

LD29080

800 mA fixed and adjustable output very low drop voltage regulator

Datasheet - production data

Features

- Very low dropout voltage (typ. 0.4 at 800 mA)
- Guaranteed output current up to 800 mA
- Fixed and adjustable output voltage (± 1 % at 25 °C)
- Internal current and thermal limit
- Logic controlled electronic shutdown

	Order codes		Output voltages				
DPAK (tape and reel)	PPAK (tape and reel)	SOT223	 Output voltages 				
LD29080DT15R	LD29080PT15R		1.5 V				
LD29080DT18R	LD29080PT18R		1.8 V				
LD29080DT25R	LD29080PT25R		2.5 V				
LD29080DT33R	LD29080PT33R	LD29080S33R	3.3 V				
LD29080DT50R	LD29080PT50R		5.0 V				
LD29080DT90R	LD29080PT90R		9.0 V				
	LD29080PTR		ADJ				

Table 1. Device summary

February 2020

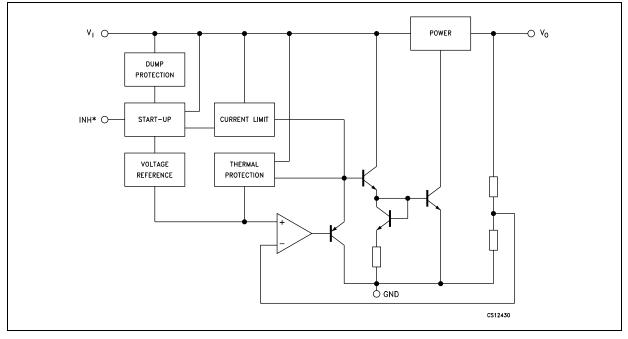
DocID10918 Rev 9

www.st.com

This is information on a product in full production.

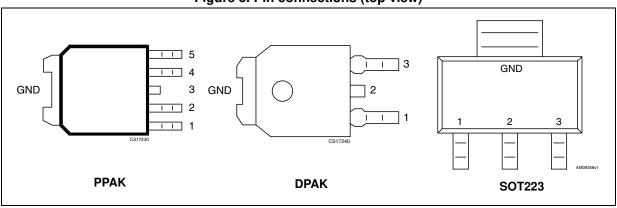
Contents

1	Diagram 3
2	Pin configuration
3	Maximum ratings 5
4	Electrical characteristics
5	Typical characteristics 14
6	Package mechanical data 17
7	Packaging mechanical data 23
8	Revision history



1 Diagram

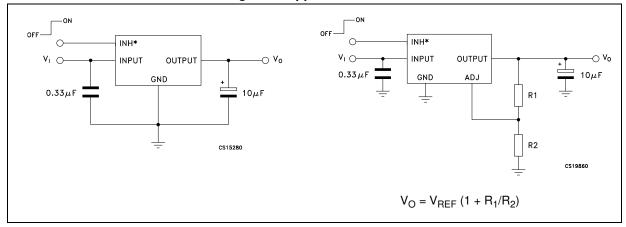
Figure 1. Schematic diagram for adjustable version


Figure 2. Schematic diagram for fixed version

* Only for version with inhibit function.

2 Pin configuration

Figure 3. Pin connections (top view)


Table 2. Pin description

Symbol	PPAK	DPAK	SOT223
VI	2	1	1
GND	3	2	2
V _O	4	3	3
ADJ/N.C. ⁽¹⁾	5		
INHIBIT ⁽²⁾	1		

1. Not connected for fixed version.

2. Not internally pulled up; in order to assure the operating condition (device in ON mode), it must be connected to a positive voltage higher than 2 V.

Figure 4. Application circuit

* Only for version with inhibit function.

DocID10918 Rev 9

3 Maximum ratings

Table 3	. Absolute	maximum	ratings
---------	------------	---------	---------

Symbol	Parameter	Value	Unit
VI	DC input voltage	30 (1)	V
V _{INH}	Inhibit input voltage	14	V
Ι _Ο	Output current	Internally limited	mA
PD	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 55 to 150	°C
Т _{ОР}	Operating temperature range	- 40 to 125	°C

1. Above 14 V the device is automatically in shut-down.

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Symbol	Parameter	DPAK	PPAK	SOT223	Unit
R _{thJC}	Thermal resistance junction-case	8	8	25	°C/W
R _{thJA}	Thermal resistance junction-ambient	100	100	110	°C/W

Table 4. Thermal data

4 Electrical characteristics

 $I_O = 10$ mA, (*Note 4*) $T_J = 25$ °C, $V_I = 3.5$ V, $V_{INH} = 2V$, $C_I = 330$ nF, $C_O = 10$ µF, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA	2.5		13	V
V		$I_{O} = 10 \text{ mA to } 800 \text{ mA}, V_{I} = 3 \text{ to } 7 \text{ V}$	1.485	1.5	1.515	v
V _O	Output voltage	T _J = -40 to 125 °C	1.463		1.537	v
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 3 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 3.8 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	65	75		dB
	Quiescent current	$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	mA
		$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	
Ι _q		I_{O} = 800 mA, T_{J} = -40 to 125 °C		14	35	
		V_I = 13 V, V_{INH} = GND, T_J = -40 to 125 °C		130	180	μA
I _{sc}	Short circuit current	R _L = 0		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, $T_J = -40$ to 125 °C	2			V
I _{INH}	Control input current	$V_{INH} = 13V, T_{J} = -40$ to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		60		μV_{RMS}

Note: 1 Guaranteed by design.

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1$ V applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

6/26

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 3.5 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA	2.5		13	V
V		I _O = 10 mA to 800 mA, V _I = 3 to 7.3 V	1.782	1.8	1.818	V
Vo	Output voltage	T _J = -40 to 125 °C	1.755		1.845	v
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V ₁ = 3 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 3.8 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	62	72		dB
		I_{O} = 150 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1		
V_{DROP}	Dropout voltage	I_{O} = 400 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.2		V
		I _O = 800 mA, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
I	Quiescent current	I_{O} = 400 mA, T_{J} = -40 to 125 °C		8	20	mA
Ι _q		I _O = 800 mA, T _J = -40 to 125 °C		14	35	
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I_{sc}	Short circuit current	$R_L = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V_{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T _J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		72		μV_{RMS}

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1$ V applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V
V.	Output valtage	$I_{\rm O} = 10$ mA to 800 mA, $V_{\rm I} = 3.5$ to 8 V	2.475	2.5	2.525	V
Vo	Output voltage	T _J = -40 to 125 °C	2.438		2.562	
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V ₁ = 3.5 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 4.5 ± 1 V, I _O = 400 mA (<i>Note 1</i>)	55	70		dB
		I_{O} = 150 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1		
V _{DROP}	Dropout voltage	I_{O} = 400 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.2		V
		I _O = 800 mA, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q	Quiescent current	I _O = 800 mA, T _J = -40 to 125 °C		14	35	
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I _{sc}	Short circuit current	$R_L = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		100		μV_{RMS}

Table 7. Electrical characteristics of LD29080#25

Note: 1 Guaranteed by design.

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1 V$ applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_{O} .
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

8/26

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 5.3 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μF , unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10mA to 800mA			13	V
V	Output wells as	I _O = 10 mA to 800 mA, V _I = 4.3 to 8.8 V	3.267	3.3	3.333	V
Vo	Output voltage	$T_{\rm J} = -40$ to 125 °C	3.218		3.382	
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 4.3 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	f = 120 Hz, V _I = 5.3 \pm 1 V, I _O = 400 mA (<i>Note 1</i>)	52	67		dB
V _{DROP}		$I_{O} = 150 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.1		
	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V
		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C } (Note 2)$		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		$V_I = 13 \text{ V}, V_{INH} = \text{GND}, T_J = -40 \text{ to } 125 \text{ °C}$		130	180	μA
I _{sc}	Short circuit current	R _L = 0		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	$V_{INH} = 13 \text{ V}, \text{ T}_{J} = -40 \text{ to } 125 \text{ °C}$		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		132		μV_{RMS}

Table 8. Electrical characteristics of LD29080#33

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1 V$ applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 7 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V	
V		I _O = 10 mA to 800 mA, V _I = 6 to 10.5 V	4.95	5	5.05	v	
Vo	Output voltage	Ditage $T_{\rm J} = -40$ to 125 °C 4.875			5.125	v	
ΔV_O	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%	
ΔV_{O}	Line regulation	V _I = 6 to 13 V		0.06	0.5	%	
SVR	Supply voltage rejection	age rejection $\begin{cases} f = 120 \text{ Hz}, \text{ V}_{\text{I}} = 7 \pm 1 \text{ V}, \text{ I}_{\text{O}} = 400 \text{ mA} \\ (Note 1) \end{cases}$ 49		64		dB	
		$I_{O} = 150 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.1			
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V	
		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.4	0.7		
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5		
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA	
۱ _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35		
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 \text{ °C}$		130	180	μA	
I _{sc}	Short circuit current	R _L = 0		1.2		А	
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V	
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V	
I _{INH}	Control input current	$V_{INH} = 13 \text{ V}, \text{ T}_{J} = -40 \text{ to } 125 \text{ °C}$		5	10	μA	
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		180		μV_{RMS}	

Table 9.	Electrical	characteristics	of	LD29080#50
	=======	0114140101101100	•••	

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1$ V applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 10 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μF , unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V
V		I _O = 10 mA to 800 mA, V _I = 9 to 13 V	7.92	8	8.08	v
Vo	Oulput voltage	ti voltage $T_J = -40$ to 125 °C 7.80			8.20	v
ΔV_O	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 9 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	bltage rejection $\begin{cases} f = 120 \text{ Hz}, \text{ V}_{I} = 10 \pm 1 \text{ V}, \text{ I}_{O} = 400 \text{ mA} \\ (Note 1) \end{cases}$ 45		59		dB
		$I_{O} = 150 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.1		
V _{DROP}	Dropout voltage	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.2		V
		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C} (Note 2)$		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q		$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		V_I = 13 V, V_{INH} = GND, T_J = -40 to 125 °C		130	180	μA
I _{sc}	Short circuit current	R _L = 0		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		320		μV_{RMS}

Table 10. Electrical characteristics of LD29080#80
--

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1$ V applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA			13	V
V	Output voltage	I _O = 10 mA to 800 mA, V _I = 9 to 13 V	8.91	9	9.09	V
Vo	Oulput voltage	T _J = -40 to 125 °C	8.775		9.225	v
ΔV_O	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_O	Line regulation	V _I = 10 to 13 V		0.06	0.5	%
SVR	Supply voltage rejection	y voltage rejection $\begin{cases} f = 120 \text{ Hz}, \text{ V}_{I} = 11 \pm 1 \text{ V}, \text{ I}_{O} = 400 \text{ mA} \\ (Note 1) \end{cases}$ 43		57		dB
		I_{O} = 150 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.1		
V _{DROP}	Dropout voltage	I_{O} = 400 mA, T_{J} = -40 to 125 °C (<i>Note 2</i>)		0.2		V
		I _O = 800 mA, T _J = -40 to 125 °C (<i>Note 2</i>)		0.4	0.7	
		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quiescent current	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
Ι _q	Quiescent current	I _O = 800 mA, T _J = -40 to 125 °C		14	35	
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$		130	180	μA
I _{sc}	Short circuit current	$R_L = 0$		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		330		μV_{RMS}

Table 11. Electrical characteristics of LD29080#90

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1 V$ applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_{O} .
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

 I_O = 10 mA, (*Note 4*) T_J = 25 °C, V_I = 10 V, V_{INH} = 2 V, C_I = 330 nF, C_O = 10 μ F, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Operating input voltage	I _O = 10 mA to 800 mA	2.5		13	V
ΔV_{O}	Load regulation	I _O = 10 mA to 800 mA		0.2	1.0	%
ΔV_{O}	Line regulation	V _I = 2.5 to 13 V, I _O = 10 mA		0.06	0.5	%
V	Deference veltage	$I_{O} = 10 \text{ mA to } 800 \text{ mA}, V_{I} = 2.5 \text{ to } 6.73 \text{ V}$	1.2177	1.23	1.2423	v
V _{REF}	Reference voltage	T _J = -40 to 125 °C (<i>Note 3</i>)	1.1993		1.2607	v
SVR	Supply voltage rejection	n $f = 120 \text{ Hz}, \text{ V}_{\text{I}} = 3.23 \pm 1 \text{ V}, \text{ I}_{\text{O}} = 400 \text{ mA}$ (<i>Note 1</i>) 45		75		dB
I _q Quiescent current		$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		2	5	
	Quieseent eurrent	$I_{O} = 400 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		8	20	mA
	Quiescent current	$I_{O} = 800 \text{ mA}, T_{J} = -40 \text{ to } 125 \text{ °C}$		14	35	
		$V_{I} = 13 \text{ V}, V_{INH} = \text{GND}, T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$		130	180	μA
I _{ADJ}	Adjust pin current	T _J = -40 to 125 °C			1	μA
I _{sc}	Short circuit current	R _L = 0		1.2		А
V _{IL}	Control input logic low	OFF MODE, T _J = -40 to 125 °C			0.8	V
V _{IH}	Control input logic high	ON MODE, T _J = -40 to 125 °C	2			V
I _{INH}	Control input current	V_{INH} = 13 V, T_J = -40 to 125 °C		5	10	μA
eN	Output noise voltage	B _P = 10 Hz to 100 kHz, I _O = 100 mA (<i>Note 1</i>)		50		μV_{RMS}

- 2 Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with $V_O + 1 V$ applied to V_I .
- 3 Reference voltage is measured between output and GND pins, with ADJ PIN tied to V_O.
- 4 In order to avoid any output voltage rise within the whole operating temperature range, due to output leakage current, a minimum load current of 2 mA is required.

5 Typical characteristics

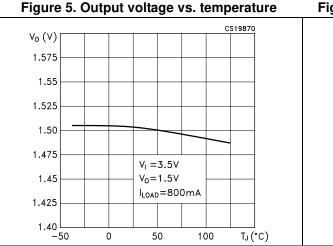


Figure 7. Dropout voltage vs. temperature

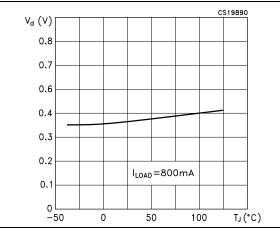
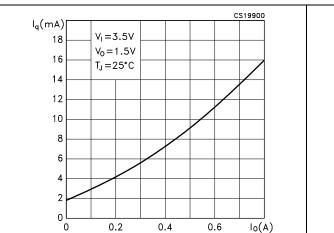
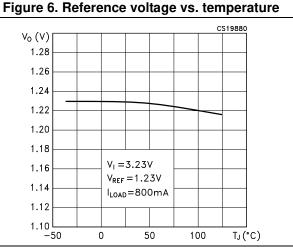




Figure 9. Quiescent current vs. output current

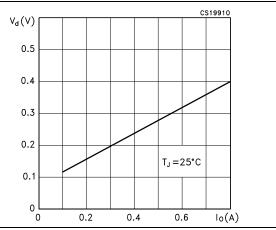
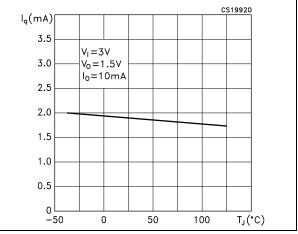



Figure 10. Quiescent current vs. temperature $(I_o = 10 \text{ mA})$

DocID10918 Rev 9

Figure 11. Quiescent current vs. supply voltage Figure 12. Quiescent current vs. temperature

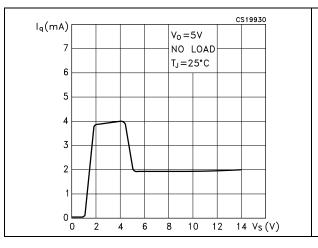


Figure 13. Short circuit current vs. temperature

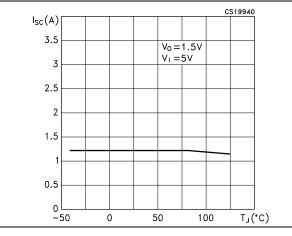
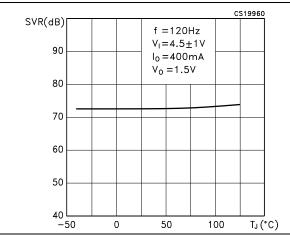
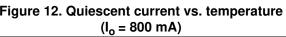




Figure 15. Supply voltage rejection vs. temperature

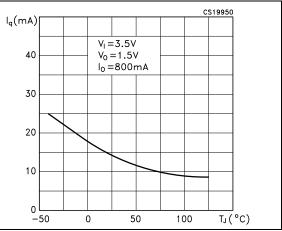


Figure 14. Adjust pin current vs. temperature

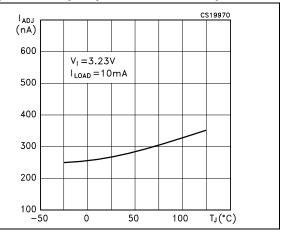


Figure 16. Output voltage vs. input voltage

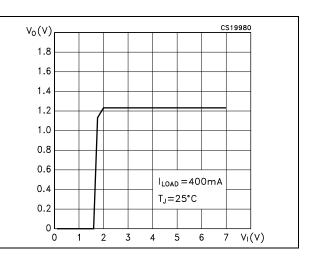


Figure 18. Line transient

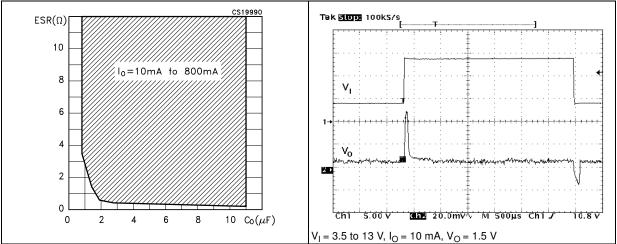
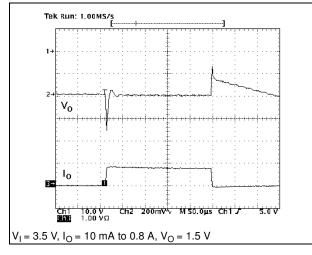
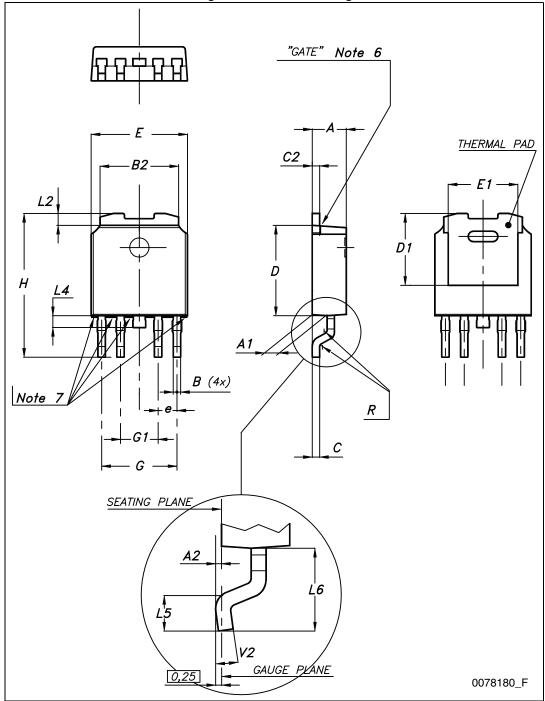



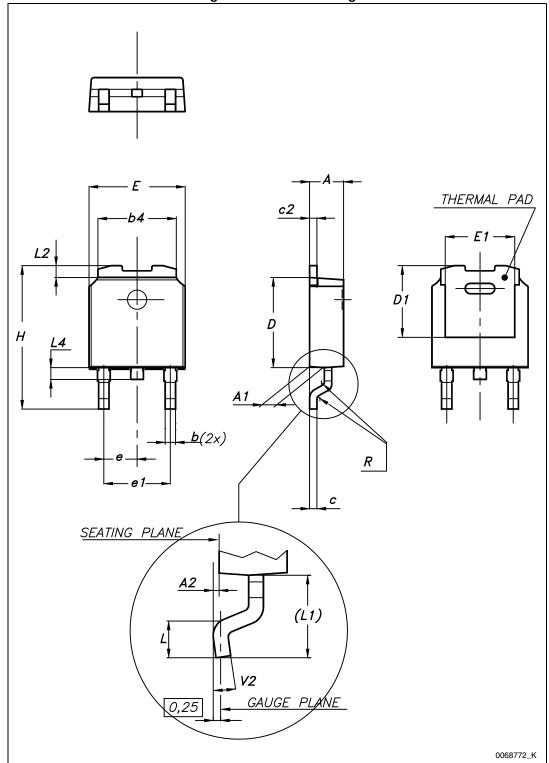
Figure 19. Load transient

6 Package mechanical data

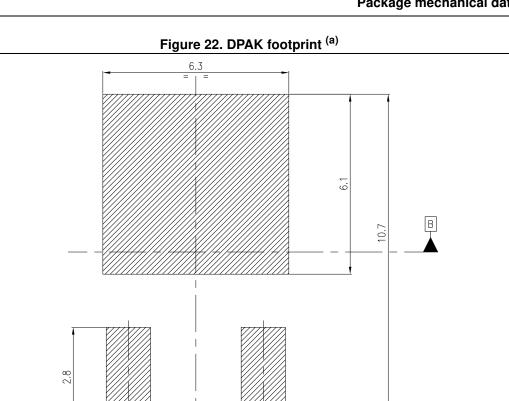

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

Dim.		mm	
Din.	Min.	Тур.	Max.
A	2.2		2.4
A1	0.9		1.1
A2	0.03		0.23
В	0.4		0.6
B2	5.2		5.4
С	0.45		0.6
C2	0.48		0.6
D	6		6.2
D1		5.1	
E	6.4		6.6
E1		4.7	
е		1.27	
G	4.9		5.25
G1	2.38		2.7
Н	9.35		10.1
L2		0.8	1
L4	0.6		1
L5	1		
L6		2.8	
R		0.20	
V2	0°		8°

Table 13. PPAK mechanical data



		mm	
Dim. —	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

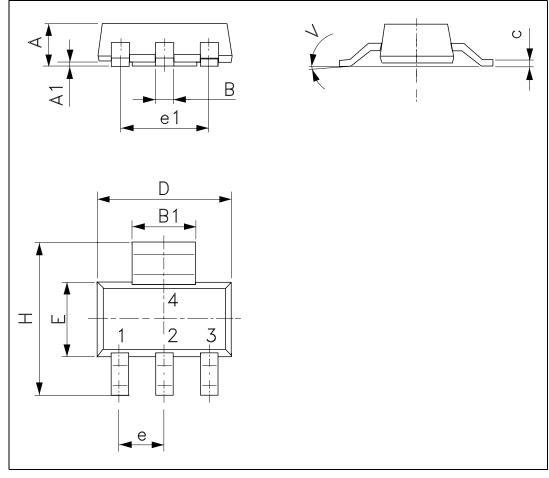

Table 14. DPAK mechanical data

1.5

4.572 = | =

A

a. All dimensions are in millimeters



Footprint_REV_K

Dim.		mm		
	Min.	Тур.	Max.	
А			1.80	
A1	0.02		0.1	
В	0.60	0.70	0.85	
B1	2.90	3.00	3.15	
С	0.24	0.26	0.35	
D	6.30	6.50	6.70	
е		2.30		
e1		4.60		
E	3.30	3.50	3.70	
Н	6.70	7.00	7.30	
V			10°	

Table 15. SOT-223 mechanical data

Figure 23. SOT-223 mechanical data drawing

DocID10918 Rev 9

7 Packaging mechanical data

	Таре			Reel	
Dim	m	m	Dim.	mm	
Dim.	Min.	Max.		Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Table 16. PPAK and DPAK tape and reel mechanical data

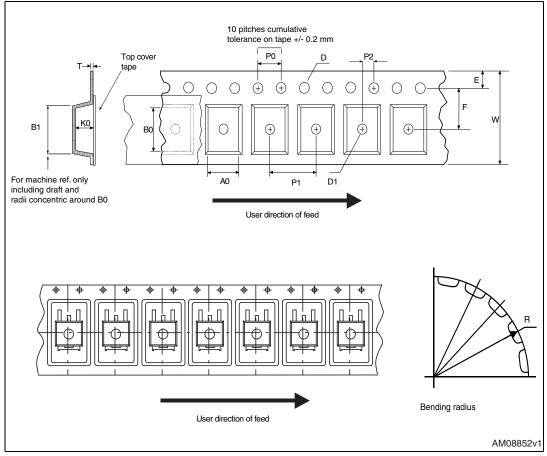
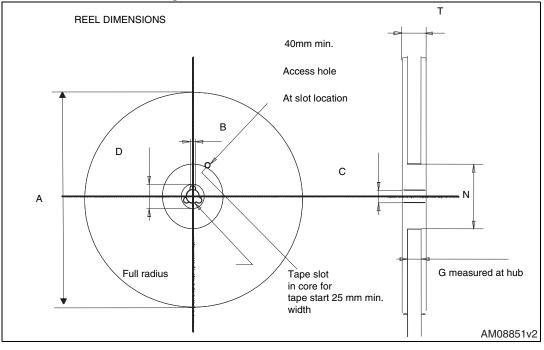



Figure 25. Reel for PPAK and DPAK

8 Revision history

Date	Revision	Changes
15-Oct-2004	1	First release.
20-Oct-2005	2	Order codes updated.
14-May-2007	3	Order codes updated.
26-Jan-2009	4	Modified: eN value in Table 9 on page 10.
22-Feb-2011	5	Added: new order code Table 1 on page 1 and mechanical data.
12-Jan-2012	6	Modified: R_{thJA} and R_{thJC} value for SOT223 Table 4 on page 5.
08-May-2012	7	Modified: pin connections for PPAK, DPAK and SOT223 Figure 3 on page 4.
22-Nov-2013	8	Part number LD29080xx changed to LD29080. Updated the Description in cover page, Table 1: Device summary. Updated Section 5: Typical characteristics and Section 6: Package mechanical data. Added Section 7: Packaging mechanical data. Minor text changes.
13-Feb-2020	9	Updated Figure 23: SOT-223 mechanical data drawing.

Table 17. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DocID10918 Rev 9

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)