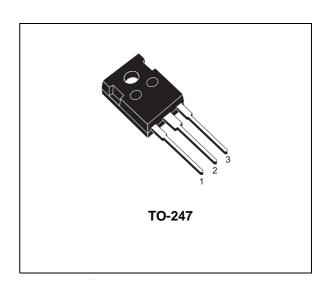
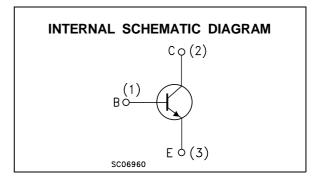


BUF420AW

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- VERY HIGH SWITCHING SPEED
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- LOW BASE-DRIVE REQUIREMENTS


APPLICATIONS:


- SWITCH MODE POWER SUPPLIES
- MOTOR CONTROL

DESCRIPTION

The BUF420AW is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capacity. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

The BUF series is designed for use in high-frequency power supplies and motor control applications.

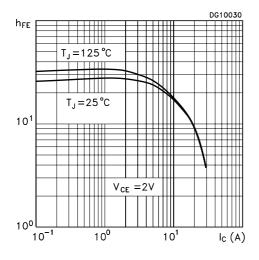
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CEV}	Collector-Emitter Voltage (V _{BE} = -1.5V)	1000	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	7	V
Ic	Collector Current	30	А
I _{CM}	Collector Peak Current (t _p < 5 ms)	60	А
Ι _Β	Base Current	6	А
I _{BM}	Base Peak Current (t _p < 5 ms)	9	А
P_{tot}	Total Dissipation at T _c = 25 °C	200	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

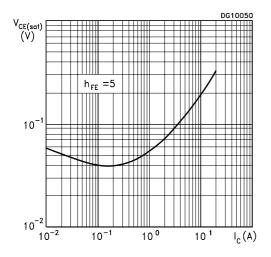
March 2002 1/8

BUF420AW

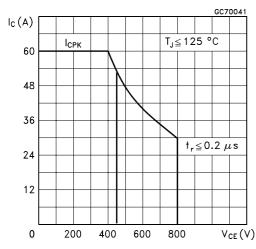
THERMAL DATA

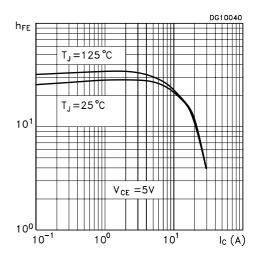

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified)

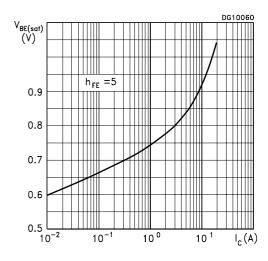
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CER}	Collector Cut-off Current ($R_{BE} = 5 \Omega$)	V _{CE} = 1000 V V _{CE} = 1000 V T _C = 100 °C			0.2 1	mA mA
I _{CEV}	Collector Cut-off Current (V _{BE} = -1.5V)	V _{CE} = 1000 V V _{CE} = 1000 V T _C = 100 °C			0.2 1	mA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			1	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 200 mA L = 25 mH	450			V
V _{EBO}	Emitter Base Voltage (I _C = 0)	I _E = 50 mA	7			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		0.8	2.8	V V V
		$I_C = 20 \text{ A}$ $I_B = 4 \text{ A}$ $T_C = 100^{\circ}\text{C}$			2	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		1.1	1.5 1.5	V V V
di _c /dt	Rate of rise on-state Collector Current	$V_{CC} = 300 \text{ V}$ $R_C = 0$ $t_p = 3 \mu s$ $I_{B1} = 1.5 \text{ A}$ $T_C = 25^{\circ}\text{C}$ $I_{B1} = 1.5 \text{ A}$ $T_C = 100^{\circ}\text{C}$ $I_{B1} = 6 \text{ A}$ $T_C = 100^{\circ}\text{C}$	70 150	100	110	A/μs A/μs A/μs
V _{CE} (3μs)	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_{C} = 60 \Omega$ $I_{B1} = 1.5 \text{ A}$ $T_{C} = 25^{\circ}\text{C}$ $I_{B1} = 1.5 \text{ A}$ $T_{C} = 100^{\circ}\text{C}$		2.1	8	V V
V _{CE} (5μs)	Collector-Emitter Dynamic Voltage	$V_{CC} = 300 \text{ V}$ $R_{C} = 60 \Omega$ $I_{B1} = 1.5 \text{ A}$ $T_{C} = 25^{\circ}\text{C}$ $I_{B1} = 1.5 \text{ A}$ $T_{C} = 100^{\circ}\text{C}$		1.1	4	V V
t _s t _f t _c	INDUCTIVE LOAD Storage Time Fall Time Cross Over Time	$\begin{array}{ll} I_{C} = 10 \; A & V_{CC} = 50 \; V \\ V_{BB} = -5 \; V & R_{BB} = 0.6 \; \; \Omega \\ V_{clamp} = 400 \; V & I_{B1} = 1 \; A \\ L = 0.25 \; mH & & \end{array}$		1 0.05 0.08		μs μs μs
t _s t _f t _c	INDUCTIVE LOAD Storage Time Fall Time Cross Over Time	$\begin{array}{lll} I_{C} = 10 \; A & & V_{CC} = 50 \; V \\ V_{BB} = -5 \; V & & R_{BB} = 0.6 \; \Omega \\ V_{clamp} = 400 \; V & & I_{B1} = 1 \; A \\ L = 0.25 \; mH & & T_{C} = 100 ^{o}C \end{array}$			2 0.1 0.18	μs μs μs
V _{CEW}	Maximum Collector Emitter Voltage without Snubber	$\begin{array}{lll} I_{C} = 10 \; A & & V_{CC} = 50 \; V \\ V_{BB} = -5 \; V & & R_{BB} = 0.6 \; \Omega \\ I_{B1} = 1 \; A & & L = 0.25 \; mH \\ T_{C} = 125 ^{\circ} C & & & \end{array}$	500			V
t _s t _f t _c	INDUCTIVE LOAD Storage Time Fall Time Cross Over Time	$\begin{array}{lll} I_{C} = 10 \; A & & V_{CC} = 50 \; V \\ V_{BB} = 0 & & R_{BB} = 0.15 \; \Omega \\ V_{clamp} = 400 \; V & & I_{B1} = 1 \; A \\ L = 0.25 \; mH & & & \end{array}$		1.5 0.04 0.07		μs μs μs

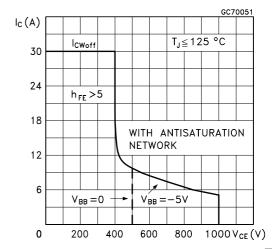

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _s t _f t _c	INDUCTIVE LOAD Storage Time Fall Time Cross Over Time	$I_{C} = 10 \text{ A}$ $V_{BB} = 0$ $V_{clamp} = 400 \text{ V}$ $L = 0.25 \text{ mH}$	$V_{CC} = 50 \text{ V}$ $R_{BB} = 0.15 \Omega$ $I_{B1} = 1 \text{ A}$ $T_{C} = 100^{\circ}\text{C}$			3 0.15 0.25	μs μs μs
V _{CEW}	Maximum Collector Emitter Voltage without Snubber	$I_{C} = 10 \text{ A}$ $V_{BB} = 0$ $I_{B1} = 1 \text{ A}$ $T_{C} = 125^{\circ}\text{C}$	V_{CC} = 50 V R_{BB} = 0.15 Ω L = 0.25 mH	500			V
t _s t _f t _c	INDUCTIVE LOAD Storage Time Fall Time Cross Over Time	$I_{C} = 20 \text{ A}$ $V_{BB} = -5 \text{ V}$ $V_{clamp} = 400 \text{ V}$ $L = 0.12 \text{ mH}$	V_{CC} = 50 V R_{BB} =0.6 Ω I_{B1} = 4 A		2.2 0.06 0.12		μs μs μs
t _s t _f t _c	INDUCTIVE LOAD Storage Time Fall Time Cross Over Time	$I_C = 20 \text{ A}$ $V_{BB} = -5 \text{ V}$ $V_{clamp} = 400 \text{ V}$ $L = 0.12 \text{ mH}$	$V_{CC} = 50 \text{ V}$ $R_{BB} = 0.6 \Omega$ $I_{B1} = 4 \text{ A}$ $T_{C} = 125^{\circ}\text{C}$			3.5 0.12 0.3	μs μs μs
V _{CEW}	Maximum Collector Emitter Voltage without Snubber	$I_{CWoff} = 30 \text{ A}$ $V_{BB} = -5 \text{ V}$ $L = 0.12 \text{ mH}$ $T_C = 125 ^{\circ}\text{C}$	V_{CC} = 50 V R_{BB} = 0.6 Ω I_{B1} = 6 A	400			V


DC Current Gain


Collector Emitter Saturation Voltage


Forward Biased Safe Operating Area


DC Current Gain

Base Emitter Saturation Voltage

Reverse Biased Safe Operating Area

Storage Time Versus Pulse Time.

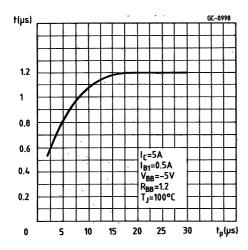
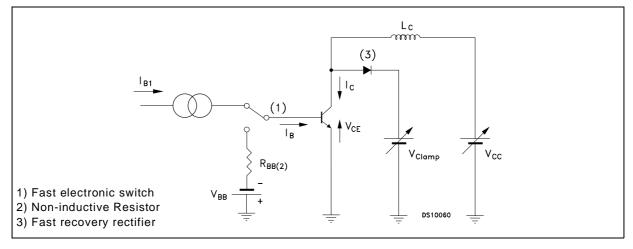
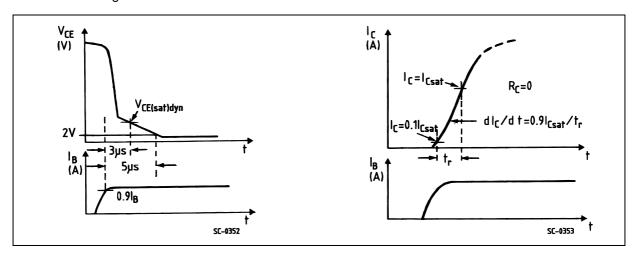
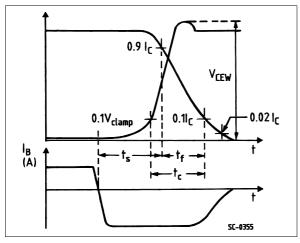
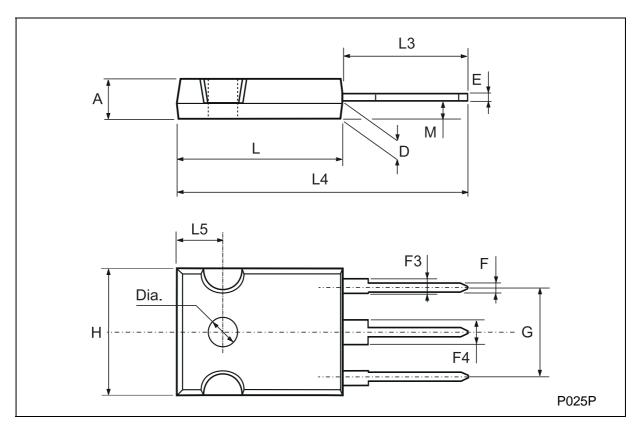




Figure 1: Inductive Load Switching Test Circuit.



A7/

Turn-on Switching Test Waveforms.



Turn-off Switching Test Waveforms (inductive load).

TO-247 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	4.7		5.3	0.185		0.209	
D	2.2		2.6	0.087		0.102	
Е	0.4		0.8	0.016		0.031	
F	1		1.4	0.039		0.055	
F3	2		2.4	0.079		0.094	
F4	3		3.4	0.118		0.134	
G		10.9			0.429		
Н	15.3		15.9	0.602		0.626	
L	19.7		20.3	0.776		0.779	
L3	14.2		14.8	0.559		0.582	
L4		34.6			1.362		
L5		5.5			0.217		
М	2		3	0.079		0.118	

47/ 7/8

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)