

Automotive-grade high voltage ignition coil driver NPN power Darlington transistor

Datasheet - production data

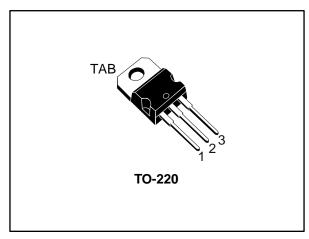
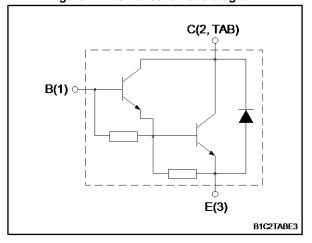



Figure 1: Internal schematic diagram

Features

- AEC-Q101 qualified
- Very rugged Bipolar technology
- High operating junction temperature

Applications

• High ruggedness electronic ignitions

Description

This is a high voltage power Darlington transistor developed using multi-epitaxial planar technology. It has been properly designed for automotive environment as electronic ignition power actuators.

Table 1: Device summary

Order code	Marking	Package	Packing
BU931T	BU931T	TO-220	Tube

October 2017 DocID1004 Rev 5 1/12

Contents BU931T

BU931T Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{BE} = 0)	500	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	400	V
V _{EBO}	Emitter-base voltage (I _C = 0)	5	V
Ic	Collector current	10	Α
I _{CM}	Collector peak current	20	Α
lΒ	Base current	1	Α
Івм	Base peak current	5	Α
Ртот	P _{TOT} Total dissipation at Tc = 25 °C		W
T _{stg}	Storage temperature range	CE to 475	°C
Tj	Operating junction temperature range	-65 to 175	°C

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case	1.2	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

Electrical characteristics BU931T

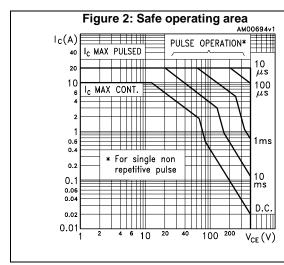
2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Collector out off	V _{BE} = 0 V, V _{CE} = 500 V		-	100	μA
I CUIT C IIL		$V_{BE} = 0 \text{ V}, V_{CE} = 500 \text{ V},$ $T_{C} = 125 ^{\circ}\text{C}^{(1)}$		1	0.5	mA
	Collector cut-off	I _B = 0 A, V _{CE} = 450 V		ı	100	μΑ
ICEO	current	$I_B = 0 \text{ A}, \text{ V}_{CE} = 450 \text{ V},$ $T_C = 125 ^{\circ}\text{C}^{(1)}$		-	0.5	mA
I _{EBO}	Emitter cut-off current	I _C = 0 A, V _{EB} = 5 V		-	20	mA
V _{CEO(sus)} ⁽²⁾	Collector-emitter sustaining voltage	I _B = 0 A, I _C = 100 mA	400	1		V
	Collector-emitter saturation voltage	I _C = 7 A, I _B = 70 mA		ı	1.6	V
V _{CE(sat)} ⁽²⁾		Ic = 8 A, I _B = 100 mA		1	1.8	V
		Ic = 10 A, I _B = 250 mA		-	1.8	V
	Base-emitter saturation voltage	$I_C = 7 \text{ A}, I_B = 70 \text{ mA}$		-	2.2	V
V _{BE(sat)} ⁽²⁾		Ic = 8 A, I _B = 100 mA		ı	2.4	V
		I _C = 10 A, I _B = 250 mA		-	2.5	V
h _{FE} ⁽²⁾	DC current gain	Ic = 5 A, VcE = 10 V	300	-		
VF	Diode forward voltage	I _F = 10 A		-	2.5	V
Functional test		V _{CC} = 24 V,L = 7 mH, V _{clamp} = 400 V (see <i>Figure 10: "Functional test circuit"</i>)	8	-		А

Notes:

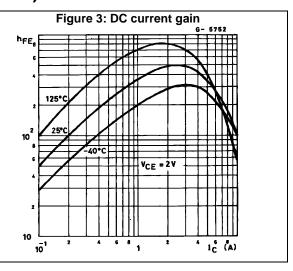
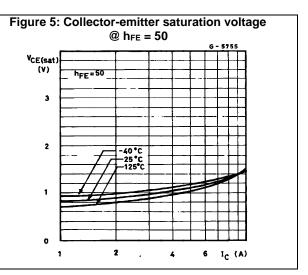

Table 5: Inductive load switching times

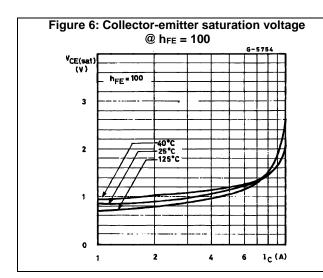
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ts	Storage time	Vcc = 12 V, V _{clamp} = 300 V, L = 7 mH,	-	15	-	μs
t _f	Fall time	R_{BE} = 47 Ω , I_C = 7 A, I_B = 70 mA	-	0.5	-	μs

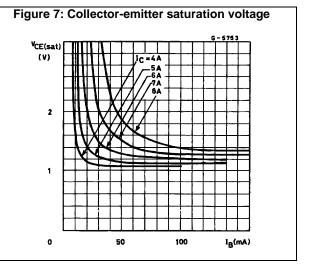
 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

 $^{^{(2)}\}text{Pulse}$ test: pulse duration ≤ 300 µs, duty cycle ≤ 2 %.

2.1 Electrical characteristics (curves)

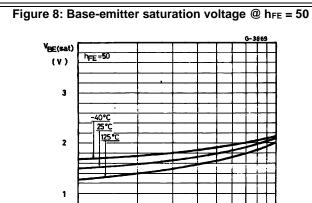




Figure 4: Switching time inductive load


(µs)

10

Vct. =300V
Vcc =12V
hrE =100
ReE=470hm
L =7mH
Tcose =25°C

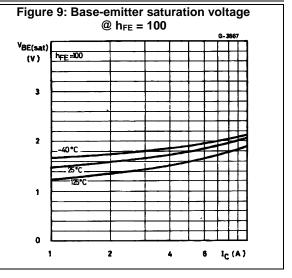


47/

DocID1004 Rev 5

5/12

0

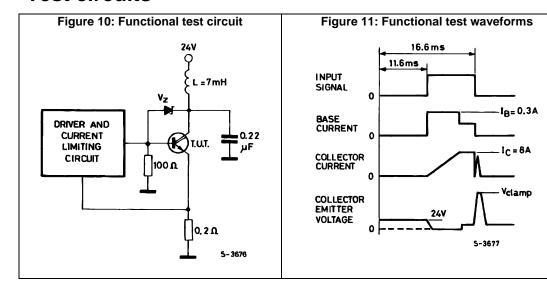


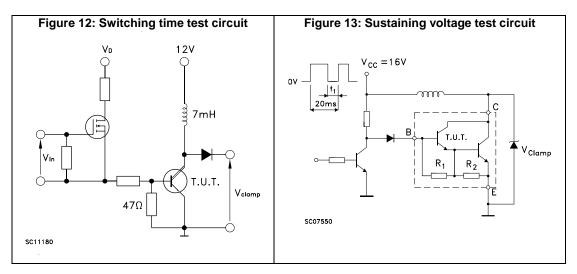
2

4

I_C (A)

6




47/

6/12 DocID1004 Rev 5

BU931T Test circuits

3 Test circuits

Package information BU931T

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

577

BU931T Package information

4.1 TO-220 type A package information

Figure 14: TO-220 type A package outline

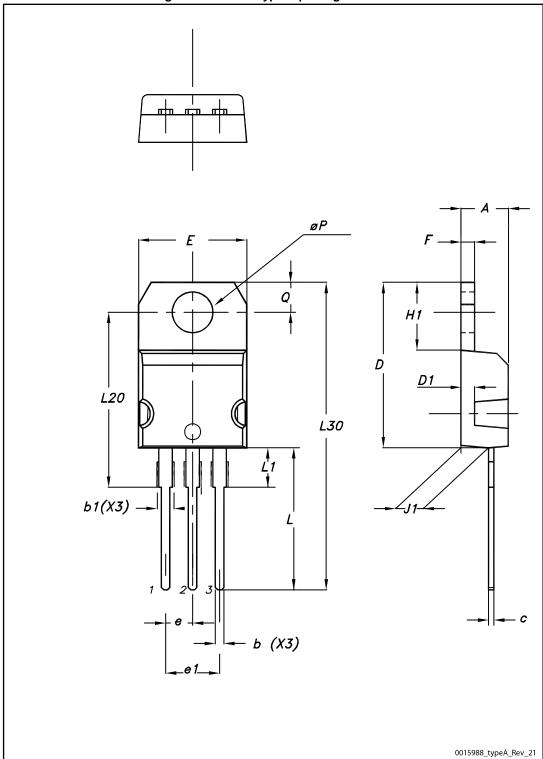


Table 6: TO-220 type A package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

BU931T Revision history

5 Revision history

Table 7: Document revision history

Date	Revision	Changes
18-Nov-2008 3		Package changed from TO-218 to TO-247 for BU931P. Inserted type in TO-220 (BU931T).
02-Dec-2009	4	Modified Ic test condition value of V _{CEO(sus)} parameter <i>Table 4 on page 4</i> , updated TO-220 package mechanical data.
12-Oct-2017	5	The part numbers BU931 and BU931P have been moved to two separate datasheets. Modified Table 2: "Absolute maximum ratings", Table 3: "Thermal data" and Table 4: "Electrical characteristics". Updated Section 4: "Package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)