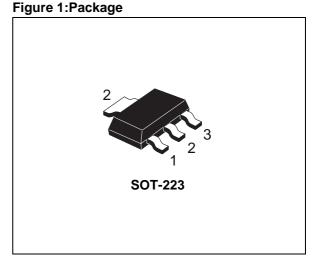


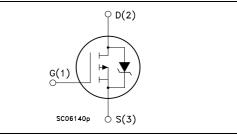
STN3PF06 P-CHANNEL 60V - 0.18Ω - 3A SOT-223 STripFET™ II POWER MOSFET

Table 1: General Features

TYPE	V_{DSS}	R _{DS(on)}	ID
STN3PF06	60 V	< 0.20 Ω	2.5 A


- TYPICAL R_{DS}(on) = 0.18 Ω
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED

DESCRIPTION


This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and critical alignment steps therefore a less remarkable manufacturing reproducibility

APPLICATIONS

- DC-DC & DC-AC CONVERTERS
- DC MOTOR CONTROL (DISK DRIVES, etc.)

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STN3PF06	N3PF06	SOT-223	TAPE REEL

Table 3: ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60	V
V _{GS}	Gate- source Voltage	± 20	V
I _D	Drain Current (continuous) at T _C = 25°C	2.5	A
ID	Drain Current (continuous) at T _C = 100°C	1.5	A
I _{DM} (●)	Drain Current (pulsed)	10	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	2.5	W
	Derating Factor	0.02	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	6	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	558	mJ
T _{stg}	Storage Temperature	-55 to 150	°C
Tj	Max. Operating Junction Temperature	-55 10 150	C
	limited by onformation and	Nata, Fastha D. CUANNEL MOOFFT actual ra	1

Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

January 2005

Rev. 2

Table 4: THERMAL DATA

Rthj-pcb	Thermal Resistance Junction-PCB(1 inch ² copper board)*	38	°C/W
Rthj-pcb	Thermal Resistance Junction-PCB (min. footprint)*	100	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	260	°C

(*) When Mounted on 1 inch² FR-4, 2 Oz copper board

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

Table 5: OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA

Table 6: ON (5)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 1.25 A		0.18	0.20	Ω

Table 7: DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽⁵⁾	Forward Transconductance	$V_{DS} = 15 \text{ V}$ $I_D = 1.25 \text{ A}$		1.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V f = 1 MHz V_{GS} = 0$		850 230 75		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

Table 8: SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			20 40		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48 V I _D = 12 A V _{GS} = 10 V		16 4.0 6.0	21	nC nC nC

Table 9: SWITCHING OFF

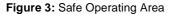

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time			40 17		ns ns

Table 10: SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain Current Source-drain Current (pulsed)					2.5 10	A A
V _{SD} (2)	Forward On Voltage	I _{SD} = 2.5 A	$V_{GS} = 0$			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 12 \text{ A}$ $V_{DD} = 30 \text{ V}$ (see test circu	di/dt = 100A/µs T _j = 150°C it, Figure 5)		100 260 5.2		ns μC Α

(1)Pulse width limited by safe operating area.

 $^{(2)}$ Pulsed: Pulse duration = 300 $\mu s,$ duty cycle 1.5 %.

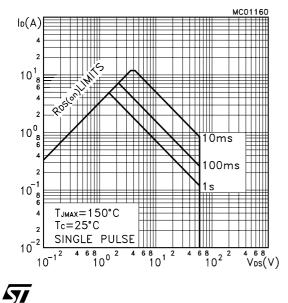
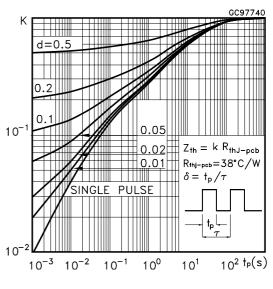



Figure 4: Thermal Impedance

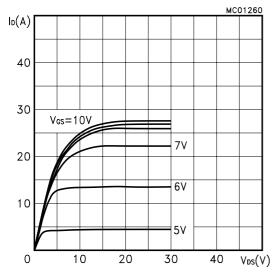


Figure 5: Output Characteristics

Figure 7: Transconductance

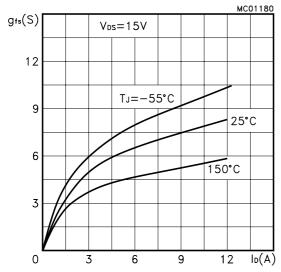


Figure 9: Gate Charge vs Gate-source Voltage

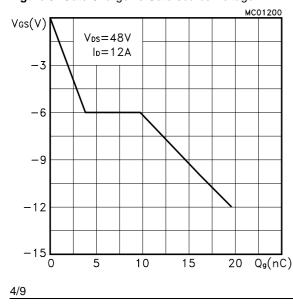


Figure 6: Transfer Characteristics

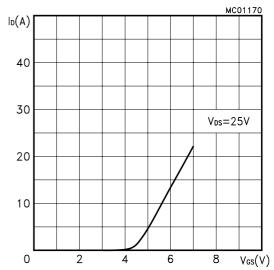


Figure 8: Static Drain-source On Resistance

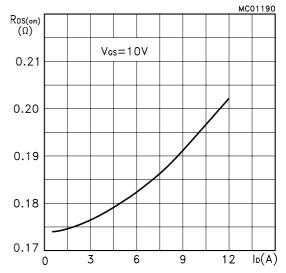
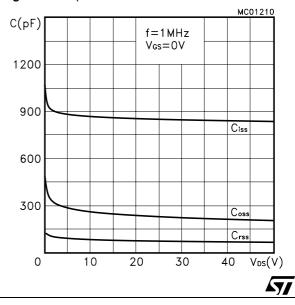
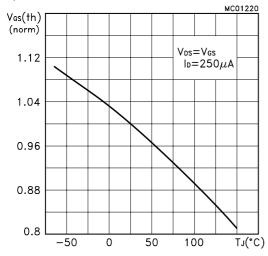




Figure 10: Capacitance Variations

Figure 11: Normalized Gate Threshold Voltage vs Temperature

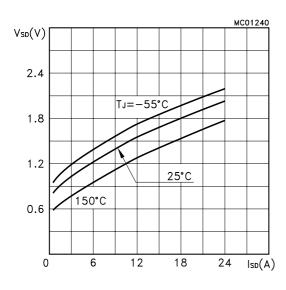
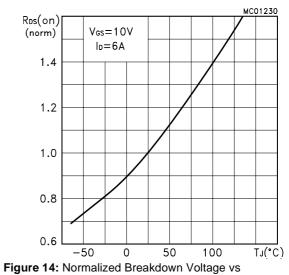
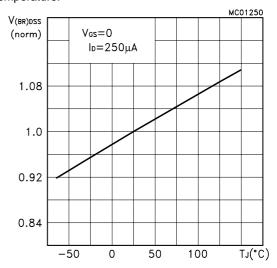




Figure 12: Normalized on Resistance vs Temperature

Temperature.

57

Figure 15: Unclamped Inductive Load Test Circuit

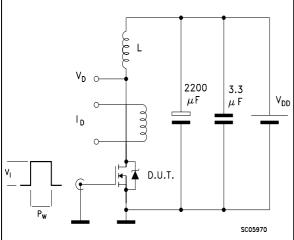


Figure 17: Switching Times Test Circuits For Resistive Load

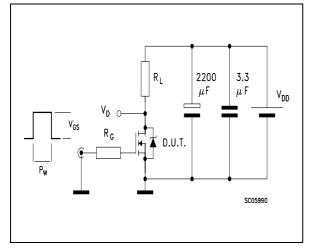
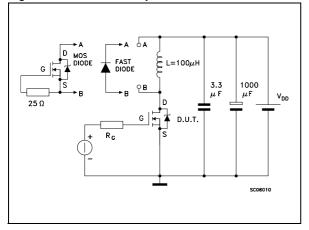



Figure 19: Test Circuit For Inductive Load Switching And Diode Recovery Times

UNCLAMPED I

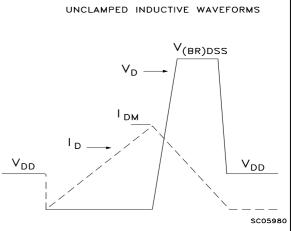
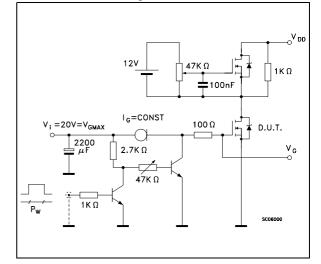
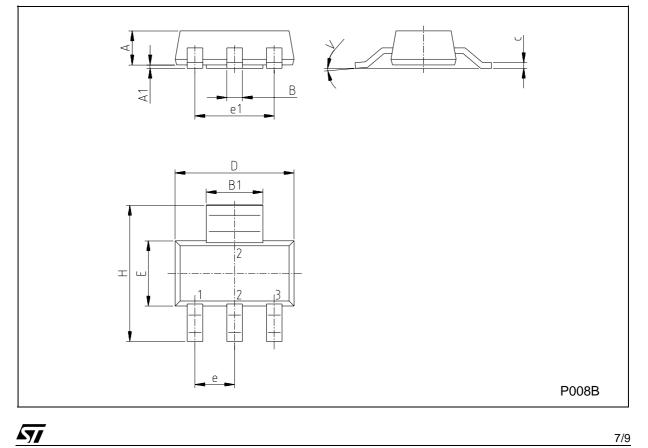



Figure 16: Unclamped Inductive Waveform

Figure 18: Gate Charge test Circuit



57

6/9

DIM.		mm			inch	
Dim	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.80			0.071
В	0.60	0.70	0.80	0.024	0.027	0.031
B1	2.90	3.00	3.10	0.114	0.118	0.122
С	0.24	0.26	0.32	0.009	0.010	0.013
D	6.30	6.50	6.70	0.248	0.256	0.264
е		2.30			0.090	
e1		4.60			0.181	
E	3.30	3.50	3.70	0.130	0.138	0.146
Н	6.70	7.00	7.30	0.264	0.276	0.287
V			10 ^o			10 [°]
A1		0.02				

Table 11:Revision History

Date	Revision	Description of Changes
Tuesday 18 January 2005	2.0	ADDED CURVES

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America. www.st.com

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)