOS	_	-	50	mV	See Figure 14 for waveform	
Rise/Fall Time	Tr, Tf	-	290	330	ps	Measured 20% to 80% using Figure 26 for termination. See Figure 13 for waveform	
Differential Asymmetry, peak-peak	V_da	-	25	-	mV	See Figure 15 for waveform	
Differential Skew, peak	V_ds	-	±40	-	ps	See Figure 16 for waveform	
Overshoot Voltage, peak	V_ov	_	8		%	Measured as percent of VOD. See Figure 18 for waveform	
			Power Sup	ply Noise	Immunity		
Power Supply-Induced Jitter	PSJS	-	17.5	-	fs/mV	Power supply ripple from 10 kHz to 20 MHz	
Sensitivity		-	3.5	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 6	
Power Supply-Induced Phase Noise	PSPN	-	-73	_	dBc	50 mV peak-peak ripple on VDD	
		_	-88	-	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 6	

Table 7. Electrical Characteristics – HCSL | Supply voltage ("order code"): $2.5 \text{ V} \pm 10\%$ ("25"), $3.3 \text{ V} \pm 10\%$ ("33"), 2.25 V to 3.63 V ("XX"), $1.8 \text{ V} \pm 5\%$ ("18"), 1.71 V to 3.63 V ("YY"). All typical specifications are measured at nominal supply of 2.5 V. See Figure 8 and Figure 9 for test setups.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
i didilicici	Cymbol	141111.		nt Consum		Condition
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-	32	38	mA	Excluding load termination current
Current Consumption, Output Enabled with Termination	Idd_oe_wt	-	46.5	52	mA	Including load termination current. See Figure 27 (a) and Figure 27 (b) for termination.
Current Consumption, Output Disabled with Termination	Idd_od_wt	-	52.5	59	mA	Including load termination current. See Figure 27 (a) and Figure 27 (b) for termination. Driver output is at logic-high voltage levels.
			Output	Character	istics	
Output High Voltage	VOH	0.60	0.7	0.95	V	See Figure 12 for waveform
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform
Output Differential Voltage Swing	V_Swing	1.1	1.4	1.6	V	See Figure 13 for waveform
Rise/Fall Time	Tr, Tf	-	340	370	ps	Measured 20% to 80%. See Figure 13 for waveform
Differential Asymmetry, peak-peak	V_da	-	65	-	mV	See Figure 15 for waveform
Differential Skew, peak	V_ds	-	±70	-	ps	See Figure 16 for waveform
Overshoot Voltage, peak	V_ov	-	0	-	%	Measured as percent of V_Swing. See Figure 17 for waveform
			Power Sup	ply Noise	lmmunity	
Power Supply-Induced Jitter	PSJS	-	27	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz
Sensitivity		-	3.5	-	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 8
Power Supply-Induced Phase	PSPN	-	-70	_	dBc	50 mV peak-peak ripple on VDD
Noise		-	-88	-	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 8

Table 8. Electrical Characteristics – Low-Power HCSL | Supply voltage ("order code"): $2.5 \text{ V} \pm 10\%$ ("25"), $3.3 \text{ V} \pm 10\%$ ("33"), 2.25 V to 3.63 V ("XX"), $1.8 \text{ V} \pm 5\%$ ("18"), 1.71 V to 3.63 V ("YY"). All typical specifications are measured at nominal supply of 2.5 V. See Figure 10 and Figure 11 for test setups.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
Current Consumption								
Current Consumption, Output Enabled without Termination	Idd_oe_nt	-	33	38.5	mA	Excluding load termination current.		
Current Consumption, Output Enabled with Termination	Idd_oe_wt	1	33.5	39	mA	Including load termination current. See Figure 28 for termination		
Current Consumption, Output Disabled with Termination	ldd_od_wt	ı	35.5	42	mA	Including load termination current. See Figure 28 for termination. Driver output is at logic-high voltage levels.		
Output Characteristics								
Output High Voltage	VOH	0.8	0.9	1.15	V	See Figure 12 for waveform		
Output Low Voltage	VOL	-0.1	0	0.1	V	See Figure 12 for waveform		
Output Differential Voltage Swing	V_Swing	1.6	1.83	2.0	V	See Figure 13 for waveform		
Rise/Fall Time	Tr, Tf	-	330	380	ps	Measured 20% to 80%. See Figure 13 for waveform		
Differential Asymmetry, peak-peak	V_da	-	55	-	mV	See Figure 15 for waveform		
Differential Skew, peak	V_ds	i	±30	_	ps	See Figure 16 for waveform		
Overshoot Voltage, peak	V_ov	1	1	-	%	Measured as percent of V_Swing.		
						See Figure 17 for waveform		
			Power Sup	ply Noise	lmmunity			
Power Supply-Induced Jitter	PSJS	-	18	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz		
Sensitivity		_	6.5	_	fs/mV	Power supply ripple from 10 kHz to 20 MHz. Using RC power supply filter as shown in Figure 10		
Power Supply-Induced Phase	PSPN	-	-73	_	dBc	50 mV peak-peak ripple on VDD		
Noise		-	-82	-	dBc	50 mV peak-peak ripple on VDD. Using RC power supply filter as shown in Figure 10		

Table 9. Absolute Maximum Ratings

Operation outside the absolute maximum ratings may cause permanent damage to the part.

Performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Conditions	Min.	Max.	Unit
Continuous Power Supply Voltage Range (Vdd)		-0.5	4.0	V
Input Voltage, Maximum	Any input pin	-	Vdd + 0.3	V
Input Voltage, Minimum	Any input pin	-0.3	-	V
Storage Temperature		-65	150	°C
Maximum Junction Temperature		-	135	°C

Table 10. Thermal Considerations[4]

Package	θ _{JA} (°C/W)	Ψ _{ЈТ} (°С/ W)	θ 」в (°С/W)	θ _{JC,Top} (°C/W)
3225, 6-pin	101	4.7	23	86
2520, 6-pin	111	3.7	24	116
2016, 6-pin	134	3.4	24	147

Notes:

4. θ_{JA}, Ψ_{JT}, θ_{JB} and θ_{JC} are provided according to JEDEC standards 51-2A, 51-7, 51-8, and 51-12.01 with a 25C ambient and 250 mW power consumption (typical of 1 GHz f_{out}). The conduction thermal resistances θ_{JB} and θ_{JC} are obtained with the assumption that all heat flows from the junction to a heat sink through either the solder pads (θ_{JB}) or the top of the package (θ_{JC,Top}). These may be used in a two-resistor compact model. The values of θ_{JA} and Ψ_{JT} are strongly application dependent, and we report values based on the JEDEC thermal environment. θ_{JA} is the thermal resistance to ambient on a JEDEC PCB - it is a highly conservative estimate, since the JEDEC board does not have vias to PCB planes in the vicinity of the package. Ψ_{JT} can be used to estimate the junction temperature from measurements of the temperature at the top of the package, if the thermal environment is similar to the JEDEC environment.

Table 11. Maximum Operating Junction Temperature^[5]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature
70°C	85°C
85°C	100°C
95°C	110°C
105°C	120°C

Notes:

5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 12. Environmental Compliance

Parameter	Test Conditions	Value	Unit
Mechanical Shock Resistance	MIL-STD-883F, Method 2002	10,000	g
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007	70	g
Soldering Temperature (follow standard Pb free soldering guidelines)[6]	MIL-STD-883F, Method 2003	260	°C
Moisture Sensitivity Level	MSL1 @ 260°C		
Electrostatic Discharge (HBM)	HBM, JESD22-A114	2,000	V
Charge-Device Model ESD Protection	JESD220C101	750	V
Latch-up Tolerance	JESD78 Compliant		

Notes:

6. Please refer to SiTime Manufacturing Notes.

Pin Description

Table 13. Pin Description

Pin	Мар	Functionality		
1 OE/NF	Output Enable (OE)	H ^[7] : Specified frequency output L ^[8] : OUT: Logic HIGH,		
'	I DE/NF	No Function (NF)	Open, 120 kΩ internal pull-down resistor to GND	
2	NF	No Function	H or L or Open: No effect on output frequency or other device functions. ^[9]	
3	GND	Power	Power Supply Ground	
4	OUTP	Output	Oscillator output	
5	OUTN	Output	Complementary oscillator output	
6	VDD	Power	Power supply voltage ^[10]	

Top View 6 VDD OE/NF: 1 5 OUTN 4 OUTP

Figure 3. Pin Assignments

Notes:

- 7. OE pin includes a 120 kΩ internal pull-up resistor to VDD when active high, and a 120 kΩ internal pull-down resistor to GND when active low. In noisy environments, the OE pin is recommended to include an external 10 kΩ resistor (Use 10kΩ pull-up if active high OE; use 10kΩ pull-down if active low OE) when the pin is not externally driven.

 8. Differential Logic high means OUTP=VOH, OUTN=VOL.
- 9. Can be left open. SiTime recommends grounding it for better thermal performance.
- 10. A capacitor of value 0.1 μF or higher between VDD and GND pins is required.

Test Circuit Diagrams

A 1.5 pF capacitive load is used at each differential output. Because of the additive input capacitance of the active probe used with the oscilloscope, the output characteristics for all signal types are measured with a total of 2 pF capacitive load.

Test Setups for LVPECL Measurements

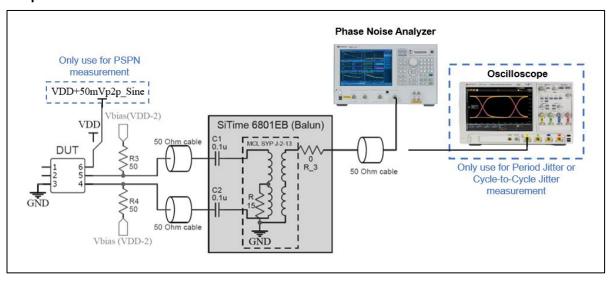


Figure 4. Test setup to measure LVPECL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) without filter added^[11]

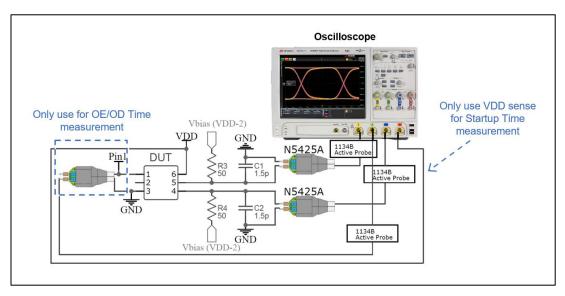


Figure 5. Test setup to measure LVPECL Waveform Characteristics, Current Consumption (with Termination 2)^[12], Output Enable/Disable Time, and Startup Time

Notes:

- 11. See Error! Reference source not found, for the test setup to measure LVPECL Power Supply-Induced Phase Noise (PSPN) with filter added.
- 12. See Error! Reference source not found. for the test setup to measure LVPECL Current Consumption with Termination 1 or without Termination.

Test Circuit Diagrams (continued)

Test Setups for LVDS Measurements

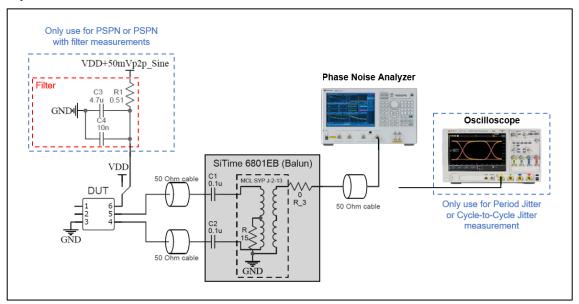


Figure 6. Test setup to measure LVDS Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

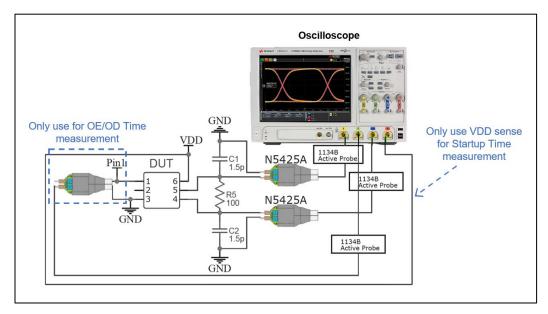


Figure 7. Test setup to measure LVDS Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Circuit Diagrams (continued)

Test Setups for HCSL Measurements

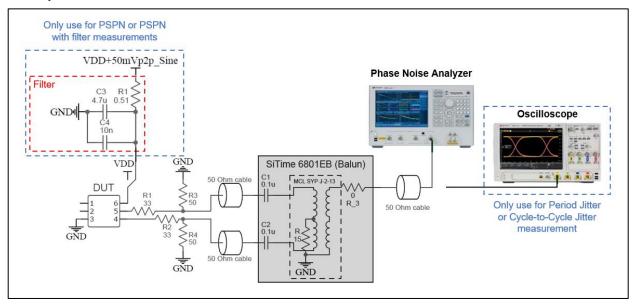


Figure 8. Test setup to measure HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

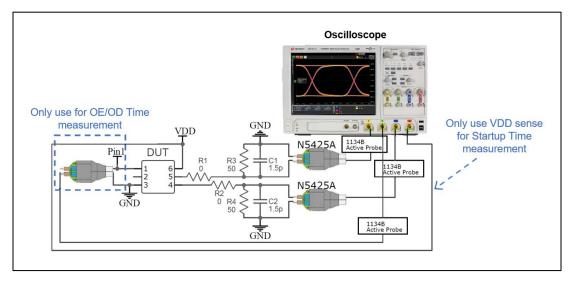


Figure 9. Test setup to measure HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Test Circuit Diagrams (continued)

Test Setups for Low-Power HCSL Measurements

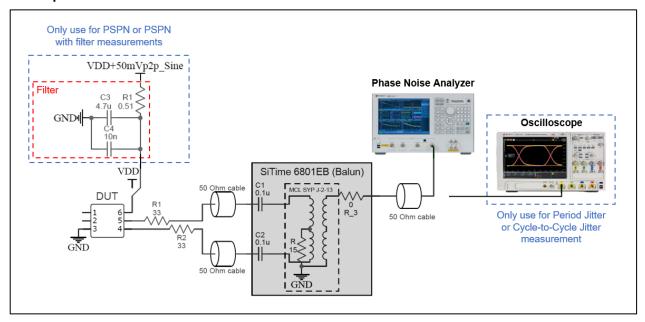


Figure 10. Test setup to measure Low-Power HCSL Phase Noise, Period Jitter, Cycle-to-Cycle Jitter, and Power Supply-Induced Phase Noise (PSPN) with and without filter added

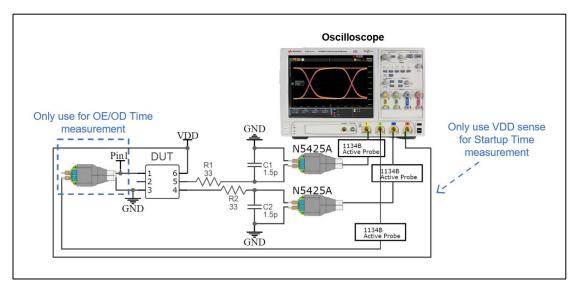


Figure 11. Test setup to measure Low-Power HCSL Waveform Characteristics, Current Consumption, Output Enable/Disable Time, and Startup Time

Waveform Diagrams

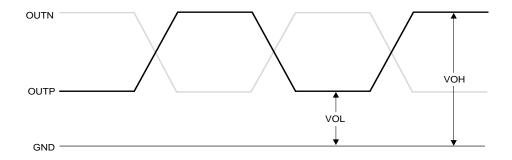


Figure 12. LVPECL, HCSL, and Low-Power HCSL, Voltage Levels per Differential Pin

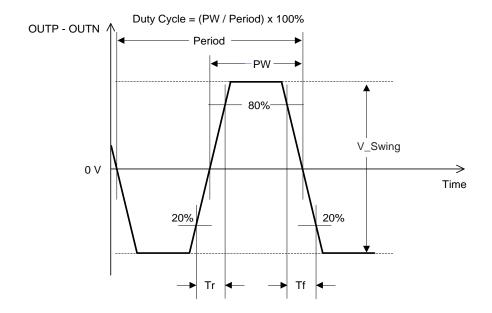


Figure 13. LVPECL, LVDS, HCSL, and Low-Power HCSL Voltage Levels Across Differential Pair

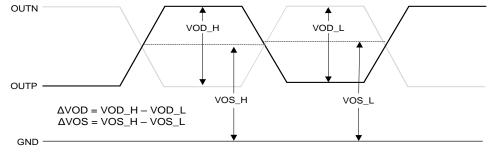


Figure 14. LVDS Voltage Levels per Differential Pin

Waveform Diagrams (continued)

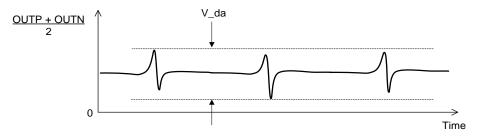


Figure 15. Differential Asymmetry (V_da)

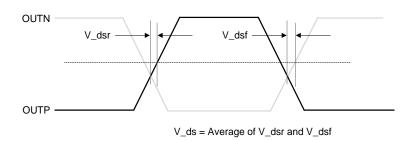


Figure 16. Differential Skew (V_ds) is measured as the Time between the Average Voltage Level and Crossing Voltage

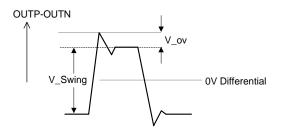


Figure 17. Overshoot Voltage (V_ov) for LVPECL, , HCSL, Low-power HCSL

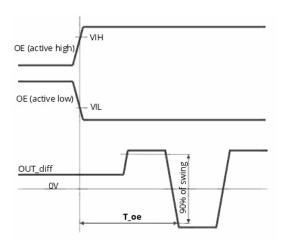


Figure 19. OE Pin Enable Timing (T_oe)

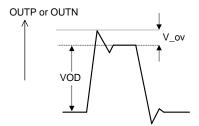


Figure 18. Overshoot Voltage (V_ov) for LVDS Output

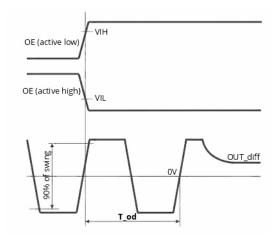


Figure 20. OE Pin Disable Timing (T_od)

Termination Diagrams

LVPECL Termination

. The table below provides LVPECL current consumption

(I_load) into the load termination.

Table 14. Termination Options for LVPECL Signaling

Signaling	Supply Voltage Order Codes	Termination Options			
		Figure 23	Figure 25	Figure 26	Figure 27
LVPECL referenced to Vdd	"25", "33", "XX"	OK to use I_load = 40 mA with 100 Ω near-end bias resistor	OK to use I_load = 28mA	OK to use	OK to use I_load = 28mA

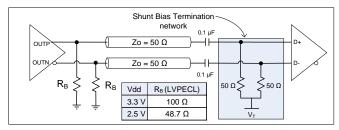


Figure 21. Recommended LVPECL Termination when AC-coupled

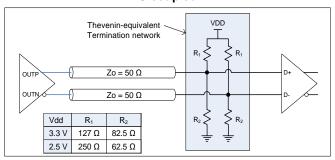


Figure 22. LVPECL DC-coupled Load Termination with Thevenin Equivalent Network^[14]

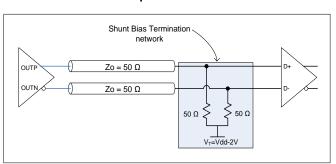


Figure 24. LVPECL with Y-Bias Termination

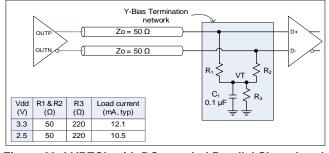
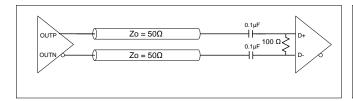



Figure 23. LVPECL with DC-coupled Parallel Shunt Load
Termination

Termination Diagrams (continued)

LVDS, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

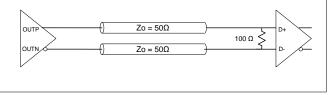
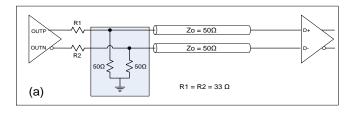



Figure 25. LVDS AC Termination

Figure 26. LVDS DC Termination at the Load

HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

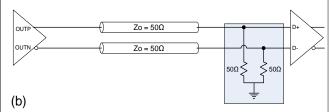
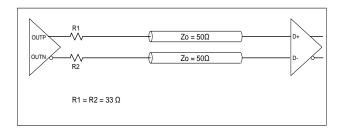
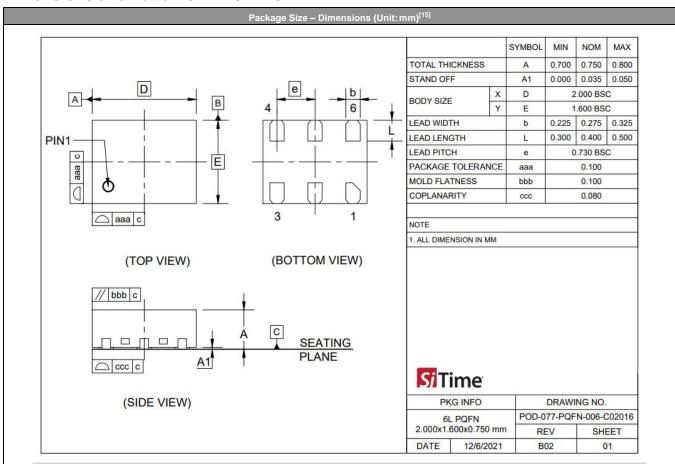
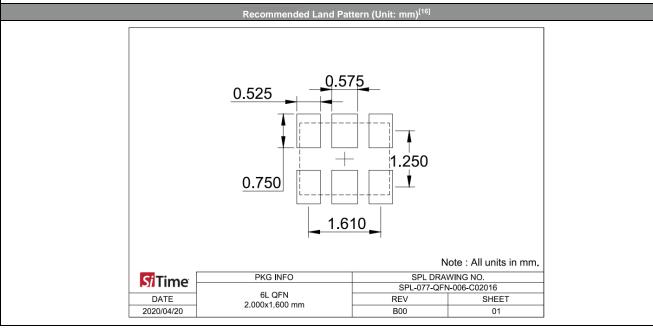


Figure 27. (a) HCSL Source Termination and (b) HCSL Load Termination

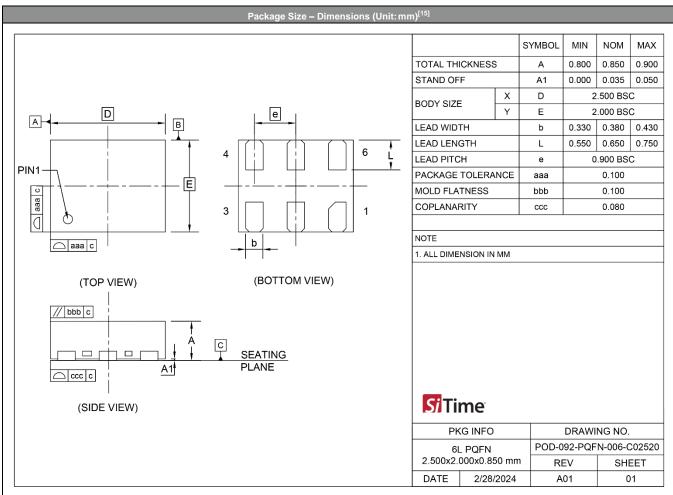
Low-power HCSL, Supply Voltage: 1.8 V ±5%, 2.5 V ±10%, 3.3 V ±10%, 2.25 V to 3.63 V, 1.71 V to 3.63 V

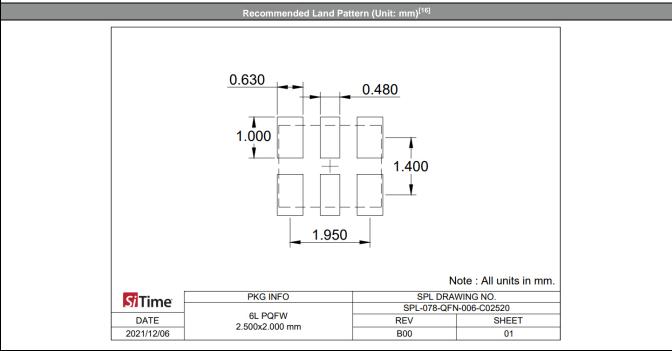




Figure 28. Low-power HCSL Termination

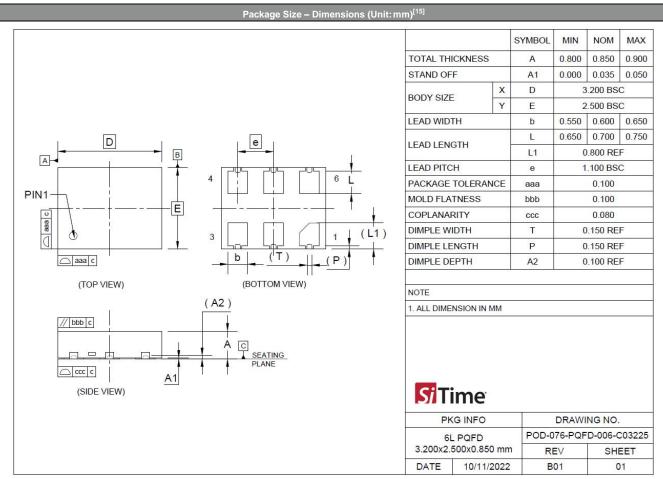
- Contact SiTime for optimum R_B values for FlexSwing options.
 Contact SiTime for optimum R1 and R2 values for FlexSwing options.

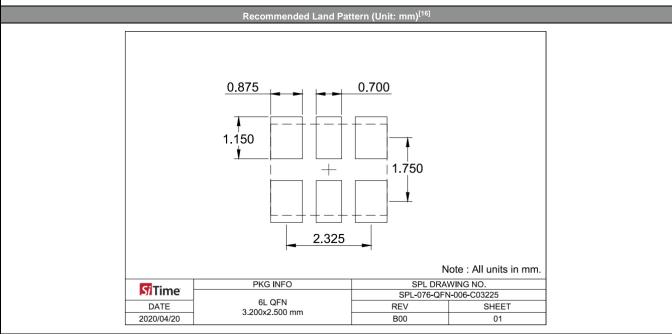
Dimensions and Patterns — 2.0 x 1.6 mm x mm




Notes:

- 15. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device
- 16. A capacitor of value 0.1 μF or higher between VDD and GND is required. An additional 10 μF capacitor between VDD and GND is required for the best phase jitter performance.


Dimensions and Patterns — 2.5 x 2.0 mm x mm



Dimensions and Patterns — 3.2 x 2.5 mm x mm

Additional Information

Table 15. Additional Information

Document	Description	Download Link
ECCN #: EAR99	Five character designation used on the commerce Control List (CCL) to identify dual use items for export control purposes.	
HTS Classification Code: 8542.39.0000	A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.	
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	https://www.sitime.com/support/resource-library/manufacturing- notes-sitime-products
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes
Evaluation Boards	SiT6760EB	https://www.sitime.com/support/resource-library/user-manuals/sit6760eb-evaluation-board-user-manual

Revision History

Table 16. Revision History

Revision	Release Date	Change Summary	
0.94	9-Jan-2023	Preliminary data sheet	
0.95	2-Feb-2023	Updated to include LVPECL and LVDS	
0.96	17-Apr-2023	Updated with PCIe standard Gen 1-6; Application to include CXL, UCIe and CK440	
0.97	15-May-2023	Update with PCIe RMS Phase Jitter values for Gen 1 to 6	
1.0	28-Feb-2024	Updated 2520 package Dimensions drawing Updated disclaimer Rev 1.0 Production release	

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2020-2024. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component or to operate nuclear facilities, in military or aerospace applications, or in other applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

BUYER AGREES NOT TO USE THIS PRODUCT FOR ANY APPLICATION OR IN ANY COMPONENTS: USED IN LIFE SUPPORT DEVICES, TO OPERATE NUCLEAR FACILITIES, FOR MILITARY OR AEROSPACE USE, OR IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

For military and aerospace applications, refer to SiT9356 and SiT9357 datasheets or the SiTime Endura products page at Aerospace & Defense solutions.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.

单击下面可查看定价,库存,交付和生命周期等信息

>>SiTime(赛特时脉)