

STW40N90K5, STWA40N90K5

N-channel 900 V, 0.088 Ω typ., 40 A MDmesh™ K5 Power MOSFETs in TO-247 and TO-247 long leads packages

Datasheet - production data

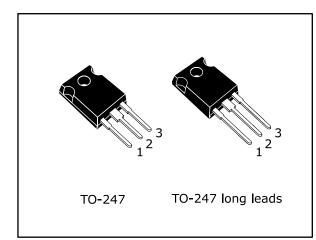
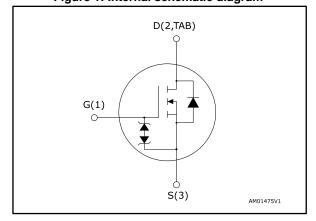



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ΙD
STW40N90K5	000 \	0.000.0	40.4
STWA40N90K5	900 V	0.099 Ω	40 A

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

These very high voltage N-channel Power MOSFETs are designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packaging
STW40N90K5	4000000	TO-247	Tubo
STWA40N90K5	40N90K5	TO-247 long leads	Tube

November 2016 DocID028929 Rev 2 1/14

Contents

1	Electric	al ratings	3
2		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e mechanical data	9
	4.1	TO-247 package information	g
	4.2	TO-247 long leads package information	11
5	Revisio	n history	13

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate- source voltage	±30	V
I _D	Drain current (continuous) at T _C = 25 °C	40	Α
ΙD	Drain current (continuous) at T _C = 100 °C	25	Α
I _D ⁽¹⁾	Drain current (pulsed)	160	Α
P _{TOT}	Total dissipation at T _C = 25 °C	446	W
dv/dt (2)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt (3)	dv/dt (3) MOSFET dv/dt ruggedness		V/ns
Tj	Operating junction temperature range	FF to 150	°C
T _{stg}	Storage temperature range	-55 to 150	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-amb	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
I_{AR}	I _{AR} Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})		Α
E _{AS} Single pulse avalanche energy (starting T _J = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)		750	mJ

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 40$ A, di/dt ≤ 100 A/ μs , VDS(peak) \leq V(BR)DSS., VDD=450 V

 $^{^{(3)}}V_{DS} \le 720 \text{ V}$

2 Electrical characteristics

(T_{case} =25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ mA}$	900			٧
	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V}$			1	μΑ
IDSS		$V_{GS} = 0 \text{ V}, V_{DS} = 900 \text{ V},$ $T_{C}=125 \text{ °C}^{(1)}$			50	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS}=0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 20 A		0.088	0.099	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3263	1	pF
Coss	Output capacitance	V _{GS} =0 V, V _{DS} =100 V, f=1 MHz	-	212	ı	pF
Crss	Reverse transfer capacitance	V65-0 V, V55-100 V, 1-1 W112	-	1.3	ı	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related		-	429	ı	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ V to 720 V}$	-	159	ı	pF
R_{G}	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	1.9	•	Ω
Qg	Total gate charge	$V_{DD} = 720 \text{ V}, I_D = 40 \text{ A}$	-	89	-	nC
Qgs	Gate-source charge	V _{GS} =10 V	-	25	-	nC
Q_{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	37.5	-	nC

Notes:

577

 $^{^{(1)}}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 450 V, I _D = 40 A,	-	30.4	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	15.5	-	ns
t _{d(off)}	Turn-off-delay time	(see Figure 14: "Test circuit for	-	84.5	-	ns
t _f	Fall time	resistive load switching times")	-	13.4	-	ns

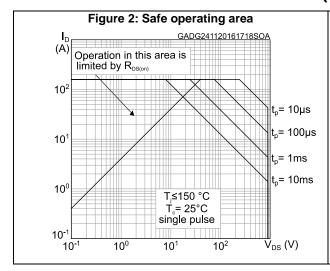
Table 8: Source drain diode

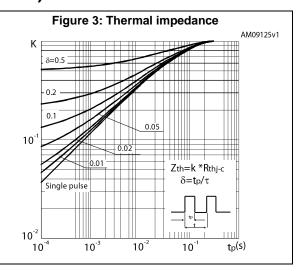
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		1		40	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		1		160	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0 V	ı		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 40 A, di/dt = 100 A/μs	1	693		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 17: "Unclamped inductive load test circuit")	ı	22		μC
I _{RRM}	Reverse recovery current		-	63		Α
t _{rr}	Reverse recovery time	I _{SD} = 40 A, di/dt = 100 A/µs V _{DD} = 60 V, T _J = 150 °C (see Figure 17: "Unclamped inductive load test circuit")	-	884		ns
Qrr	Reverse recovery charge		-	29		μC
I _{RRM}	Reverse recovery current		-	65.5		Α

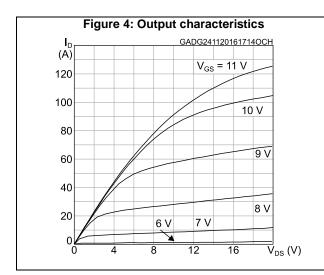
Notes:

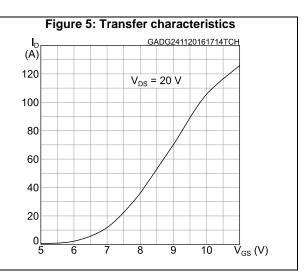
Table 9: Gate-source Zener diode

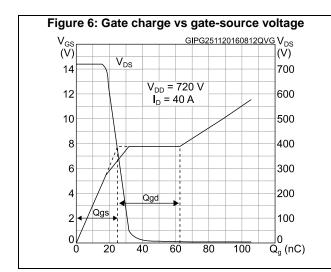
Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{mA}, I_{D}=0 \text{ A}$	30		1	V

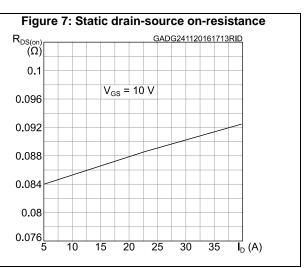

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

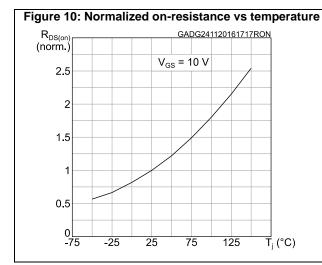


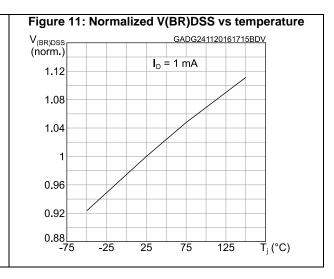

⁽¹⁾Pulse width limited by safe operating area.

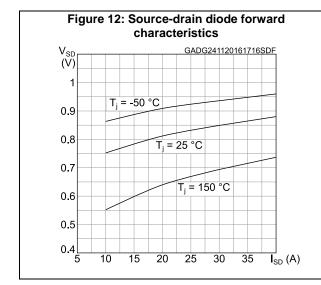

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%


2.1 Electrical characteristics (curves)








6/14 DocID028929 Rev 2

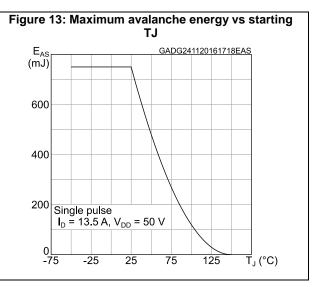
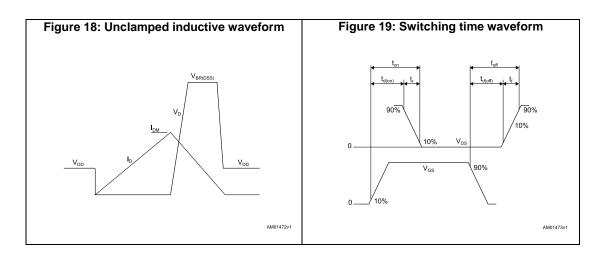

Figure 8: Capacitance variations GADG241120161712CVR (pF) 10^{4} C_{ISS} 10^{3} 10² C_{oss} f = 1 MHz C_{RSS} 10¹ 10⁰ $\vec{V}_{DS}(V)$ 10⁰ 10¹ 10² 10

Figure 9: Normalized gate threshold voltage vs temperature $V_{GS(th)}$ (norm.) 1.2 1 0.8 0.6 0.4 0.2 -75 -25 25 75 125 T_{j} (°C)

577


RL

AM01469v10

3 **Test circuits**

Figure 14: Test circuit for resistive load Figure 15: Test circuit for gate charge switching times behavior I_G= CONST $2.7 \ k\Omega$ 47 kΩ

Figure 17: Unclamped inductive load test Figure 16: Test circuit for inductive load switching and diode recovery times 1000 µF AM01471v1

57 8/14 DocID028929 Rev 2

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 package information

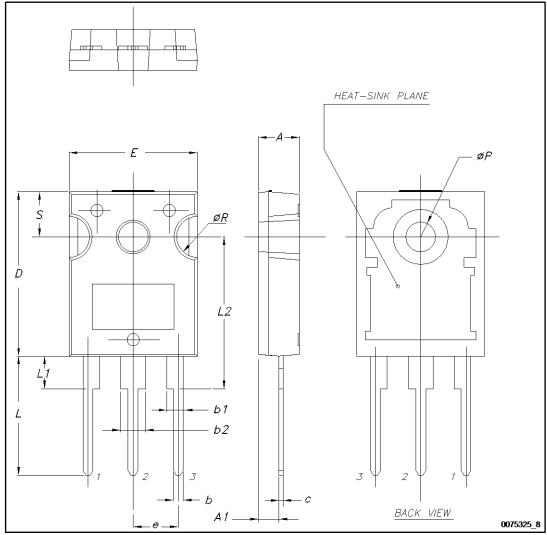


Figure 20: TO-247 package outline

Table 10: TO-247 package mechanical data

rubic 10. 10 247 package mechanical data						
Dim.		mm				
Dilli.	Min.	Тур.	Max.			
А	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
Е	15.45		15.75			
е	5.30	5.45	5.60			
L	14.20		14.80			
L1	3.70		4.30			
L2		18.50				
ØP	3.55		3.65			
ØR	4.50		5.50			
S	5.30	5.50	5.70			

10/14 DocID028929 Rev 2

4.2 TO-247 long leads package information

Figure 21: TO-247 long lead package outline

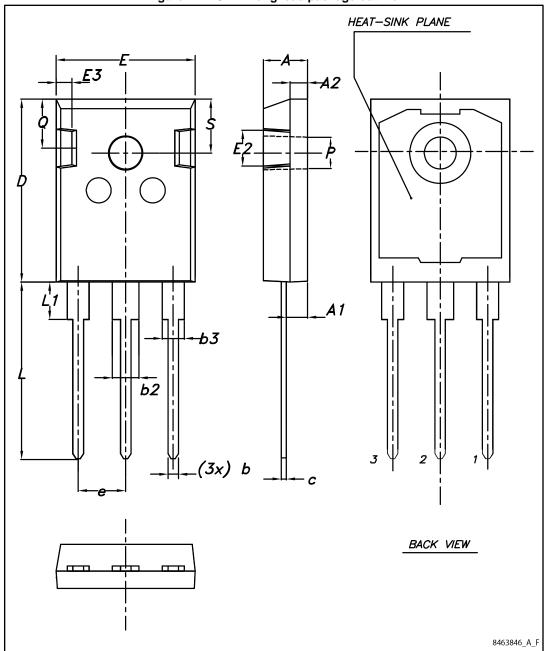


Table 11: TO-247 long lead package mechanical data

	mm			
Dim.	Min.	Тур.	Max.	
А	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16		1.26	
b2			3.25	
b3			2.25	
С	0.59		0.66	
D	20.90	21.00	21.10	
E	15.70	15.80	15.90	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е	5.34	5.44	5.54	
L	19.80	19.92	20.10	
L1			4.30	
Р	3.50	3.60	3.70	
Q	5.60		6.00	
S	6.05	6.15	6.25	

12/14 DocID028929 Rev 2

5 Revision history

Table 12: Document revision history

Date	Revision	Changes	
26-Jan-2016	1	First release.	
25-Nov-2016	2	Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics"	
		Added Section 2.1: "Electrical characteristics (curves)".	
		Document status changed from preliminary to production data.	
		Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicro(意法半导体)