

STF27N60M2-EP

N-channel 600 V, 0.150 Ω typ., 20 A MDmesh™ M2 EP Power MOSFET in TO-220FP package

Datasheet - production data

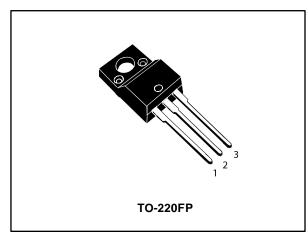
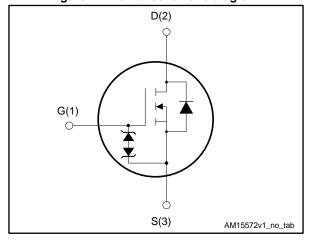



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	Ι _D
STF27N60M2-EP	600 V	0.163 Ω	20 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- Very low turn-off switching losses
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- Tailored for very high frequency converters (f > 150 kHz)

Description

These devices are N-channel Power MOSFETs developed using MDmesh™ M2 EP enhanced performance technology. Thanks to their strip layout and an improved vertical structure, these devices exhibit low on-resistance, optimized switching characteristics with very low turn-off switching losses, rendering them suitable for the most demanding very high frequency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STF27N60M2-EP	27N60M2EP	TO-220FP	Tube

January 2016 DocID028863 Rev 1 1/13

Contents STF27N60M2-EP

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

STF27N60M2-EP Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
$I_D^{(1)}$	Drain current (continuous) at T _C = 25 °C	20	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	13	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	80	Α
P _{TOT}	Total dissipation at T _C = 25 °C	30	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_c = 25 °C)	2.5	kV
T _{stg}	Storage temperature	- 55 to 150	°C
Tj	Operating junction temperature	- 55 10 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{\text{thj-case}}$	Thermal resistance junction-case max		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	3.6	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	260	mJ

⁽¹⁾Limited by maximum junction temperature

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}}I_{SD} \le 20$ A, di/dt ≤ 400 A/µs; V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 V.

 $^{^{(4)}}V_{DS} \le 480 \text{ V}$

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$		0.150	0.163	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1320	1	pF
Coss	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V	-	70	ı	pF
C _{rss}	Reverse transfer capacitance		-	1	ı	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0 \text{ to } 480 \text{ V}, V_{GS} = 0 \text{ V}$	-	146	ı	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4	-	Ω
Q_g	Total gate charge		-	33	-	nC
Q_{gs}	Gate-source charge	V _{DD} = 480 V, I _D = 20 A, V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge behavior")		5.2	1	nC
Q_{gd}	Gate-drain charge	,	-	16	ı	nC

Notes:

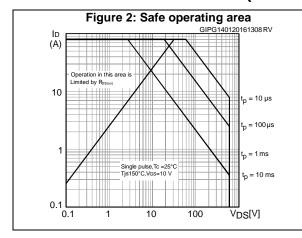
Table 7: Switching times

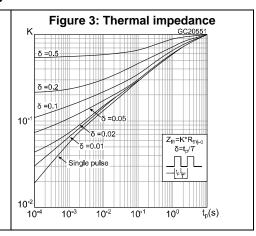
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A}, R_G = 4.7 \Omega,$	-	13.4	ı	ns
t _r	Rise time	$V_{GS} = 300 \text{ V}, \text{ is } = 10 \text{ A}, \text{ is } = 4.7 \text{ M},$ $V_{GS} = 10 \text{ V (see } Figure 14: "Test circuit for a second or a second$	-	8.1	ı	ns
t _{d(off)}	Turn-off- delay time	resistive load switching times" and Figure 19: "Switching time waveform")	-	55.6	ı	ns
t _f	Fall time		-	6.3	-	ns

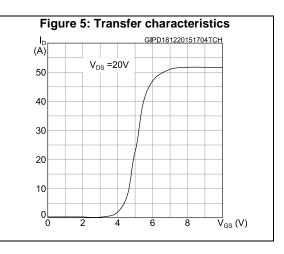
577

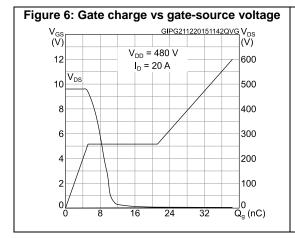
 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

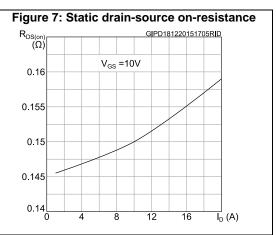
Table 8: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 20 A	-		1.6	V
t _{rr}	Reverse recovery time		-	271		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 20 A, di/dt = 100 A/µs, V _{DD} = 60 V (see Figure 19: "Switching time waveform")	-	3.44		μC
I _{RRM}	Reverse recovery current	waveioiiii)		25.4		Α
t _{rr}	Reverse recovery time		-	352		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 20 \text{ A}$, di/dt = 100 A/ μ s, $V_{DD} = 60 \text{ V}$, $T_j = 150 ^{\circ}\text{C}$ (see <i>Figure 19: "Switching time waveform"</i>)		4.82		μC
I _{RRM}	Reverse recovery current	,	-	27.4		Α

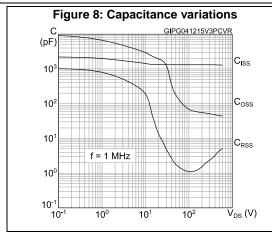
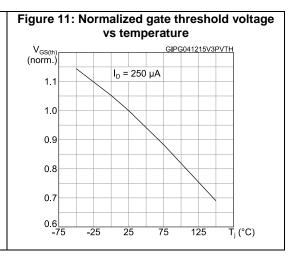
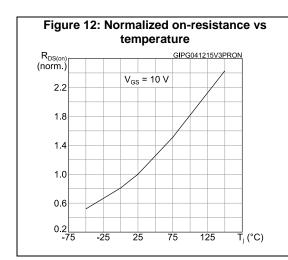

Notes:

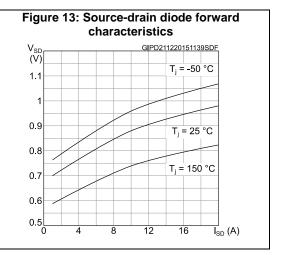

 $^{^{(1)}}$ Pulse width is limited by safe operating area


 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%


2.1 Electrical characteristics (curves)

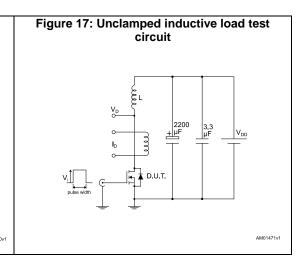
6/13 DocID028863 Rev 1

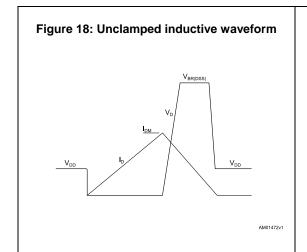





Figure 9: Output capacitance stored energy

Eoss GIPG041215V3PEOS
(µJ)
10
8
6
4
2
0
0 100 200 300 400 500 600 V_{DS} (V)

Figure 10: Normalized V(BR)DSS vs temperature GIPG041215V3PBDV $V_{(BR)DSS}$ (norm.) $I_D = 1 \text{ mA}$ 1.08 1.04 1.00 0.96 0.92 0.88 -75 -25 25 75 125 T_j (°C)




Test circuits STF27N60M2-EP

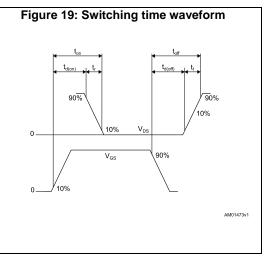
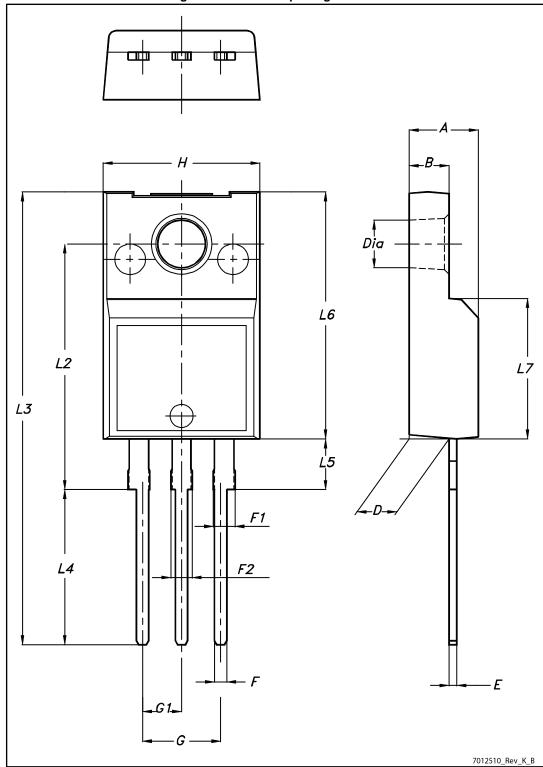

3 Test circuits

Figure 14: Test circuit for resistive load switching times

Figure 16: Test circuit for inductive load switching and diode recovery times

477

8/13 DocID028863 Rev 1


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

577

Table 9: TO-220FP package mechanical data

Dim	, and a second position of the second positio	mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Revision history STF27N60M2-EP

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
14-Jan-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)