
STN1NK60Z, STQ1NK60ZR

Datasheet - production data

N-channel 600 V, 13 Ω typ., 0.3 A Zener-protected SuperMESH[™] Power MOSFETs in SOT-223 and TO-92 packages

Figure 1. Internal schematic diagram

Features

Order codes	V_{DS}	R _{DS(on)max}	I _D	P _{TOT}	
STN1NK60Z	600 V	600 V	15 O	0.3 A	3.3 W
STQ1NK60ZR-AP		15 12	0.5 A	3 W	

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- ESD improved capability
- Zener-protected

Applications

Switching applications

Description

These devices are N-channel Zener-protected Power MOSFETs developed using STMicroelectronics' SuperMESH[™] technology, achieved through optimization of ST's well established strip-based PowerMESH[™] layout. In addition to a significant reduction in onresistance, this device is designed to ensure a high level of dv/dt capability for the most demanding applications.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STN1NK60Z	1NK60Z	SOT-223	Tape and reel
STQ1NK60ZR-AP	1NK60ZR	TO-92	Ammopak

DocID9509 Rev 14

1/18

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves) 6
3	Test circuits9
4	Package mechanical data 10
	4.1 SOT-223, STN1NK60Z11
	4.2 TO-92 ammopack, STQ1NK60ZR-AP 13
5	Packaging mechanical data 15
6	Revision history

1 Electrical ratings

Desemptor	Va	Unit	
Parameter	SOT-223	TO-92	Onit
Drain-source voltage	60	00	V
Gate-source voltage	±	30	V
Drain current (continuous) at $T_C = 25 \text{ °C}$	0	.3	А
Drain current (continuous) at T _C =100 °C	0.189		А
Drain current (pulsed)	1.2		А
Total dissipation at T_{C} = 25 °C	3.3	3	W
Derating factor	0.026	0.024	W/°C
Human body model C=100 pF, R=1.5 k Ω	800		V
Peak diode recovery voltage slope	4.5		V/ns
Operating junction temperature	EE to 150		°C
Storage temperature	- 55 (0 130	°C
	Gate-source voltageDrain current (continuous) at $T_C = 25 \ ^{\circ}C$ Drain current (continuous) at $T_C=100 \ ^{\circ}C$ Drain current (pulsed)Total dissipation at $T_C = 25 \ ^{\circ}C$ Derating factorHuman body modelC=100 pF, R=1.5 k Ω Peak diode recovery voltage slopeOperating junction temperature	ParameterSOT-223Drain-source voltage60Gate-source voltage \pm Drain current (continuous) at $T_C = 25$ °C00Drain current (continuous) at $T_C = 100$ °C0.1Drain current (pulsed)11Total dissipation at $T_C = 25$ °C3.3Derating factor0.026Human body model $C = 100$ pF, R=1.5 k Ω 80Peak diode recovery voltage slope4Operating junction temperature-55 t	SOT-223TO-92Drain-source voltage 60 Gate-source voltage ± 3 Drain current (continuous) at $T_C = 25 \ ^{\circ}C$ 0.3 Drain current (continuous) at $T_C = 100 \ ^{\circ}C$ 0.189 Drain current (pulsed) 1.2 Total dissipation at $T_C = 25 \ ^{\circ}C$ 3.3 3 Derating factor 0.026 0.024 Human body model $C=100 \ ^{\circ}F, R=1.5 \ ^{\circ}M2$ 80 Peak diode recovery voltage slope 4.5 Operating junction temperature $-55 \ ^{\circ}150$

1. Pulse width limited by safe operating area

2. $I_{SD} \leq 0.3$ A, di/dt ≤ 200 A/µs, V_{DD} = 80%V_{(BR)DSS}

Table 3. Thermal resistance

Symbol	Parameter	v	Unit	
	raiameter	SOT-223	TO-92	Onit
R _{thj-amb}	Thermal resistance junction-ambient max	38 ⁽¹⁾	120	°C/W
R _{thj-lead}	Thermal resistance junction-lead max		40	°C/W

1. When mounted on 1 inch² FR-4 board, 2 Oz Cu, t < 30 s.

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by $T_{j max}$)	0.3	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	60	mJ

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Deremeter	Test conditions	Mim	Turn	Max.	Unit
Symbol	Parameter	Test conditions	Min.	Тур.	wax.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	600			V
I _{DSS} Zero gate voltage drain current	$V_{GS} = 0, V_{DS} = 600 V$			1	μA	
	V _{GS} = 0, V _{DS} =600 V, T _C = 125 °C			50	μA	
I _{GSS}	Gate body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 0.4 A		13	15	Ω

Table	5.	On/off states
-------	----	---------------

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
-	i didiliotor			iyp:	maxi	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 0.4 \text{ A}$	-	0.5		S
C _{iss}	Input capacitance		-	94		pF
C _{oss}	Output capacitance	V _{GS} = 0, V _{DS} = 25 V, f=1 MHz	-	17.6		pF
C _{rss}	Reverse transfer capacitance		-	2.8		pF
C _{oss eq} ⁽²⁾ .	Equivalent output capacitance	V_{GS} = 0, V_{DS} = 0 to 480 V	-	11		pF
Qg	Total gate charge	V _{DD} =480 V, I _D = 0.8 A	-	4.9	6.9	nC
Q _{gs}	Gate-source charge	V _{GS} =10 V	-	1		nC
Q _{gd}	Gate-drain charge	(see Figure 19)	-	2.7		nC

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

2. $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 0.4 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 18)	-	5.5	-	ns		
t _r	Rise time		-	5	-	ns		
t _{d(off)}	Turn-off delay time		-	13	-	ns		
t _f	Fall time		-	28	-	ns		

Table 7. Switching times

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		0.8	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		2.4	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} =0, I _{SD} = 0.8 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 0.8 A,	-	135		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs,	-	216		nC
I _{RRM}	Reverse recovery current	V _{DD} = 20 V	-	3.2		А
t _{rr}	Reverse recovery time	I _{SD} = 0.8 A,	-	140		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs,	-	224		nC
I _{RRM}	Reverse recovery current	V _{DD} = 20V, Tj = 150 °C	-	3.2		А

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration=300µs, duty cycle 1.5%

Table 9. Gate-source Zener di

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1$ mA, $I_{D}=0$	30	-	-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance the device's ESD capability. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

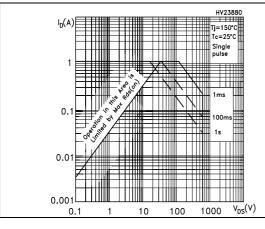


Figure 4. Safe operating area for TO-92

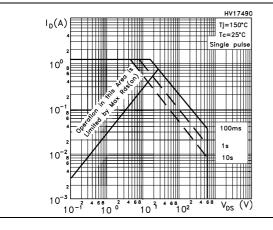


Figure 6. Output characteristics

Figure 3. Thermal impedance for SOT-223

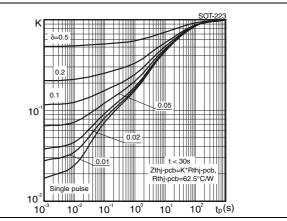


Figure 5. Thermal impedance for TO-92

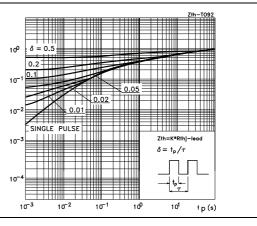


Figure 7. Transfer characteristics

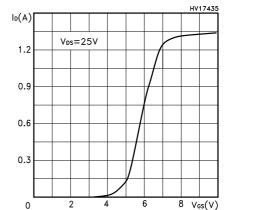


Figure 8. Transconductance

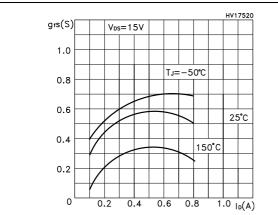


Figure 10. Gate charge vs gate-source voltage

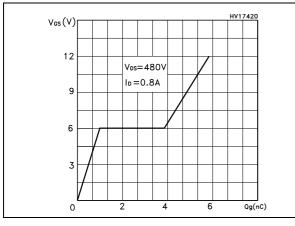
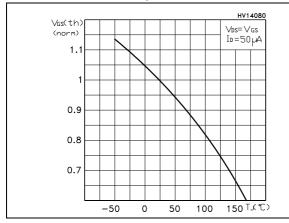
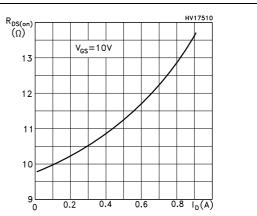




Figure 12. Normalized gate threshold voltage vs temperature

Figure 9. Static drain-source on-resistance

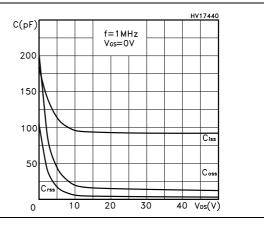


Figure 13. Normalized on-resistance vs temperature



Figure 14. Source-drain diode forward characteristics

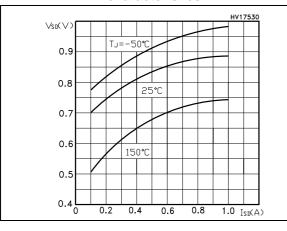
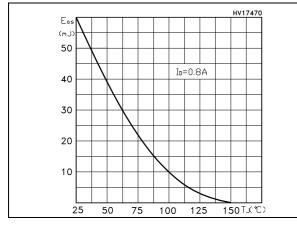



Figure 16. Maximum avalanche energy vs temperature

Figure 15. Normalized $V_{BR(DSS)}$ vs temperature

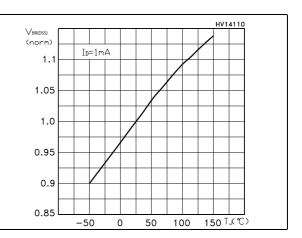
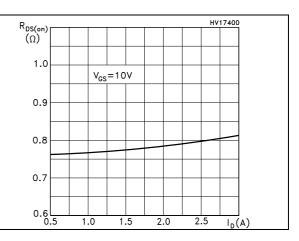



Figure 17. Max Id current vs Tc

Test circuits 3

Figure 18. Switching times test circuit for resistive load

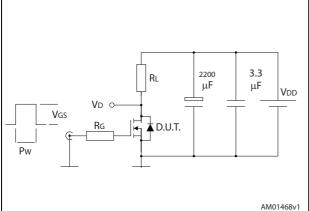
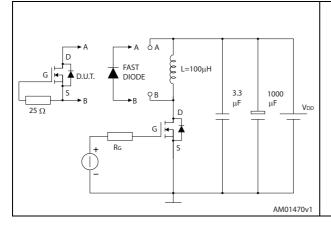
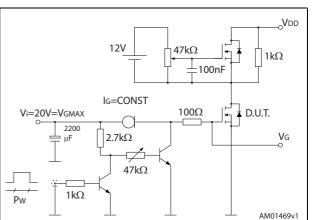
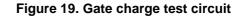


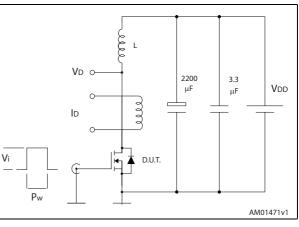
Figure 20. Test circuit for inductive load switching and diode recovery times

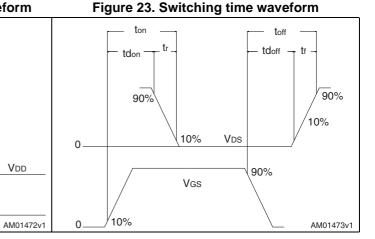



Figure 22. Unclamped inductive waveform

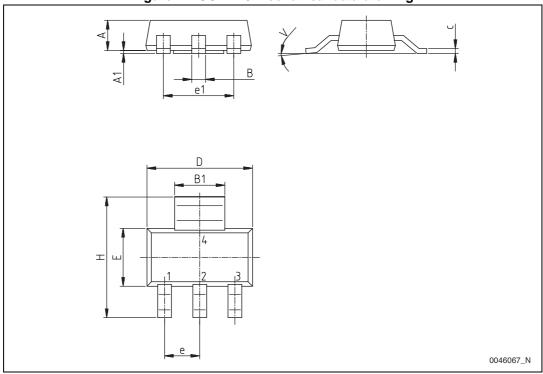

VD

ldм


lр


V(BR)DSS

Vdd


DocID9509 Rev 14

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

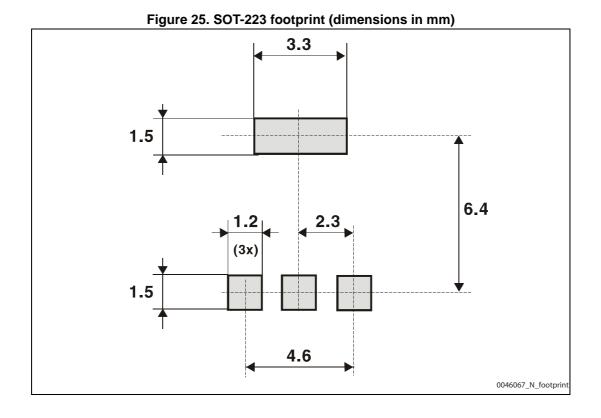


Figure 24. SOT-223 mechanical data drawing

Table 10. SOT-223 mechanical data

Dim.	mm				
Dim.	Min.	Тур.	Max.		
A			1.80		
A1	0.02		0.10		
В	0.60	0.70	0.85		
B1	2.9	3.0	3.15		
с	0.24	0.26	0.35		
D	6.30	6.50	6.70		
е		2.30	6.70		
e1		4.60			
E	3.30	3.50	3.70		
Н	6.70	7.0	7.30		
V			10°		

4.1 SOT-223, STN1NK60Z

4.2 TO-92 ammopack, STQ1NK60ZR-AP

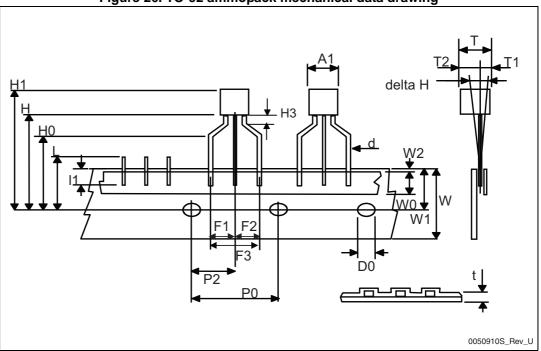


Figure 26. TO-92 ammopack mechanical data drawing

Dim	mm				
Dim.	Min.	Тур.	Max.		
A1			4.80		
Т			3.80		
T1			1.60		
T2			2.30		
d	0.45	0.47	0.48		
P0	12.50	12.70	12.90		
P2	5.65	6.35	7.05		
F1, F2	2.40	2.50	2.94		
F3	4.98	5.08	5.48		
delta H	-2.00		2.00		
W	17.50	18.00	19.00		
W0	5.5	6.00	6.5		
W1	8.50	9.00	9.25		
W2			0.50		
Н		18.50	21		
H3	0.5	1	2		
H0	15.50	16.00	18.8		
H1		25.0	27.0		
D0	3.80	4.00	4.20		
t			0.90		
L			11.00		
11	3.00				
delta P	-1.00		1.00		

Table 11. TO-92 ammopack mechanical data

5 Packaging mechanical data

Figure 27. Tape for SOT-223 (dimensions are in mm)

Figure 28. Reel for TO-223 (dimensions are in mm)

Таре			Reel			
Dim.	mm			Dim	mm	
	Min.	Тур.	Max.	Dim.	Min.	Max.
A0	6.75	6.85	6.95	A		180
B0	7.30	7.40	7.50	N	60	
K0	1.80	1.90	2.00	W1		12.4
F	5.40	5.50	5.60	W2		18.4
Е	1.65	1.75	1.85	W3	11.9	15.4
W	11.7	12	12.3			
P2	1.90	2	2.10	Base qua	antity pcs	1000
P0	3.90	4	4.10	Bulk qua	antity pcs	1000
P1	7.90	8	8.10			•
Т	0.25	0.30	0.35			
DØ	1.50	1.55	1.60			
D1¢	1.50	1.60	1.70			

Table 12. SOT-223 tape and reel mechanical data

6 Revision history

Date	Revision	Changes
19-Mar-2003	3	First electronic version
15-May-2003	4	Removed DPAK
09-Jun-2003	5	Final datasheet
17-Nov-2004	6	Inserted SOT-223
15-Feb-2005	7	Modified <i>Figure 4.</i>
07-Sep-2005	8	Inserted ecopack indication
22-Feb-2006	9	The document has been reformatted
01-Jun-2007	10	Order code table on first page has been updated
19-Jul-2007	11	Table 1: Device summary has been updated
05-Jan-2011	12	Corrected Figure 2: Safe operating area for SOT-223 and Figure 3: Thermal impedance for SOT-223
05-Jun-2014	13	 Updated title. Updated derating factor in <i>Table 2: Absolute maximum ratings</i>. Updated <i>Section 4: Package mechanical data</i>. Minor text changes.
04-Jul-2014	14	- Updated Section 3: Test circuits.

Table 13. Revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)