

STD11NM60ND, STF/I11NM60ND STP11NM60ND, STU11NM60ND

N-channel 600 V, 0.37 Ω, 10 A, FDmesh™ II Power MOSFET I²PAK, TO-220, TO-220FP, IPAK, DPAK

Features

Order codes	V _{DSS} (@T _{jmax})	R _{DS(on)} max	I _D
STD11NM60ND			10 A
STF11NM60ND			10 A ⁽¹⁾
STI11NM60ND	650 V	< 0.45 Ω	10 A
STP11NM60ND			10 A
STU11NM60ND			10 A

- 1. Limited only by maximum temperature allowed
- The worldwide best R_{DS(on)}* area amongst the fast recovery diode devices
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

Switching applications

Description

The device is an N-channel FDmesh™ II Power MOSFET that belongs to the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a new vertical structure to the company's strip layout and associates all advantages of reduced onresistance and fast switching with an intrinsic fastrecovery body diode. It is therefore strongly recommended for bridge topologies, in particular ZVS phase-shift converters.

Table 1. **Device summary**

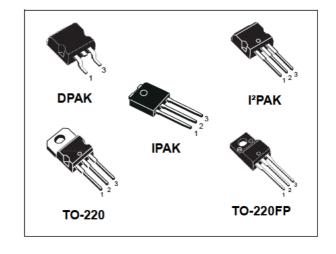
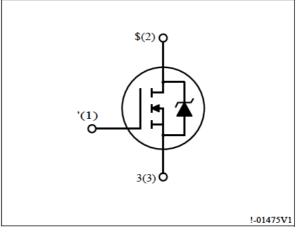



Figure 1. Internal schematic diagram

Order codes	Marking	Package	Packaging
STD11NM60ND		DPAK TO-	Tape and reel
STF11NM60ND		220FP	Tube
STI11NM60ND	11NM60ND	I ² PAK	Tube
STP11NM60ND		TO-220	Tube
STU11NM60ND		IPAK	Tube

October 2010 Doc ID 14625 Rev 2 1/19

Contents

1	Electrical ratings	3
2	Electrical characteristics	5
	2.1 Electrical characteristics (curves)	7
3	Test circuits	10
4	Package mechanical data	11
5	Packaging mechanical data	17
6	Revision history	18

STD/F/I/P/U11NM60ND Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value		
Symbol	Parameter	DPAK/I ² PAK, TO-220/IPAK	TO-220FP	Unit
V _{DS}	Drain-source voltage (√ _{GS} =0)	600		V
V_{GS}	Gate-source voltage	± 25		V
I _D	Drain current (continuous) at T _C = 25°C	10	10 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100°C	6.3	6.3 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	40	40 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25°C	90	25	W
dv/dt (3)	Peak diode recovery voltage slope	40		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s;T _C =25°C)	2500		٧
T _{stg}	Storage temperature	-55 to 150		°C
Tj	Max. operating junction temperature	150		°C

^{1.} Limited only by maximum temperature allowed

Table 3. Thermal data

Symbol	Parameter	Value					
Symbol	Faranietei	TO-220	I ² PAK	DPAK	IPAK	TO-220FP	Unit
R _{thj-case}	Thermal resistance junction-case max	1.38			5	°C/W	
R _{thj-amb}	Thermal resistance junction-amb max	62.5			100	62.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	50		50			°C/W
T _I	Maximum lead temperature for soldering purposes	300		300		300	ပ္

^{1.} When mounted on 1inch2 FR-4 board, 2 oz Cu

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq$ 10 A, di/dt \leq 400 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$, peak VDS \leq $V_{(BR)DSS}$

Electrical ratings STD/F/I/P/U11NM60ND

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive ⁽¹⁾	3.5	Α
E _{AS}	Single pulse avalanche energy (2)	200	mJ

^{1.} Pulse width limited by Tj max

^{2.} starting Tj= 25 °C, $I_D=I_{AS}$, $V_{DD}=50 \text{ V}$

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	600			٧
dv/dt ⁽¹⁾	Drain-source voltage slope	$V_{DD} = 480 \text{ V,I}_{D} = 10 \text{ A,}$ $V_{GS} = 10 \text{ V}$		45		V/ns
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max rating, V_{DS} = max rating,@125 °C			1 100	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 5 A		0.37	0.45	Ω

^{1.} Value measured at turn off under inductive load

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} =15 V, I _D = 5 A	-	7.5	•	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	1	850 44 5	1	рF рF рF
C _{oss eq.} (2)	Equivalent output capacitance	V_{GS} = 0, V_{DS} = 0V to 480 V	ı	130	ı	pF
Rg	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level=20 mV open drain	1	3.7	ı	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 480 V, I_{D} = 10 A V_{GS} = 10 V (see <i>Figure 19</i>)	-	30 4 16	-	nC nC nC

^{1.} Pulsed: pulse duration = 300µs, duty cycle 1.5%

^{2.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
$t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f}	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 300 V, I_{D} = 5 A, R_{G} = 4.7 Ω , V_{GS} = 10 V (see <i>Figure 18</i>)	,	16 7 50 9	-	ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		10 40	A A
V _{SD} ⁽²⁾	Forward on voltage	I_{SD} = 10 A, V_{GS} =0	1		1.3	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} =10 A, di/dt =100 A/ μ s, V_{DD} = 100 V (see <i>Figure 20</i>)	1	130 0.69 11		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$V_{DD} = 100 \text{ V}$ di/dt =100 A/ μ s, I _{SD} = 10 A Tj = 150 °C (see <i>Figure 20</i>)	-	200 1.2 12		ns µC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220, I²PAK

Figure 3. Thermal impedance for TO-220, I²PAK

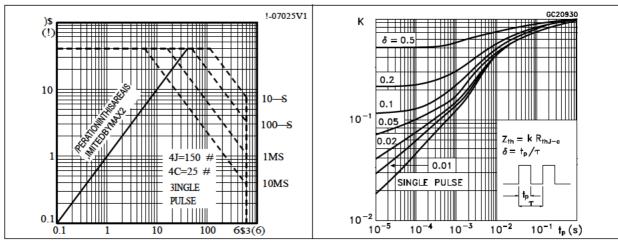


Figure 4. Safe operating area for TO-220FP Figure 5. Thermal impedance for TO-220FP

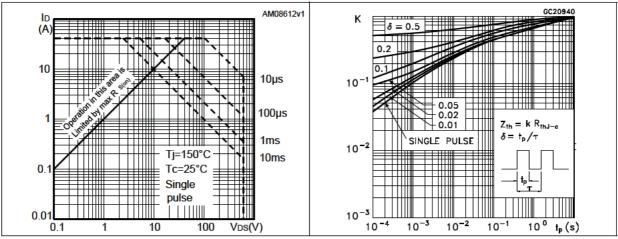


Figure 6. Safe operating area for DPAK, IPAK Figure 7. Thermal impedance for DPAK, IPAK

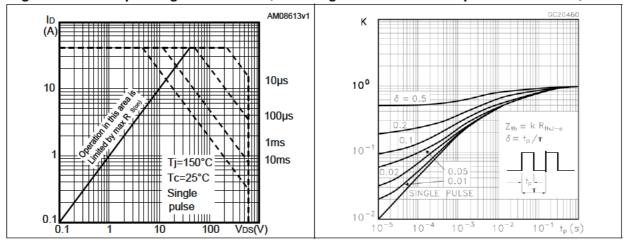
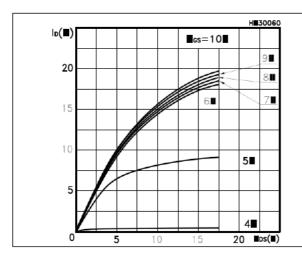



Figure 8. Output characteristics

Figure 9. Transfer characteristics

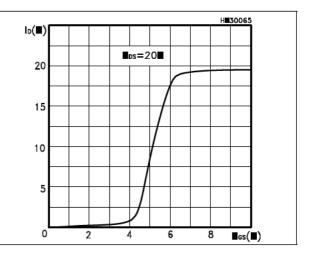


Figure 10. Transconductance

Figure 11. Static drain-source on resistance

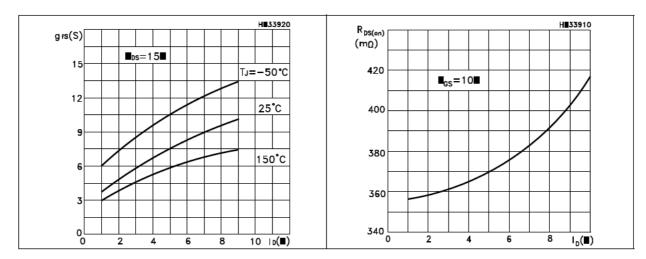
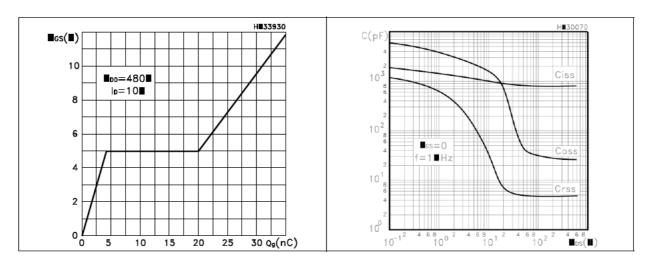
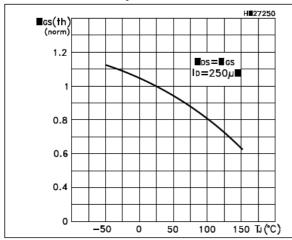




Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations

8/19 Doc ID 14625 Rev 2

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature

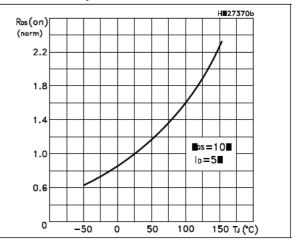
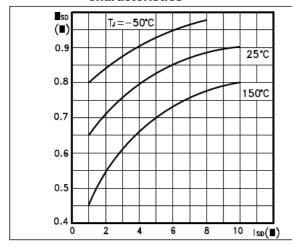
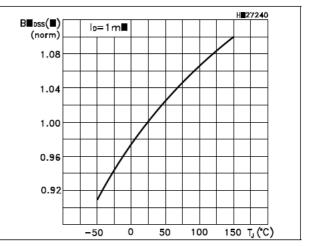




Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized B_{VDSS} vs temperature

Test circuits STD/F/I/P/U11NM60ND

3 Test circuits

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

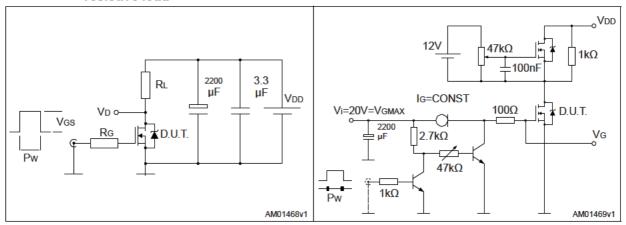


Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive load test circuit

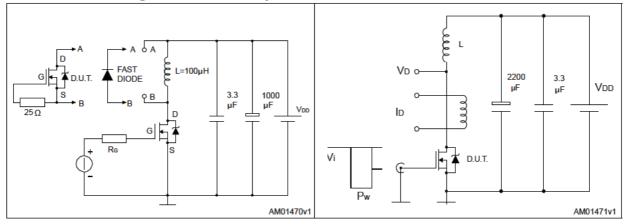
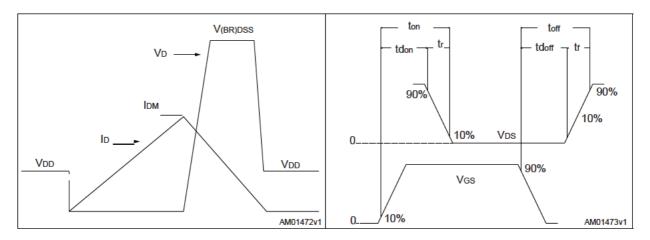



Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

10/19 Doc ID 14625 Rev 2

577

4 Package mechanical data

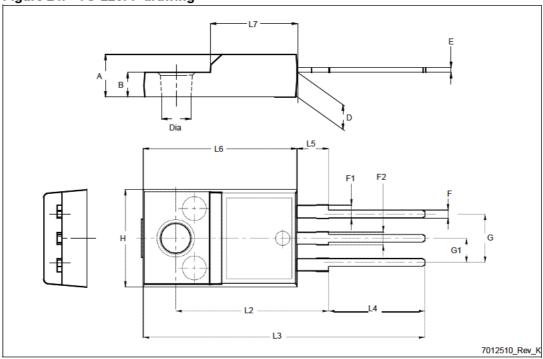
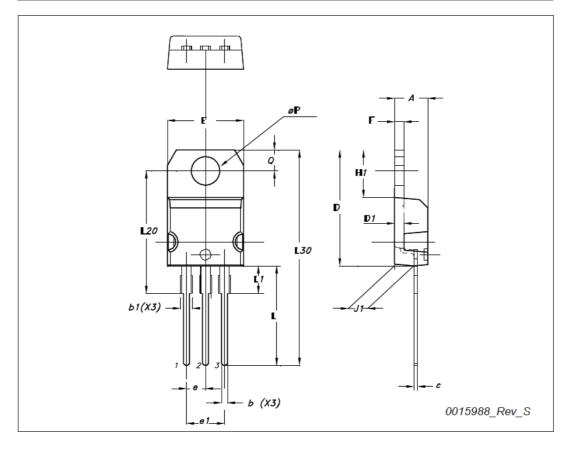

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

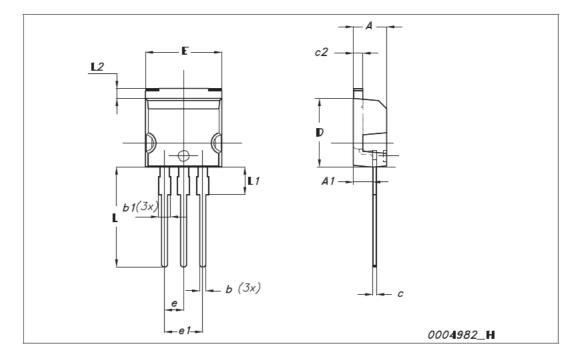
Table 9. TO-220FP mechanical data

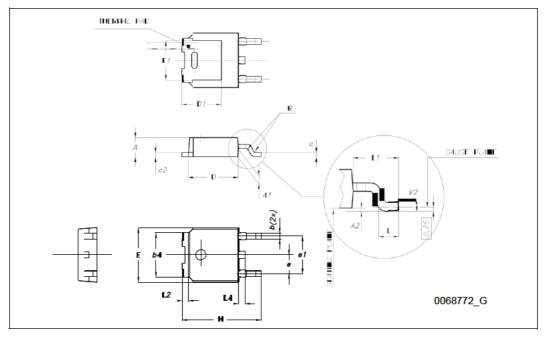
D:		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2


Figure 24. TO-220FP drawing

12/19 Doc ID 14625 Rev 2

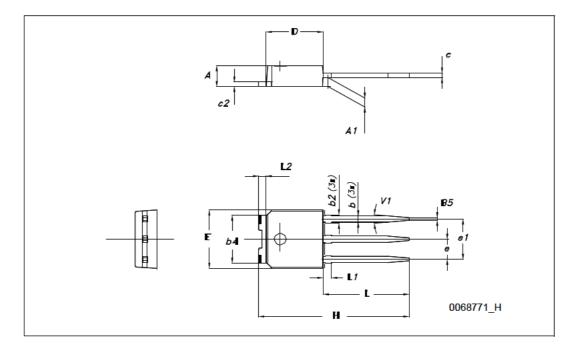
TO-220 type A mechanical data


Dim		mm				
Dim	Min	Тур	Max			
A	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.70			
С	0.48		0.70			
D	15.25		15.75			
D1		1.27				
E	10		10.40			
e	2.40		2.70			
e1	4.95		5.15			
F	1.23		1.32			
H1	6.20		6.60			
J1	2.40		2.72			
L	13		14			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
ØP	3.75		3.85			
Q	2.65		2.95			

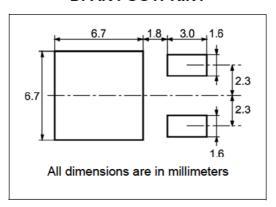


I²PAK (TO-262) mechanical data

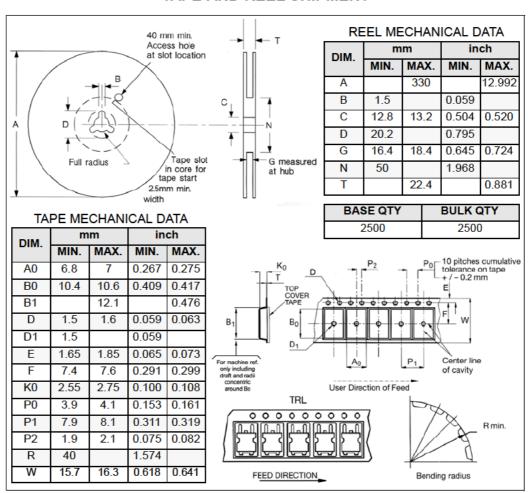
Dim	mm			inch		
	Min	Тур	Max	Min	Тур	Max
А	4.40		4.60	0.173		0.181
A1	2.40		2.72	0.094		0.107
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.49		0.70	0.019		0.027
c2	1.23		1.32	0.048		0.052
D	8.95		9.35	0.352		0.368
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
E	10		10.40	0.393		0.410
L	13		14	0.511		0.551
L1	3.50	·	3.93	0.137		0.154
L2	1.27		1.40	0.050		0.055



DIM.	mm.				
	min.	typ	max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
e		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1				
L1		2.80			
L2		0.80			
L4	0.60		1		
R		0.20			
V2	0 °		8 0		


TO-251 (IPAK) mechanical data

DIM.	mm.				
	min.	typ	max.		
Α	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
e		2.28			
e1	4.40		4.60		
Н		16.10			
L	9.00		9.40		
(L1)	0.80		1.20		
L2		0.80			
V1		10 °			



5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

Doc ID 14625 Rev 2

17/19

Revision history STD/F/I/P/U11NM60ND

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
23-Apr-2008	1	First release
25-Oct-2010	2	- Corrected Figure 2: Safe operating area for TO-220, I ² PAK - Corrected Figure 4: Safe operating area for TO-220FP - Corrected Figure 6: Safe operating area for DPAK, IPAK

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services descr bed herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely respons ble for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14625 Rev 2

19/19

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)