

STD13NM60ND, STF13NM60ND, STP13NM60ND

N-channel 600 V, 0.32 Ω typ., 11 A, FDmesh™ II Power MOSFET (with fast diode) in DPAK, TO-220FP and TO-220 packages

Datasheet - production data

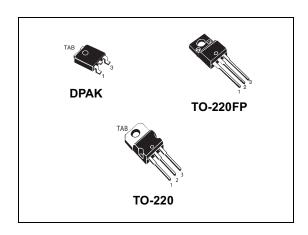
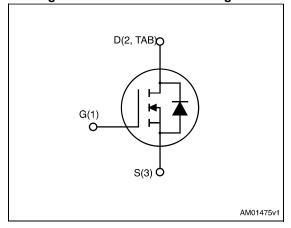



Figure 1. Internal schematic diagram

Features

Order codes	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STD13NM60ND			
STF13NM60ND	650 V	$0.38~\Omega$	11 A
STP13NM60ND			

- The worldwide best R_{DS(on)}* area among fast recovery diode devices
- 100% avalanche tested
- · Low input capacitance and gate charge
- · Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

Applications

Switching applications

Description

These FDmesh™ II Power MOSFETs with intrinsic fast-recovery body diode are produced using the second generation of MDmesh™ technology. Utilizing a new strip-layout vertical structure, these revolutionary devices feature extremely low on-resistance and superior switching performance. They are ideal for bridge topologies and ZVS phase-shift converters.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STD13NM60ND		DPAK	Tape and reel
STF13NM60ND	13NM60ND	TO-220FP	Tube
STP13NM60ND		TO-220	Tube

May 2013 DocID024645 Rev 1 1/21

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	. 9
4	Package mechanical data	10
5	Packaging mechanical data	18
6	Revision history	20

1 Electrical ratings

Table 2. Absolute maximum ratings

Cumbal	Parameter	Value	•	Unit
Symbol	Farameter	DPAK, TO-220	TO-220FP	Offic
V _{DS}	Drain-source voltage	600		V
V _{GS}	Gate-source voltage	± 25		V
I _D	Drain current (continuous) at T _C = 25°C	11	11 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100°C	6.93	6.93 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	44	44 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25°C	109	25	W
dv/dt (3)	Peak diode recovery voltage slope	40		V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	40		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s;T _C =25°C)		2500	٧
T _{stg}	Storage temperature	-55 to 150		°C
T _j	Max. operating junction temperature	150		°C

- 1. Limited by maximum junction temperature
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq$ 11 A, di/dt \leq 400 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$, $V_{DS(peak)} \leq V_{(BR)DSS}$
- 4. $V_{DS} \leq 480 \text{ V}$

Table 3. Thermal data

Symbol	ol Parameter –		Value			
Symbol			TO-220FP	TO-220	Unit	
R _{thj-case}	Thermal resistance junction-case max	1.15	5	1.15	°C/W	
R _{thj-amb}	Thermal resistance junction-amb max		62.5		°C/W	
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	50			°C/W	

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AS}	Avalanche current, repetitive or not-repetitive ⁽¹⁾	3	Α
E _{AS}	Single pulse avalanche energy (2)	162	mJ

^{1.} Pulse width limited by Tj max

47/

DocID024645 Rev 1

^{2.} starting Tj= 25 °C, $I_D=I_{AS}$, $V_{DD}=$ 50 V

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 600 V V _{DS} = 600 V, T _C =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3	4	5	٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 5.5 A		0.32	0.38	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	845	-	pF
C _{oss}	Output capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$	-	47	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	2.5	-	рF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0V$ to 480 V	-	121	-	рF
Rg	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level=20 mV open drain	-	4.3	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 11 A	-	24.5	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	4.8	-	nC
Q _{gd}	Gate-drain charge	(see <i>Figure 18</i>)	-	17	-	nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time		-	46.5	-	ns
t _r	Rise time	$V_{DD} = 300 \text{ V}, I_D = 5.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	10	-	ns
t _{d(off)}	Turn-off delay time	n _G = 4.7 52, v _{GS} = 10 v (see <i>Figure 17</i>)	-	9.6	-	ns
t _f	Fall time		-	15.4	-	ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{SD}	Source-drain current		-		11	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 11 A, V _{GS} =0	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} =11 A, di/dt =100 A/μs,	-	150		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 100 \text{ V}$ (see <i>Figure 19</i>)	-	755		nC
I _{RRM}	Reverse recovery current		-	12		Α
t _{rr}	Reverse recovery time	V _{DD} = 100 V di/dt =100 A/µs, I _{SD} = 11 A	-	187		ns
Q _{rr}	Reverse recovery charge		-	1271		nC
I _{RRM}	Reverse recovery current	Tj = 150 °C (see <i>Figure 19</i>)	-	13.6		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration = 300μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for DPAK

Figure 3. Thermal impedance for DPAK

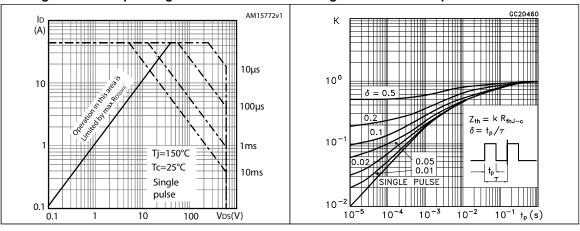


Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP

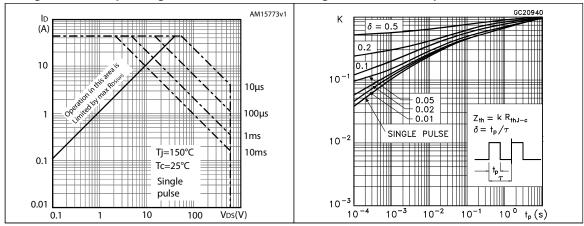


Figure 6. Safe operating area for TO-220

Figure 7. Thermal impedance for TO-220

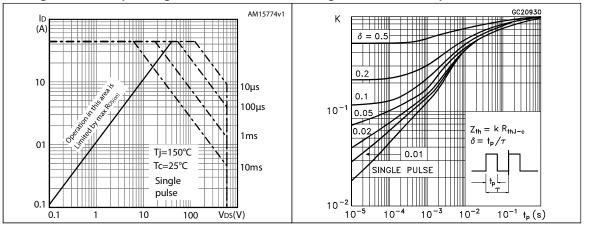


Figure 8. Output characteristics

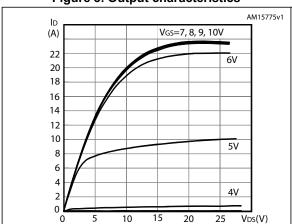


Figure 9. Transfer characteristics

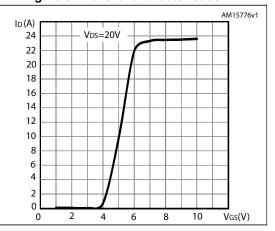


Figure 10. Gate charge vs gate-source voltage

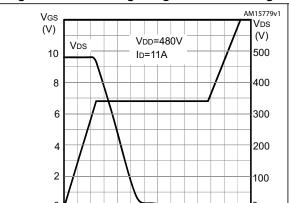


Figure 11. Static drain-source on-resistance

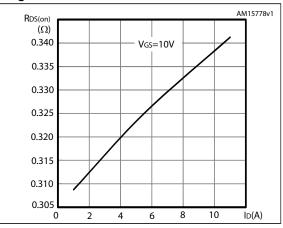
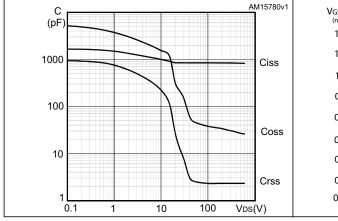



Figure 12. Capacitance variations

16 20

22 Qg(nC)

Figure 13. Normalized gate threshold voltage vs. temperature

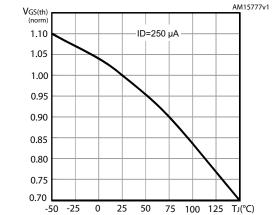


Figure 14. Normalized on-resistance vs temperature

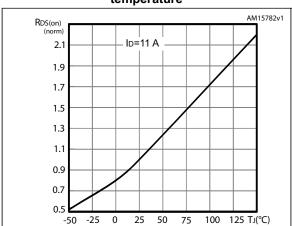


Figure 15. Source-drain diode forward characteristics

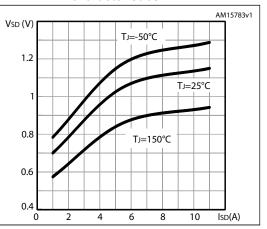
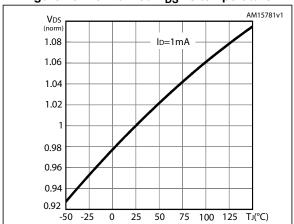



Figure 16. Normalized V_{DS} vs temperature

3 Test circuits

Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit

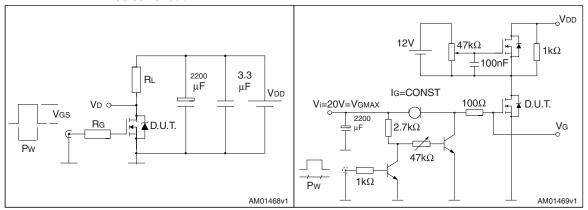


Figure 19. Test circuit for inductive load switching and diode recovery times

Figure 20. Unclamped inductive load test circuit

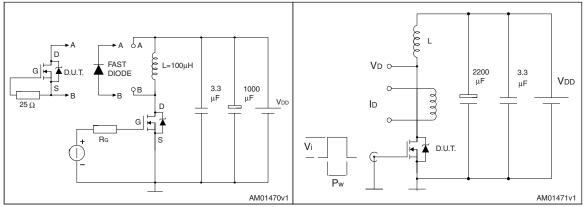
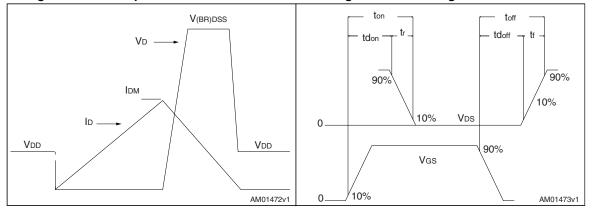



Figure 21. Unclamped inductive waveform

Figure 22. Switching time waveform

47/

DocID024645 Rev 1

4 Package mechanical data

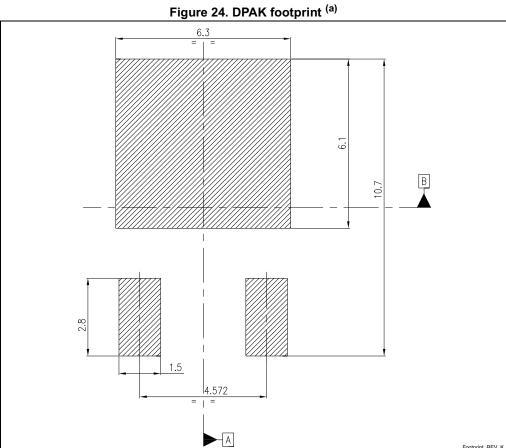

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 9. DPAK (TO-252) mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

THERMAL PAD c2 L2 Ď1 *b*(2x) R С SEATING PLANE (L1) *V2* 0068772_K

Figure 23. DPAK (TO-252) drawing

a. All dimensions are in millimeters

Table 10. TO-220FP mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Dia L6 L2 *L7* L3 F<u>1</u> L4 F2 Ε -G1_ 7012510_Rev_K_B

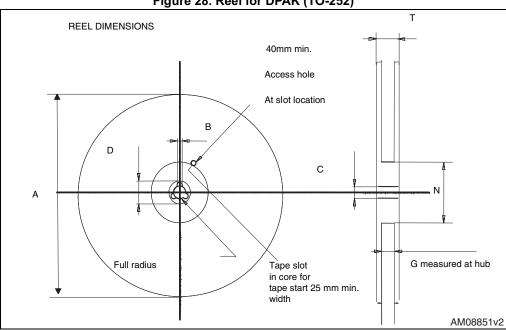
Figure 25. TO-220FP drawing

Table 11. TO-220 type A mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

Figure 26. TO-220 type A drawing

5 Packaging mechanical data


Table 12. DPAK (TO-252) tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
	Min.	Max.	Dim.	Min.	Max.	
A 0	6.8	7	А		330	
B0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75			•	
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1			•	
R	40					
Т	0.25	0.35				
W	15.7	16.3				

10 pitches cumulative tolerance on tape +/- 0.2 mm Top cover \oplus B1 For machine ref. only D1 Α0 P1 including draft and radii concentric around B0 User direction of feed Bending radius User direction of feed AM08852v1

Figure 27. Tape for DPAK (TO-252)

47/

DocID024645 Rev 1

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
15-May-2013	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID024645 Rev 1

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)