

STP9N80K5, STW9N80K5

N-channel 800 V, 0.73 Ω typ., 7 A MDmesh™ K5 Power MOSFETs in a TO-220 and TO-247 packages

Datasheet - production data

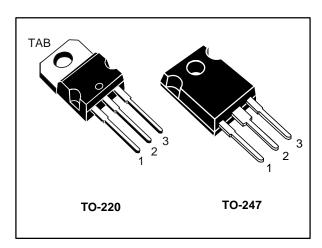
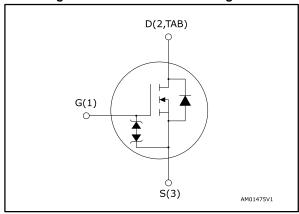



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	
STP9N80K5	800 V	0.00.0	7 A	
STW9N80K5	800 V	0.90 Ω	/ A	

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

These very high voltage N-channel Power MOSFET are designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STP9N80K5	ONIOOKE	TO-220	Tuba
STW9N80K5	9N80K5	TO-247	Tube

July 2016 DocID028461 Rev 3 1/16

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	g
4	Packag	e information	10
	4.1	TO-220 type A package information	11
	4.2	TO-247 package information	13
5	Revisio	n history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 30	V
I _D	Drain current (continuous) at T _C = 25 °C	7	Α
l _D	Drain current (continuous) at T _C = 100 °C	4.4	Α
I _D ⁽¹⁾	$I_D^{(1)}$ Drain current (pulsed) P _{TOT} Total dissipation at T _C = 25 °C		Α
Ртот			W
dv/dt (2)	Peak diode recovery voltage slope	4.5	\//n a
dv/dt (3)	dv/dt (3) MOSFET dv/dt ruggedness		V/ns
TJ	erating unction temperature range		°C
T _{stg}	Storage temperature range	- 55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value		Unit
		TO-220	TO-247	
R _{thj-case}	Thermal resistance junction-case	1.	14	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	$I_{AR} \qquad \text{Avalanche current, repetitive or not repetitive (pulse width limited by Tjmax)} \\ E_{AS} \qquad \text{Single pulse avalanche energy (starting Tj = 25 °C, I_D = I_{AR}, V_{DD} = 50 V)} \\$		А
Eas			mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 7$ A, di/dt ≤ 100 A/ $\mu s;$ V Ds peak < V(BR)DSS,VDD= 640 V

 $^{^{(3)}}V_{DS} \le 640 \text{ V}$

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	800			V
	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 800 V			1	μΑ
I _{DSS}		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$ $T_{C} = 125 \text{ °C}^{(1)}$			50	μΑ
I _{GSS} Gate body leakage current		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A}$		0.73	0.90	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	340	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	1	37	-	pF
Crss	Reverse transfer capacitance	VG3 - 0 V	ı	0.65	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0 V, V _{DS} = 0 to 640 V	1	61	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	V _{GS} = 0 V, V _{DS} = 0 to 640 V		22		pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	•	7	-	Ω
Q_g	Total gate charge	$V_{DD} = 640 \text{ V}, I_{D} = 7 \text{ A}$	-	12	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	3.8	-	nC
Q _{gd}	Gate-drain charge	See (Figure 16: "Test circuit for gate charge behavior")	-	6.7	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_{D} =3.5 A, R_{G} = 4.7 Ω	-	11	•	ns
tr	Rise time	V _{GS} = 10 V	-	5.7	-	ns
t _{d(off)}	Turn-off delay time	See (Figure 15: "Test circuit for	-	65.3	-	ns
t _f	Fall time	resistive load switching times" and Figure 20: "Switching time waveform")	ı	13.6	ı	ns

 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

 $^{^{(1)}}$ Co(tr) is a constant capacitance value that gives the same charging time as Coss while V_{DS} is rising from 0 to 80% V_{DSS}.

 $^{^{(2)}}$ Co_(e1) is a constant capacitance value that gives the same stored energy as Coss while V_{DS} is rising from 0 to 80% V_{DSS}.

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		28	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 7 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs,	-	292		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V See Figure 17: "Test circuit for	-	2.66		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times"	-	18.2		Α
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs	-	477		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C See Figure 17: "Test circuit for inductive load switching and diode recovery times"	-	3.91		μC
I _{RRM}	Reverse recovery current		-	16.4		А

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR)GSO	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{mA}, I_{D} = 0 \text{ A}$	30	1	1	V

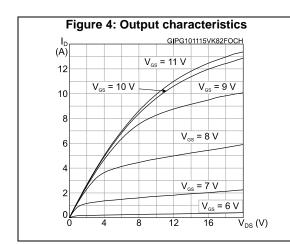
The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

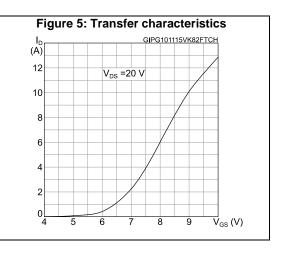
⁽¹⁾Pulse width limited by safe operating area

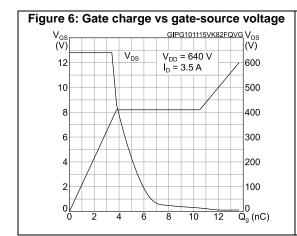
 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

10⁻²

2.1 Electrical characteristics (curves)


Figure 2: Safe operating area GIPG180520161317SOA (A) Operation in this area is limited by $R_{DS(m)}$ $t_p=100 \ \mu s$ $t_p=100 \ \mu s$ $t_p=100 \ m s$ $t_p=100 \ m s$ $t_p=100 \ m s$


10¹


10²

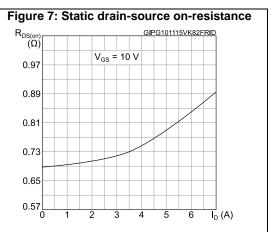

 $\overline{V}_{DS}(V)$

Figure 3: Thermal impedance $\begin{array}{c} K \\ \delta = 0.5 \\ \hline \\ \delta = 0.2 \\ \hline \\ \delta = 0.1 \\ \hline \\ \delta = 0.1 \\ \hline \\ \delta = 0.01 \\ \hline \\ \delta = 0.02 \\ \hline \\ \delta = 0.02 \\ \hline \\ \delta = 0.01 \\ \hline \\ SINGLE PULSE \\ \hline \\ 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & t_p(s) \\ \hline \end{array}$

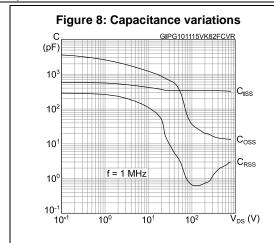
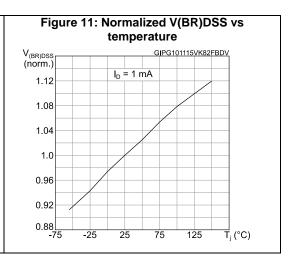


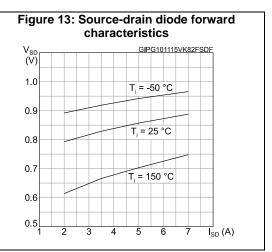
Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)} GIPG101115VK82FVTH

1.2

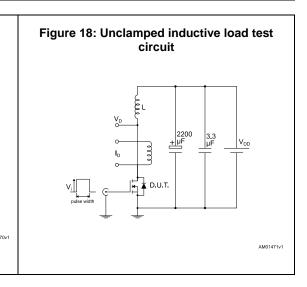

1.0

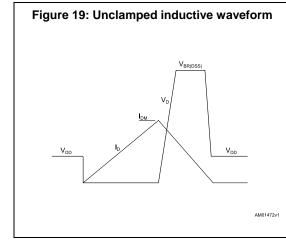
0.8


0.6

0.4

-75
-25
25
75
125
T_j (°C)


3 Test circuits


Figure 15: Test circuit for resistive load switching times

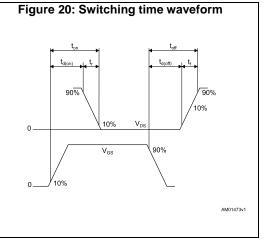

Figure 17: Test circuit for inductive load

Figure 16: Test circuit for gate charge behavior

12 V 47 KΩ O V DD O V

577

DocID028461 Rev 3

9/16

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 21: TO-220 type A package outline

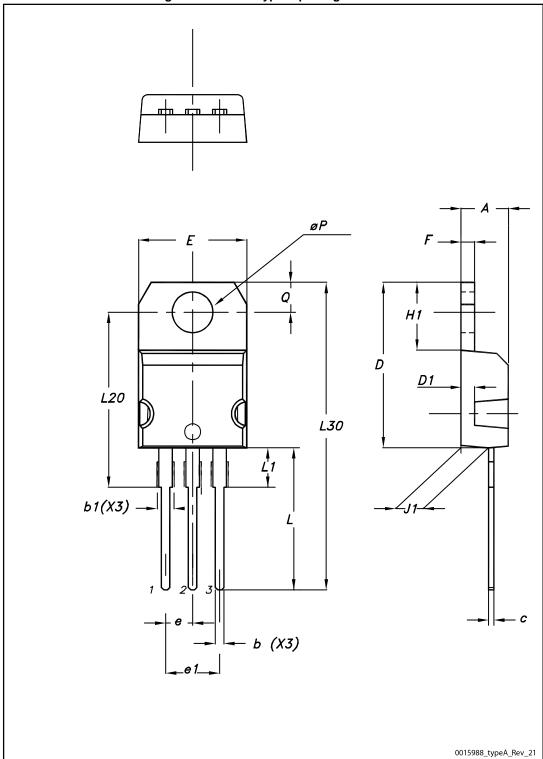


Table 10: TO-220 type A mechanical data

	1 dbic 10. 10 220 ty		
Dim.	Min.	тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

4.2 TO-247 package information

Figure 22: TO-247 package outline

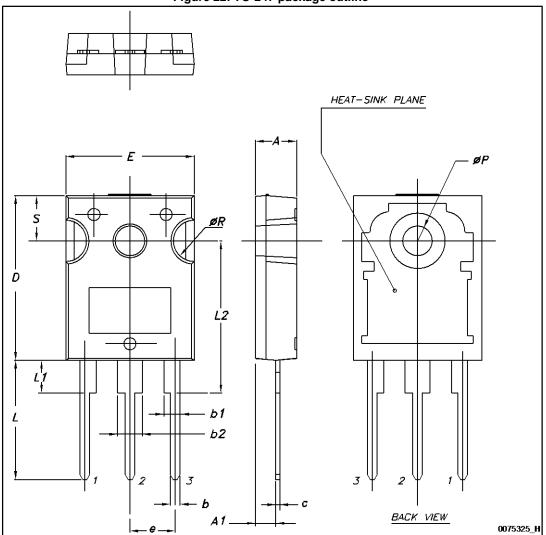


Table 11: TO-247 package mechanical data

Dim.	mm		
	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
13-Oct-2015	1	First release.	
20-May-2016	2	Modified: Table 4: "Avalanche characteristics", Table 6: "Dynamic", Table 7: "Switching times" and Table 8: "Source-drain diode". Minor text changes	
26-Jul-2016	3	Updated features in cover page.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

47/

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)