

STCS1A

1.5 A max constant current LED driver

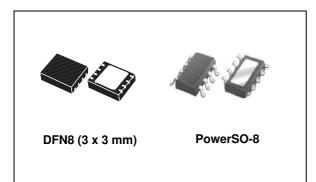
The STCS1A is a BiCMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discrete components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V

giving benefits in terms of precision, integration

The current is set with external resistor up to 1.5 A with a \pm 10 % precision; a dedicated pin allows implementing PWM dimming. An external

milliseconds allowing reduction of EMI.

load disconnection condition.


capacitor allows setting the slope for the current rise from tens of microseconds to tens of

An open-drain pin output provides information on

Description

and reliability.

Datasheet - production data

Features

- Up to 40 V input voltage
- Less than 0.5 V voltage overhead
- Up to 1.5 A output current
- PWM dimming pin
- Shutdown pin
- LED disconnection diagnostic
- Slope control with external cap

Applications

- LED constant current supplying for varying input voltages
- Low voltage lighting
- Small appliances LED lighting

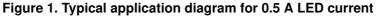
Table 1. Device summary

Order codes	Packages	Packaging
STCS1APUR	DFN8 (3 x 3 mm)	3000 parts per reel
STCS1APHR	PowerSO-8	2500 parts per reel

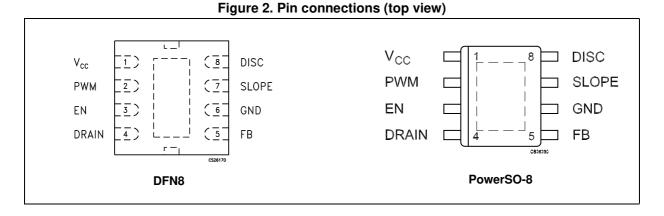
DocID14455 Rev 3

1/19

This is information on a product in full production.


Contents

1	Application diagram 3
2	Pin configuration
3	Maximum ratings 5
4	Electrical characteristics6
5	Timing
6	Typical performance characteristics
7	Detail description
	7.1 Current setting
	7.2 Enable
	7.3 PWM dimming 10
	7.4 Diagnostic
8	Application information
	8.1 Reverse polarity protection 12
	8.2 Thermal considerations 12
9	Package mechanical data 14
10	Revision history


1 Application diagram

2 Pin configuration

Table 2. Pin description

Pin n°	Symbol	Note
1	V _{CC}	Supply voltage
2	PWM	PWM dimming input
3	EN	Shutdown pin
4	DRAIN	Internal N-MOSFET drain
5	FB	Feedback input. The control loop regulates the current in such a way that the average voltage at the FB input is 100 mV (nominal). The cathode of the LED and a resistor to ground to set the LED current should be connected at this point
6	GND	Ground
7	SLOPE	Capacitor for slope control
8	DISC	Load disconnection flag (open drain)
	Exp-pad	Internally connected to ground

3 Maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	-0.3 to +45	v
DRAIN	Drain pin	-0.3 to +45	v
PWM, EN, DISC	Logic pins	-0.3 to + V _{CC} + 0.3	V
SLOPE, FB	Configuration pins	-0.3 to + 3.3	V
ESD	Human body model (all pins)	±2	kV
T _J ⁽¹⁾	Junction temperature	-40 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C

Table 3. Absolute maximum ratings

 T_J is calculated from the ambient temperature T_A and the power dissipation P_D according the following formula: T_J = T_A + (P_D x R_{thJA}). See *Figure 16* and *Figure 17* for details of max power dissipation for ambient temperatures higher than 25°C.

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	DFN8	PowerSO-8	Unit
R _{thJC}	Thermal resistance junction-case	10	12	°C/W
R _{thJA}	Thermal resistance junction-ambient	37.6 ⁽¹⁾	45 ⁽²⁾	°C/W

1. This value is referred to four-layer PCB, JEDEC standard test board.

2. With two sides, two planes PCB following EIA/JEDEC JESD51-7 standard.

4 Electrical characteristics

 V_{CC} = 12 V; I_O = 100 mA; T_J = -40 °C to 125 °C; V_{DRAIN} = 1 V; C_{DRAIN} = 1 μF ; C_{DRAIN} = 1 μF , C_{BYP} = 100 nF typical values are at T_A = 25 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{CC}	Supply voltage range		4.5		40	V	
	Output current range		1		1500	mA	
Ι _Ο	Output current	R _{FB} = 0.2 Ω		500		mA	
	Regulation (percentage with respect to $V_{CC} = 12 \text{ V}$)	V_{CC} = 4.5 to 40 V, I_{O} = 100 mA; V_{DRAIN} = 1 V	-1		+1	%	
V_{FB}	Feedback voltage	I _O = 0 to 1.5 A	90	100	110	mV	
		On Mode		450	750		
I _{CC}	Quiescent current (Measured on V _{CC} pin)	Shutdown Mode;V _{CC} = 5 to 12 V			1	μA	
		Shutdown Mode;V _{CC} = 12 to 40 V			3		
		l _O = 100 mA		0.12	0.16		
V _{DROP}	Dropout voltage (V _{DRAIN} to GND)	l _O = 1.5 A		0.58	0.9	V	
LEAK _{DRAIN}	Drain leakage current	Shutdown; V _{DRAIN} = 40 V			10	μA	
T _R /T _F	Rise/Fall time of the current on PWM transition	C _{SLOPE} = 10 nF, T _J = -40 °C to 105 °C		800		μs	
Ŧ	Delay on PWM signal	V_{PWM} rising, V_{CC} = 12 V C_{SLOPE} = floating		3			
Т _D	(see <i>Figure 3</i>)	V_{PWM} falling, V_{CC} = 12 V C_{SLOPE} = floating		1.2		– μs	
	Low level voltage	I _{SINK} = 5 mA		0.2	0.5	V	
DICC	Leakage current	V _{DISC} = 5 V			1	μA	
DISC	Load disconnection threshold	DISC Turn-ON		75			
	(V _{DRAIN} -GND)	DISC Turn-OFF		110		mV	
Thermal	Shutdown temperature			155		ŝ	
Protection	Hysteresis			25		°C	
Logic input	s (PWM and EN)						
VL	Input low level				0.4	V	
V _H	Input high level		1.2			V	
	EN, PWM leakage current	V _{EN} = 5 V; V _{PWM} = 5 V			2		
	EN input leakage current	V _{EN} = 40 V			60	μA	
	PWM input leakage current	V _{PWM} = 40 V			120		

Note: All devices 100 % production tested at $T_A = 25$ °C. Limits over the operating temperature range are guaranteed by design.

6/19

5 Timing

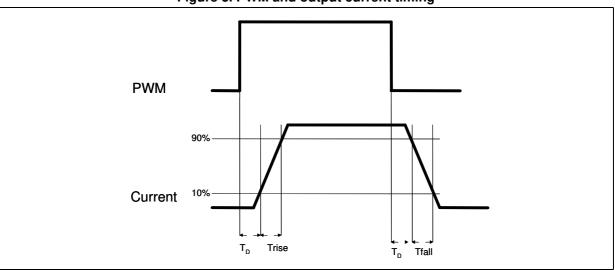
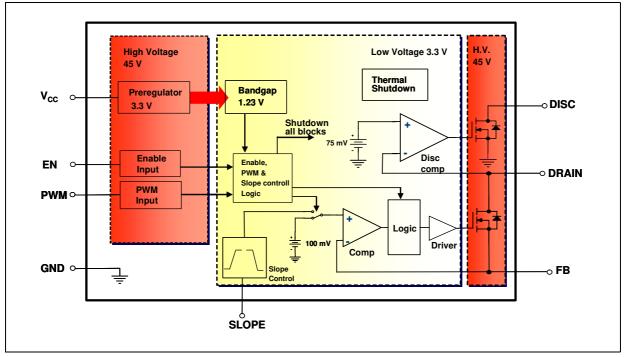
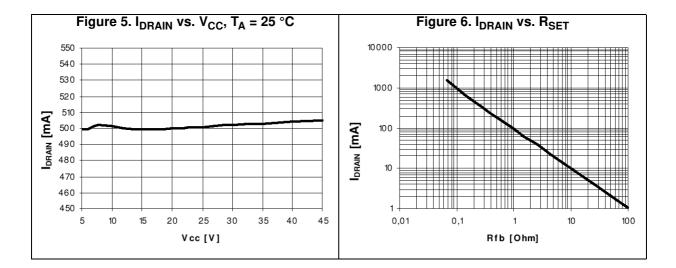
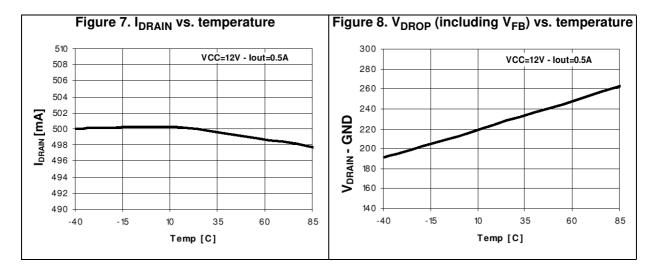
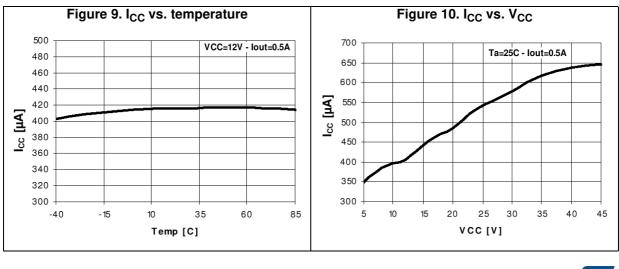



Figure 3. PWM and output current timing

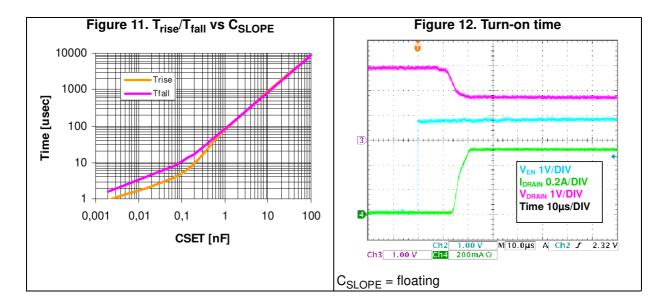

Figure 4. Block diagram

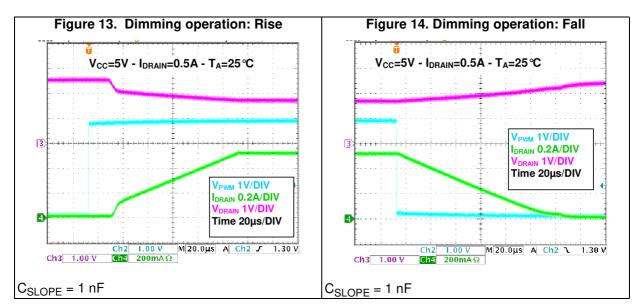




8/19

6 Typical performance characteristics





7 Detail description

The STCS1A is a BiCMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discrete components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V giving benefits in terms of precision, integration and reliability.

7.1 Current setting

The current is set with an external sensing resistor connected to the FB pin. The feedback voltage is 100 mV, then a low resistor value can be chosen reducing power dissipation. A value between 1 for instance, should one need a 700 mA LEDs current, RF should be selected according to the following equation:

For instance, should one need a 700 mA LEDs current, RF should be selected according to the following equation:

 $R_F = V_{FB} / I_{LEDs} = 100 \text{ mV} / 700 \text{ mA} = 142 \text{ m}\Omega$

7.2 Enable

When the enable pin is low the device completely off thus reducing current consumption to less than 1 $\mu A.$ When in shutdown mode, the internal main switch is off.

7.3 PWM dimming

The PWM input allows implementing PWM dimming on the LED current; when the PWM input is high the main switch will be on and vice versa. A typical frequency range for the input is from few Hertz to 50 kHz. The maximum dimming frequency is limited by the minimum rise/fall time of the current (obtained with $C_{SLOPE} = 0$) which is around 4µs each. Above 50 kHz the current waveforms starts assuming a triangular shape.

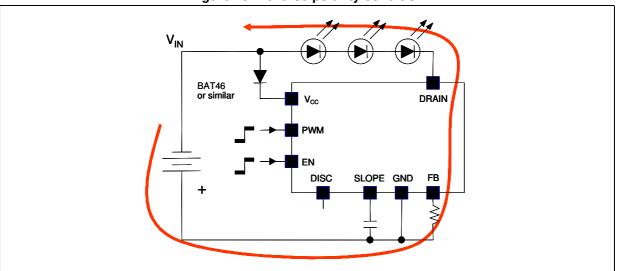
While the PWM input is switching, the overall circuitry remains on, this is needed in order to implement two important features: short delay time and controlled slope for the current.

Since the PWM pin is controlling just the main switch, the overall circuitry is always on and it is able to control the delay time between the PWM input signal and the output current in the range of few μ s, this is important to implement synchronization among several light LED sources.

The rise and fall slope of the current is controlled by the C_{SLOPE} capacitor. The rise and fall time are linear dependent from the C_{SLOPE} capacitor value (see graph in typical characteristics). A controlled rise time has two main benefits: reducing EMI noise and avoid current spike at turn on.

When C_{SLOPE} is left floating, the internal switch is turned on at maximum speed, in this condition an overshoot can be present on the LED current before the system goes into regulation.

7.4 Diagnostic


When STCS1A is in on mode (EN is high), the device is able to detect disconnection or fail of the LED string monitoring V_{DRAIN} pin. If V_{DRAIN} is lower than 75 mV the DISC pin is pulled low regardless the PWM pin status. This information can be used by the system to inform that some problem happens in the LEDs.

8 Application information

8.1 Reverse polarity protection

STCS1A must be protected from reverse connection of the supply voltage. Since the current sunk from V_{CC} pin is in the range of 450 μ A a small diode connected to V_{CC} is able to protect the chip. Care must be taken for the whole application circuit, especially for the LEDs, in fact, in case a negative voltage is applied between V_{IN} and GND, a negative voltage will be applied to the LED string that must have a total breakdown voltage higher than the negative applied voltage in order to avoid any damage.

Figure 15. Reverse polarity condition

8.2 Thermal considerations

The STCS1A is able to control a LED current up to 1.5 A and able to sustain a voltage on the drain pin up to 40 V. Those operating conditions are however limited by thermal constraints, the thermal resistances shown in the *Table 4: Thermal data* section are the typical ones, in particular R_{thJA} depends on the copper area and the number of layers of the printed circuit board under the pad. DFN8 and PowerSO-8 have an exposed die attach pad which enhances the thermal conductivity enabling high power application.

The power dissipation in the device can be calculated as follow:

 $\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{DRAIN} - \mathsf{V}_\mathsf{FB}) \times \mathsf{I}_\mathsf{LED} + (\mathsf{V}_\mathsf{CC} \times \mathsf{I}_\mathsf{CC})$

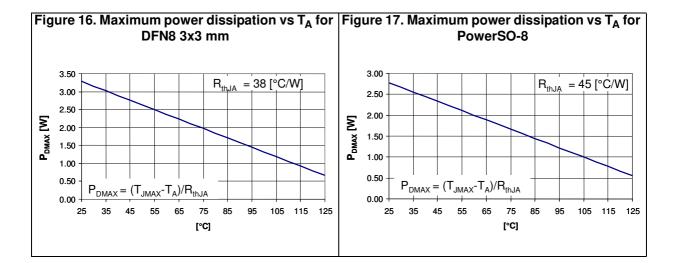
basing on this and on the thermal resistance and ambient temperature, the junction temperature can be calculated as:

 $T_J = R_{thJA} \times P_D + T_A$

A typical application could be:

- Input voltage: 12 V;
- 3 white LEDs with an typical $V_F = 3.6 V$;
- LEDs current: 500 mA;

- Package: DFN8 3 x 3 mm;

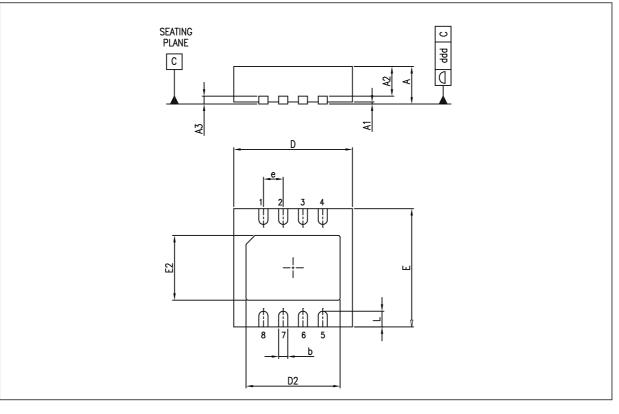

In this case $V_{DRAIN} = 12 - 3 \times 3.6 = 1.2 \text{ V}$

 $P_D = (1.2 - 0.1) \times 0.5 + 12 \times 0.5 \times 10^{-3} = 0.55 + 6 \times 10^{-3} = 556 \text{ mW}$

The junction temperature will be:

 $T_{\rm J} = 37.6 \times 0.556 + 50 = 70.9 \ ^{\circ}C.$

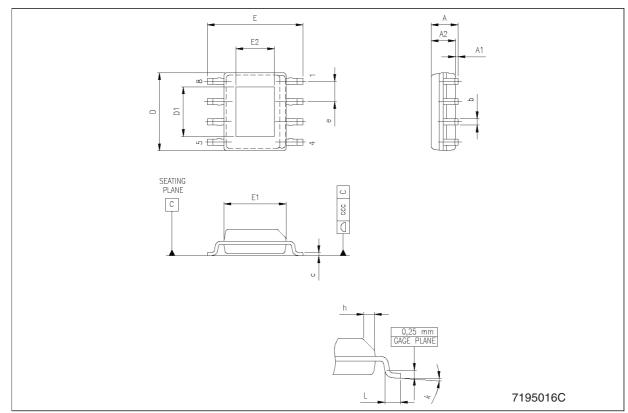
The following pictures show the maximum power dissipation according to the ambient temperature for both packages:



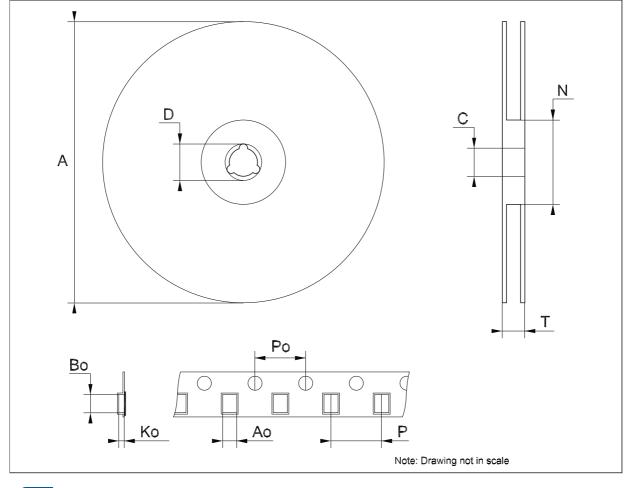
9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

	DFN8 (3x3 mm) mechanical data					
Dim	mm.			mils.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.70			27.6	
A3		0.20			7.9	
b	0.18	0.23	0.30	7.1	9.1	11.8
D		3.00			118.1	
D2	2.23	2.38	2.48	87.8	93.7	97.7
E		3.00			118.1	
E2	1.49	1.64	1.74	58.7	64.6	68.5
е		0.50			19.7	
L	0.30	0.40	0.50	11.8	15.7	19.7



16/19


Dim.	mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.70			0.067
A1	0.00		0.15	0.00		0.006
A2	1.25			0.049		0.142
b	0.31		0.51	0.012		0.020
С	0.17		0.25	0.007		0.010
D	4.80	4.90	5.00	0.189	0193	0.197
D1	2.24	3.10	3.20	0.088	0.122	0.126
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
E2	1.55	2.41	2.51	0.061	0.095	0.099
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	0°		8°	0°		8°
CCC			0.10			0.004

		mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			180			7.087	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
Ν	60			2.362			
Т			14.4			0.567	
Ao		3.3			0.130		
Во		3.3			0.130		
Ko		1.1			0.043		

57

DocID14455 Rev 3

17/19

10 Revision history

Date	Revision	Changes	
19-Feb-2008	1	Initial release.	
02-Jul-2008	2	Modified: Table 5 on page 6.	
20-Jan-2022	3	Updated: Applications on the cover page.	

Table 6. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)