Notice for TAIYO YUDEN Products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2017. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

- Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment), medical equipment classified as Class I or II by IMDRF, industrial equipment, and automotive interior applications, etc. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, medical equipment classified as Class III by IMDRF).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment).

*Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.

When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.
- Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

PART NUMBER

J	М	Κ	3	1	6	\triangle	В	J	1	0	6	М	L	Н	Т	\triangle
1	2	3		4		5	Œ	5)		\bigcirc		8	9	10	1	(12)

 $\Delta =$ Blank space

1Rated voltage

Code	Rated voltage[VDC]
A	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

2 Series name

Series name
ceramic capacitor
ceramic capacitor for high frequency
e type multilayer capacitor

③End terminatio	n
Code	End termination
К	Plated
J	Soft Termination
S	Cu Internal Electrodes
F	High Reliability Application

(4)Dimension(L × W)

Туре	Dimensions (L×W)[mm]	EIA(inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52×1.0 💥	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 💥	0306
212	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

Note : XLW reverse type(DWK) only

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
Α	212	201015/ 005	$1.25 \pm 0.15 - 0.05$	0.85±0.10
	212	2.0+0.15/-0.05	1.25+0.15/-0.05	1.25+0.15/-0.05
	316	3.2 ± 0.20	1.6±0.20	1.6±0.20
	325	3.2 ± 0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	212	2.0+0.20/-0	1.25+0.20/-0	0.85±0.10
		2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
к	212	2.0±0.15	1.25±0.15	0.85±0.15
	316	2 2 4 0 20	16+020	1.15±0.20
	310	3.2 ± 0.20	1.6 ± 0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30

Note: cf. STANDARD EXTERNAL DIMENSIONS

 Δ = Blank space

6Temperature characteristics code

High di	electric	type
---------	----------	------

Code		cable	Temperature	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance
	standard		range[°C]				code
BJ	EIA	X5R	$-55 \sim + 85$	25	±15%	±10%	К
	L 17 (,		20	_10/0	±20%	М
C6	EIA	X6S	$-55 \sim +105$	25	±22%	±10%	К
0	LIA	×03	-55.4 + 105	25	1 22 %	±20%	М
В7	EIA	X7R	$-55 \sim +125$	25	±15%	±10%	К
D7	EIA	7/17	-55/9 +125	25	- 1390	±20%	М
C7	EIA	X7S	$-55 \sim +125$	25	±22%	±10%	К
07	EIA		5 -55~+125	20	12290	±20%	М
D7	EIA	X7T	$-55 \sim +125$	25	+22%/-33%	±10%	К
D7	EIA	~/1	-55-9 +125	20	+22%0/-33%	±20%	М

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

CERAMIC CAPACITORS

■Temperature compensating type

	Temperature compensating type														
Code		icable Idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code								
	ocur	luuru													
	JIS	IIS CG	$-55 \sim +125$	20		±0.1pF	В								
CG						±0.25pF	С								
					0±30ppm/°C	$\pm 0.5 pF$	D								
		EIA COG										- 55/- + 125		0±30ppm/C	±1pF
	EIA			25		±2%	G								
						$\pm 5\%$	J								

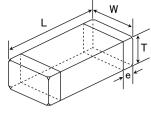
⑦Nominal capacitance

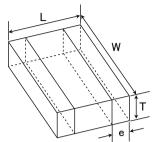
Code (example)	Nominal capacitance			
0R5	0.5pF			
010	1pF			
100	10pF			
101	100pF			
102	1,000pF			
103	0.01 <i>µ</i> F			
104	0.1 <i>µ</i> F			
105	1.0 µF			
106	10 µF			
107	100 µF			
Note : R=Decimal point				

(9) Thickness Code Thickness[mm] Ρ 0.3 Т 0.5 V 0.7(107type or more) С А 0.8 D 0.85(212type or more) F 1.15 G 1.25 L 1.6 1.9 Ν М 2.5

8 Capacitance tolerance					
Code	Capacitance tolerance				
В	±0.1pF				
С	±0.25pF				
D	±0.5pF				
G	±2%				
J	$\pm 5\%$				
К	±10%				
М	±20%				

Н	MLCC for Industrial and Automotive				
①Packaging					
Code	Packaging				
F	<i>ф</i> 178mm Taping (2mm pitch)				
R	ϕ 178mm Embossed Taping (4mm pitch)				
Т	<i>ф</i> 178mm Taping (4mm pitch)				
D	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)				
Р	325 type(Thickness code M)				


Special code


12Internal code

①Special code

Code

Code	Internal code
Δ	Standard

※ LW reverse type

L 0.6±0.03	W	nsion [mm] (inch) T			
0.6 ± 0.03			*1	е	
(0.024 ± 0.001)	0.3±0.03 (0.012±0.001)	0.3±0.03 (0.012±0.001)	т	0.15±0.05 (0.006±0.002)	
1.0 ± 0.05 (0.039 ± 0.002)	0.5 ± 0.05 (0.020 ± 0.002)	0.5 ± 0.05 (0.020 ± 0.002)	v	0.25±0.10 (0.010±0.004)	
0.52 ± 0.05 (0.020 ± 0.002)	1.0 ± 0.05 (0.039 ± 0.002)	0.3±0.05 (0.012±0.002)	Р	0.18±0.08 (0.007±0.003)	
1.6 ± 0.10 (0.063 ± 0.004)	0.8±0.10	0.8±0.10 (0.031±0.004)	Α	0.35 ± 0.25 (0.014 ± 0.010)	
1.6 ± 0.10 (0.063 ± 0.004)	0.8 ± 0.10 (0.031 ± 0.004)	0.8±0.10 (0.031±0.004)	А	0.35 + 0.3 / -0.25 (0.014 + 0.012 / -0.010)	
1.6 ± 0.10 (0.063 ± 0.004)	0.8±0.10 (0.031±0.004)	0.7±0.10 (0.028±0.004)	С	0.35±0.25 (0.014±0.010)	
0.8±0.10 (0.031±0.004)	1.6 ± 0.10 (0.063 ± 0.004)	0.5 ± 0.05 (0.020 ± 0.002)	v	0.25±0.15 (0.010±0.006)	
2.0±0.10	1.25±0.10	0.85±0.10 (0.033±0.004)	D	0.5±0.25	
(0.079±0.004)	(0.049 ± 0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020±0.010)	
2.0±0.10	1.25±0.10	0.85±0.10 (0.033±0.004)	D	0.5+0.35/-0.25	
(0.079±0.004)	(0.049±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020+0.014/-0.010)	
2.0±0.10 (0.079±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	0.85±0.10 (0.033±0.004)	D	0.5±0.25 (0.020±0.010)	
1.25 ± 0.15 (0.049 ± 0.006)	2.0±0.15 (0.079±0.006)	0.85±0.10 (0.033±0.004)	D	0.3±0.2 (0.012±0.008)	
3.2±0.15	1.6±0.15	1.15±0.10 (0.045±0.004)	F	0.5+0.35/-0.25	
(0.126±0.006)	(0.063±0.006)	1.6 ± 0.20 (0.063 ± 0.008)	L	(0.020+0.014/-0.010)	
3.2±0.15	1.6±0.15	1.15 ± 0.10 (0.045 ± 0.004)	F	0.6+0.4/-0.3	
(0.126±0.006)	(0.063±0.006)	1.6±0.20 (0.063±0.008)	L	(0.024+0.016/-0.012)	
		1.15±0.10 (0.045±0.004)	F		
3.2±0.30 (0.126±0.012)	2.5±0.20 (0.098±0.008)	1.9±0.20 (0.075±0.008)	N	0.6 ± 0.3 (0.024 \pm 0.012)	
		2.5±0.20 (0.098±0.008)	М		
3.2±0.30	2.5±0.20	1.9±0.20 (0.075±0.008)	N	0.6+0.4/-0.3	
(0.126±0.012)	(0.098±0.008)	2.5±0.20 (0.098±0.008)	м	(0.024+0.016/-0.012)	
4.5±0.40 (0.177±0.016)	3.2±0.30 (0.126±0.012)	2.5±0.20 (0.098±0.008)	М	0.9 ± 0.6 (0.035 ± 0.024)	
	$\begin{array}{c} 0.52 \pm 0.05 \\ (0.020 \pm 0.002) \\ \hline 1.6 \pm 0.10 \\ (0.063 \pm 0.004) \\ \hline 1.6 \pm 0.10 \\ (0.063 \pm 0.004) \\ \hline 1.6 \pm 0.10 \\ (0.063 \pm 0.004) \\ \hline 0.8 \pm 0.10 \\ (0.031 \pm 0.004) \\ \hline 2.0 \pm 0.10 \\ (0.079 \pm 0.004) \\ \hline 2.0 \pm 0.10 \\ (0.079 \pm 0.004) \\ \hline 2.0 \pm 0.10 \\ (0.079 \pm 0.004) \\ \hline 1.25 \pm 0.15 \\ (0.126 \pm 0.006) \\ \hline 3.2 \pm 0.15 \\ (0.126 \pm 0.006) \\ \hline 3.2 \pm 0.15 \\ (0.126 \pm 0.006) \\ \hline 3.2 \pm 0.30 \\ (0.126 \pm 0.012) \\ \hline 3.2 \pm 0.30 \\ (0.126 \pm 0.012) \\ \hline 4.5 \pm 0.40 \\ \end{array}$	0.52 ± 0.05 1.0 ± 0.05 (0.020 ± 0.002) (0.039 ± 0.002) 1.6 ± 0.10 0.8 ± 0.10 (0.063 ± 0.004) (0.031 ± 0.004) 1.6 ± 0.10 0.8 ± 0.10 (0.063 ± 0.004) (0.031 ± 0.004) 1.6 ± 0.10 0.8 ± 0.10 (0.063 ± 0.004) (0.031 ± 0.004) 1.6 ± 0.10 0.8 ± 0.10 (0.063 ± 0.004) (0.031 ± 0.004) 0.8 ± 0.10 1.6 ± 0.10 (0.079 ± 0.004) (0.063 ± 0.004) 2.0 ± 0.10 1.25 ± 0.10 (0.079 ± 0.004) (0.049 ± 0.004) 2.0 ± 0.10 1.25 ± 0.10 (0.079 ± 0.004) (0.049 ± 0.004) 2.0 ± 0.10 1.25 ± 0.10 (0.079 ± 0.004) (0.049 ± 0.004) 2.0 ± 0.15 2.0 ± 0.15 (0.126 ± 0.006) (0.063 ± 0.006) 3.2 ± 0.15 1.6 ± 0.15 (0.126 ± 0.012) (0.098 ± 0.008) 3.2 ± 0.30 2.5 ± 0.20 (0.126 ± 0.012) (0.098 ± 0.008)	$\begin{array}{ c c c c c c c } \hline 0.52 \pm 0.05 & 1.0 \pm 0.05 & 0.3 \pm 0.05 & (0.020 \pm 0.002) & (0.039 \pm 0.002) & (0.012 \pm 0.002) & \\ \hline 0.063 \pm 0.004) & (0.031 \pm 0.004) & (0.031 \pm 0.004) & \\ \hline 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.8 \pm 0.10 & \\ \hline 0.063 \pm 0.004) & (0.031 \pm 0.004) & (0.031 \pm 0.004) & \\ \hline 1.6 \pm 0.10 & 0.8 \pm 0.10 & 0.7 \pm 0.10 & \\ \hline 0.063 \pm 0.004) & (0.031 \pm 0.004) & (0.028 \pm 0.004) & \\ \hline 0.063 \pm 0.004) & (0.031 \pm 0.004) & (0.028 \pm 0.004) & \\ \hline 0.063 \pm 0.004) & (0.031 \pm 0.004) & (0.028 \pm 0.004) & \\ \hline 0.063 \pm 0.004) & (0.063 \pm 0.004) & (0.020 \pm 0.002) & \\ \hline 0.031 \pm 0.004) & (0.063 \pm 0.004) & (0.020 \pm 0.002) & \\ \hline 0.031 \pm 0.004) & (0.063 \pm 0.004) & \\ \hline 0.079 \pm 0.004) & (0.049 \pm 0.004) & \\ \hline 2.0 \pm 0.10 & 1.25 \pm 0.10 & & \\ (0.079 \pm 0.004) & (0.049 \pm 0.004) & & \\ \hline 1.25 \pm 0.10 & & & \\ (0.079 \pm 0.004) & (0.049 \pm 0.004) & & \\ \hline 1.25 \pm 0.10 & & & & \\ (0.079 \pm 0.004) & (0.049 \pm 0.004) & & & \\ \hline 0.079 \pm 0.006) & (0.079 \pm 0.006) & & & \\ (0.049 \pm 0.004) & & & \\ \hline 0.049 \pm 0.006) & & & & \\ (0.063 \pm 0.006) & & & & \\ (0.063 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & & \\ \hline 0.126 \pm 0.006) & & & \\ \hline 0.126 \pm 0.006) & & & \\ \hline 0.126 \pm 0.006) & & & \\ \hline 0.063 \pm 0.008) & & & \\ \hline 1.15 \pm 0.10 & & \\ (0.045 \pm 0.004) & & \\ \hline 0.126 \pm 0.006) & & & \\ \hline 0.063 \pm 0.008) & & \\ \hline 1.15 \pm 0.10 & & \\ (0.045 \pm 0.004) & & \\ \hline 0.063 \pm 0.008) & & \\ \hline 1.15 \pm 0.10 & & \\ (0.063 \pm 0.008) & & \\ \hline 1.15 \pm 0.10 & & \\ (0.045 \pm 0.004) & & \\ \hline 0.075 \pm 0.008) & & \\ \hline 0.075 \pm 0.008) & & \\ \hline 0.075 \pm 0.008) & & \\ \hline 0.126 \pm 0.012) & & \\ \hline 0.098 \pm 0.008) & & \\ \hline 0.126 \pm 0.008) & & \\ \hline 0.126 \pm 0.002) & & \\ \hline 0.098 \pm 0.008) & & \\ \hline 0.126 \pm 0.008) & & \\ \hline 0.126 \pm 0.002) & & \\ \hline 0.098 \pm 0.008) & & \\ \hline 0.075 \pm 0.20 & & \\ \hline 0.008 \pm 0.008) & & \\ \hline 0.075 \pm 0.20 & & \\ \hline 0.008 \pm 0.008) & & \\ \hline 0.075 \pm 0.20 & & \\ \hline 0.008 \pm 0.008) & & \\ \hline 0.075 \pm 0.20 & & \\ \hline 0.098 \pm 0.008) & & \\ \hline 0.098 \pm 0.008) & & \\ \hline 0.098 \pm 0.008) & \\ \hline 0.098 \pm 0.008)$	$\begin{array}{c ccccc} 0.52 \pm 0.05 & 1.0 \pm 0.05 & 0.3 \pm 0.05 & (0.012 \pm 0.002) & (0.039 \pm 0.002) & (0.012 \pm 0.002) & P \\ \hline 0.063 \pm 0.004) & (0.031 \pm 0.004) & (0.063 \pm 0.004) & (0.028 \pm 0.004) & (0.028 \pm 0.004) & (0.031 \pm 0.004) & (0.063 \pm 0.004) & (0.028 \pm 0.004) & 0.85 \pm 0.10 & (0.033 \pm 0.004) & (0.063 \pm 0.004) & (0.020 \pm 0.002) & V \\ \hline 0.031 \pm 0.004) & (0.063 \pm 0.004) & (0.020 \pm 0.002) & V & (0.033 \pm 0.004) & 0 & 0.85 \pm 0.10 & (0.033 \pm 0.004) & 0 & 0.85 \pm 0.10 & (0.033 \pm 0.004) & 0 & 0.85 \pm 0.10 & (0.033 \pm 0.004) & 0 & 0.85 \pm 0.10 & (0.033 \pm 0.004) & 0 & 0.85 \pm 0.10 & 0 & 0.85 \pm 0.10 & 0 & 0.85 \pm 0.10 & 0 & 0.033 \pm 0.004) & 0 & 0.03 \pm 0.004) & 0.049 \pm 0.004) & 1.25 \pm 0.15 & 0.85 \pm 0.10 & 0 & 0.033 \pm 0.004) & 0 & 0 & 0.079 \pm 0.006) & (0.079 \pm 0.006) & (0.079 \pm 0.006) & (0.033 \pm 0.004) & D & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	

STANDARD QUANTITY

Туре	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]
туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	-
105	0402	0.5	V	10000	
105	0204 💥	0.30	Р	10000	_
		0.7	С	4000	_
		0.8	A	4000	_
107	0603	0.8	A	3000 (Soft Termination)	-
		0.8	А	-	3000 (Soft Termination
	0306 💥	0.50	V	-	4000
		0.85	D	4000	_
	0005	1.25	G	-	3000
212	0805 —	1.25	G	-	2000 (Soft Termination
	0508 💥	0.85	D	4000	-
010	1000	1.15	F	-	3000
316	1206	1.6	L	-	2000
		1.15	F		0000
325	1210	1.9	Ν		2000
		2.5	М	-	500(T), 1000(P)
432	1812	2.5	М	_	500

Soft Termination Multilayer Ceramic Capacitors

●107TYPE (Dimension:1.6×0.8mm JIS:1608 EIA:0603) [Temperature Characteristic B7 : X7R] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Temperature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Fart number i	Fart number 2	[V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
TMJ107BB7473[AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
TMJ107BB7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
TMJ107BB7224[]AHT		25	X7R	0.22 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
TMJ107BB7474[]AHT			X7R	0.47 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
TMJ107CB7105[]AHR			X7R	1 μ	±10, ±20	10	150	0.8+0.25/-0	*1, *2
GMJ107BB7473[AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
GMJ107BB7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
GMJ107BB7224[]AHT		35	X7R	0.22 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
GMJ107BB7474[]AHT			X7R	0.47 μ	±10, ±20	10	150	0.8+0.20/-0	*1, *2
GMJ107CB7105[AHR			X7R	1 μ	±10, ±20	10	150	0.8+0.25/-0	*1, *2
UMJ107AB7102[AHT			X7R	1000 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
UMJ107AB7222[]AHT			X7R	2200 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
UMJ107BB7472[]AHT			X7R	4700 p	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7103[]AHT		50	X7R	0.01 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7223[]AHT			X7R	0.022 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7473[]AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
UMJ107BB7104[AHT			X7R	0.1 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107AB7102[AHT			X7R	1000 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
HMJ107AB7222[]AHT			X7R	2200 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1, *2
HMJ107BB7472[AHT			X7R	4700 p	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7103[]AHT		100	X7R	0.01 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7223[]AHT			X7R	0.022 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7473[]AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2
HMJ107BB7104[AHT			X7R	0.1 µ	±10, ±20	3.5	200	0.8+0.20/-0	*1, *2

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic B7 : X7R , C7 : X7S] 0.85mm thickness(D)、1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Temper		Capacitance	Capacitance	tan ô	HTLT	Thickness ^{*3} [mm]	Note
		[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
JMJ212CB7106[]GHT		6.3		X7R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.25/-0	*1, *2
EMJ212CB7225[]GHT		16		X7R	2.2 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
EMJ212CB7475[]GHT		10		X7R	4.7 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
TMJ212CB7225[]GHT		25		X7R	2.2 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
GMJ212CB7105[GHT		35		X7R	1 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
UMJ212BB7103[]GHT				X7R	0.01 µ	±10, ±20	2.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7223[]GHT				X7R	0.022 µ	±10, ±20	2.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7473[]GHT				X7R	0.047 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7104[]GHT		50		X7R	0.1 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
UMJ212BB7224[]GHT				X7R	0.22 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
UMJ212CC7474[GHTE				X7S	0.47 μ	±10, ±20	3.5	150	1.25+0.25/-0	*1, *2
UMJ212CB7105[]GHT				X7R	1 μ	±10, ±20	10	150	1.25+0.25/-0	*1, *2
HMJ212KB7102[]DHT				X7R	1000 p	±10, ±20	3.5	200	0.85 ± 0.15	*1, *2
HMJ212KB7222[]DHT				X7R	2200 p	±10, ±20	3.5	200	0.85 ± 0.15	*1, *2
HMJ212BB7472[]GHT				X7R	4700 p	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7103[]GHT				X7R	0.01 µ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7223[]GHT		100		X7R	0.022 µ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7473[]GHT				X7R	0.047 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7104[]GHT				X7R	0.1 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212BB7224[]GHT				X7R	0.22 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1, *2
HMJ212CC7474[GHTE				X7S	0.47 μ	±10, ±20	3.5	150	1.25+0.25/-0	*1, *2
QMJ212KB7102[]DHT				X7R	1000 p	±10, ±20	2.5	150	0.85 ± 0.15	*1, *2
QMJ212KB7222[]DHT]		X7R	2200 p	±10, ±20	2.5	150	0.85 ± 0.15	*1, *2
QMJ212BB7472[GHT		250		X7R	4700 p	±10, ±20	2.5	150	1.25+0.20/-0	*1, *2
QMJ212BB7103[GHT]		X7R	0.01 µ	±10, ±20	2.5	150	1.25+0.20/-0	*1, *2
QMJ212BB7223[GHT				X7R	0.022 µ	±10, ±20	2.5	150	1.25+0.20/-0	*1, *2

316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic B7 : X7R , C7 : X7S] 1.15mm thickness(F) , 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	teristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
LMJ316BB7226[LHT		10		X7R	22 μ	±10, ±20	10	150	1.6±0.30	*1, *2
EMJ316BB7475[LHT		16		X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.30	*1, *2
EMJ316BB7106[LHT		10		X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.30	*1, *2
TMJ316BB7474[LHT				X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
TMJ316BB7475[]LHT		25		X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.30	*1, *2
TMJ316BB7106[]LHT				X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.30	*1, *2
GMJ316BB7474[]LHT				X7R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
GMJ316AB7225[]LHT		35		X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
GMJ316BB7475[LHT		35		X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.30	*1, *2
GMJ316BB7106[LHT				X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.30	*1, *2
UMJ316BB7473[LHT				X7R	0.047 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7104[]LHT				X7R	0.1 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7224[]LHT				X7R	0.22 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7474[]LHT		50		X7R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316BB7105[]LHT				X7R	1μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
UMJ316AB7225[]LHT]		X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1, *2
UMJ316BC7475[LHTE				X7S	4.7 μ	±10, ±20	2.5	150	1.6 ± 0.30	*1, *2

PART NUMBER

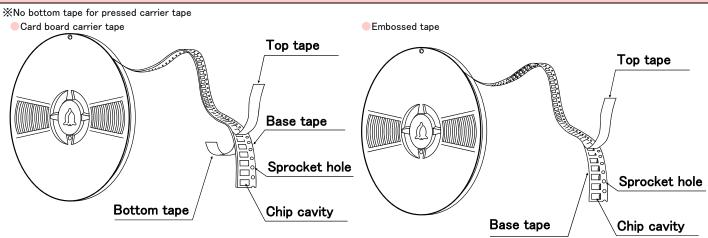
Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
HMJ316 B7102[FHT			X7R	1000 p	±10, ±20	3.5	200	1.15±0.10	*1, *2
HMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	3.5	200	1.15±0.10	*1, *2
HMJ316 B7472[]FHT			X7R	4700 p	±10, ±20	3.5	200	1.15±0.10	*1, *2
HMJ316KB7103[]FHT			X7R	0.01 µ	±10, ±20	3.5	200	1.15 ± 0.20	*1, *2
HMJ316BB7223[]LHT			X7R	0.022 µ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7473[LHT		100	X7R	0.047 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7104[]LHT			X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7224[]LHT			X7R	0.22 μ	±10, ±20	3.5	200	1.6±0.30	*1, *2
HMJ316BB7474[]LHT			X7R	0.47 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
HMJ316BB7105[LHT			X7R	1 μ	±10, ±20	3.5	200	1.6 ± 0.30	*1, *2
HMJ316BC7225[]LHTE			X7S	2.2 μ	±10, ±20	3.5	150	1.6 ± 0.30	*1, *2
QMJ316 B7102[]FHT			X7R	1000 p	±10, ±20	2.5	150	1.15±0.10	*1, *2
QMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	2.5	150	1.15±0.10	*1, *2
QMJ316 B7472[]FHT			X7R	4700 p	±10, ±20	2.5	150	1.15±0.10	*1, *2
QMJ316KB7103[FHT		250	X7R	0.01 µ	±10, ±20	2.5	150	1.15±0.20	*1, *2
QMJ316BB7223 LHT			X7R	0.022 μ	±10, ±20	2.5	150	1.6±0.30	*1, *2
QMJ316BB7473[LHT			X7R	0.047 μ	±10, ±20	2.5	150	1.6±0.30	*1, *2
QMJ316BB7104[LHT			X7R	0.1 μ	±10, ±20	2.5	150	1.6±0.30	*1, *2
SMJ316 B7102[]FHT			X7R	1000 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMJ316 B7472[]FHT		630	X7R	4700 p	±10, ±20	2.5	120	1.15±0.10	*1, *2
SMJ316KB7103[FHT			X7R	0.01 µ	±10, ±20	2.5	120	1.15±0.20	*1, *2
SMJ316BB7223[]LHT			X7R	0.022 µ	±10, ±20	2.5	120	1.6±0.30	*1, *2

325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic B7 : X7R , C7 : X7S] 1.9mm thickness(N) , 2.5mm thickness(M)

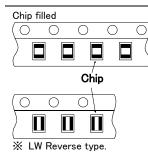
Part number 1	Part number 2	Rated voltage [V]	Tempe charact	erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*3} [mm]	Note
JMJ325KB7476[]MHP		6.3		X7R	47 μ	±10, ±20	10	150	2.5±0.30	*1, *2
EMJ325KB7226[]MHP		16		X7R	22 μ	±10, ±20	10	150	2.5 ± 0.30	*1, *2
TMJ325AB7475[]MHP		25		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1, *2
TMJ325KB7106[]MHP		25		X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
GMJ325AB7475[]MHP		35		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1, *2
GMJ325KB7106[]MHP		55		X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
UMJ325AB7225[]MHP				X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.30	*1, *2
UMJ325AB7475[]MHP		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1, *2
UMJ325KB7106[]MHP				X7R	10 <i>µ</i>	±10, ±20	10	150	2.5 ± 0.30	*1, *2
HMJ325 B7223[]NHT				X7R	0.022 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7473[]NHT				X7R	0.047 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7104[]NHT				X7R	0.1 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7224[]NHT		100		X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7474[]NHT		100		X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325 B7105[]NHT				X7R	1 μ	±10, ±20	3.5	200	1.9±0.20	*1, *2
HMJ325AB7225[]MHP				X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.30	*1, *2
HMJ325KC7475[]MHPE				X7S	4.7 μ	±10, ±20	3.5	150	2.5 ± 0.30	*1, *2
QMJ325 B7223[]NHT				X7R	0.022 µ	±10, ±20	2.5	150	1.9 ± 0.20	*1, *2
QMJ325 B7473[]NHT		250		X7R	0.047 μ	±10, ±20	2.5	150	1.9 ± 0.20	*1, *2
QMJ325 B7104[]NHT		230		X7R	0.1 μ	±10, ±20	2.5	150	1.9±0.20	*1, *2
QMJ325 B7224[]NHT				X7R	0.22 μ	±10, ±20	2.5	150	1.9±0.20	*1, *2
SMJ325 B7223[]NHT		630		X7R	0.022 µ	±10, ±20	2.5	120	1.9±0.20	*1, *2
SMJ325 B7473[]NHT		030		X7R	0.047 μ	±10, ±20	2.5	120	1.9 ± 0.20	*1, *2

Multilayer Ceramic Capacitors

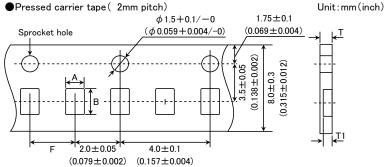

PACKAGING

①Minimum Quantity

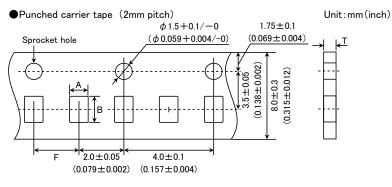
Taped package	Thick	necc	Standard o	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004) □VS021(008004)	0.125	К		50000
□MK042(01005)	0.2	C, D		
□VS042(01005)	0.2	С		40000
□MK063(0201)	0.3	P,T	15000	_
□WK105(0204) ※	0.3	Р	10000	_
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	С	20000	-
□MF105(0402)	0.3	Р	15000	_
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	-
□MK107(0603)	0.45	К	4000	-
□WK107(0306) ※	0.5	V	—	4000
□MF107(0603)	0.8	А	4000	-
□VS107(0603)	0.7	С	4000	-
□MJ107(0603)	0.8	А	3000	3000
MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
UVS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	_	2000
	0.85	D	4000	_
□MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	—	2000
	1.15	F	_	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F	7	2000
□MK325(1210)	1.9	Ν		2000
□MF325(1210)	2.0max.	Y		
	2.5	М	_	1000
□MJ325(1210)	1.9	Ν	_	2000
	2.5	Μ	_	500(T), 1000(P)
□MK432(1812)	2.5	Μ	-	500


Note : 💥 LW Reverse type.

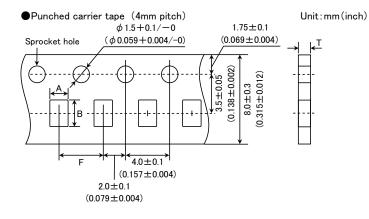
(2) Taping material


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

c_mlcc_pack_e-E06R01



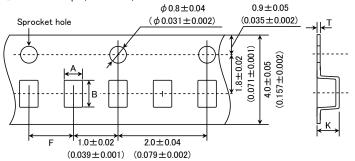
3 Representative taping dimensions



Type(EIA)	Chip Cavity		Insertion Pitch	Tape Th	iickness
Type(EIA)	А	В	F	Т	T1
□MK063(0201)	0.37	0.67		0.45max.	0.42max.
□WK105(0204) ※			2.0 ± 0.05	0.4511188.	0.421118X.
□MK105(0402) (*1 C)	0.65	1.15	2.0 ± 0.00	0.4max.	0.3max.
□MK105(0402) (*1 P)				0.45max.	0.42max.
Note *1 Thickness, C:0.	Unit : mm				

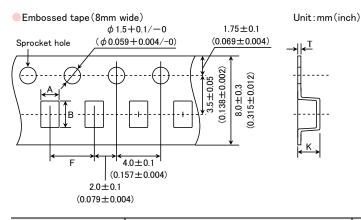
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	А	В	F	Т
□MK105 (0402) □MF105 (0402)	0.65	1.15	2.0 ± 0.05	0.8max.
□MF105 (0402) □VK105 (0402)	0.05	1.15	2.0 ± 0.05	o.omax.

Unit:mm


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(EIA)	А	В	F	Т	
□MK107(0603)					
□WK107(0306) 💥	1.0	1.8	10101	1.1max.	
□MF107(0603)					
MK212(0805)	1.05	0.4	4.0±0.1	1.1max.	
□WK212(0508) 💥	1.65	2.4			
□MK316(1206)	2.0	3.6			
Note: Taping size might	be different depending on	the size of the product.	※ LW Reverse type.	Unit : mm	

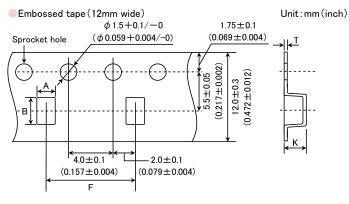
Note: Taping size might be different depending on the size of the product. % LW Reverse type.



Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Ti	nickness
Type(EIA)	А	В	F	К	Т
□MK021(008004)	0.135	0.27			
□VS021(008004)	0.135	0.27	1.0 ± 0.02	0.5	0.05
MK042(01005)	0.23	0.40	1.0±0.02	0.5max.	0.25max.
□VS042(01005)	0.23	0.43			

Unit:mm(inch)

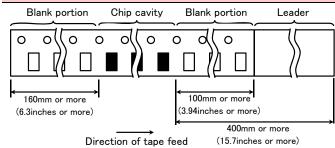
Unit:mm

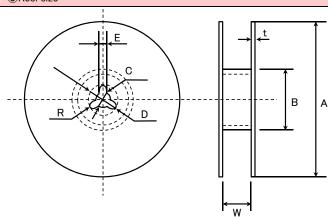


Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Tł	nickness
Type(EIA)	А	В	F	К	Т
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25 ± 0.1
□MK212(0805)	1.65	2.4			
□MF212(0805)	1.05	2.4			
□MK316(1206)	2.0	3.6	4.0 ± 0.1	3.4max.	0.6max.
□MF316(1206)	2.0	5.0		3.4max.	0.0max.
□MK325(1210)	2.8	3.6			
□MF325(1210)	2.0	5.0			

Note: 💥 LW Reverse type.

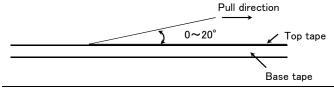
Unit:mm




Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Tł	nickness
Type(EIA)	A	В	F	К	Т
□MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit : mm

④Trailer and Leader


⑤Reel size

А	В	С	D	E	R
¢178±2.0	<i>ф</i> 50min.	ϕ 13.0±0.2	<i>¢</i> 21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0	-		
8mm wide tape	2.5max.	10±1.5	-		
12mm wide tape	2.5max.	14±1.5	Unit : mm		

6 Top Tape Strength

The top tape requires a peel-off force of $0.1\ to\ 0.7N$ in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

c_mlcc_pack_e=E06R01

TAIYO YUDEN

Downloaded From Oneyac.com

RELIABILITY DATA

1.Operating Te	mperature Range									
	Temperature Standard		−55 to +125°C							
Compensating(C	Compensating(Class1)	High Frequency Type	- 55 to +	-125 C						
				Specification	Temperature Range]				
	Specified			B	-25 to +85°C					
Specified			BJ	X5R	−55 to +85°C					
Value			B7	B7 X7R −55 to +125°C						
	High Permittivity (Class2)	High Permittivity (Class2)		X6S	-55 to $+105^{\circ}$ C					
			C7	X7S	-55 to +125°C					
			D7	X7T	-55 to +125°C					
			LD(💥)	X5R	−55 to +85°C					
			Note: 🔆	LD Low distortion F	nigh value multilayer ceramic capa	acitor				

2. Storage Co	nditions							
	Temperature	Standard	—55 to +	105°C				
	Compensating(Class1)	High Frequency Type	-5510 -	to +125 C				
			Specification	Temperature Range				
		BJ	В	-25 to +85°C				
Specified	Specified		ВЈ		$-55 \text{ to } +85^{\circ}\text{C}$			
Value			B7	X7R	−55 to +125°C			
	High Permittivity (Class2)	C6	X6S	-55 to $+105^{\circ}$ C			
			C7	X7S	-55 to +125°C			
			D7	X7T	-55 to +125°C			
			LD(🔆)	X5R	-55 to $+85^{\circ}$ C			
			Note: 🗙	LD Low distortion I	nigh value multilayer ceramic capacitor			

3. Rated Voltag	ge		
0 10 1	Temperature	Standard	50VDC, 25VDC
Specified Value	Compensating(Class1)	High Frequency Type	50VDC, 25VDC
Value	High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC

4. Withstanding	Voltage (Between termina	s)						
0.15.1	Temperature		Standard					
Specified Value	Compensating(Class1) Hig		requency Type	No breakdown or damage				
Valuo	High Permittivity (Class2)						
Test			Cla	ass 1	Class 2			
Test Methods and	Applied voltage Rated		volta × 3 Rated voltage × 2.5					
Remarks	Duration			1 to 5 sec.				
i temariks	Charge/discharge currer	nt		50mA	max.	7		

5. Insulation Re	esistance		
	Temperature	Standard	10000 MΩmin.
Specified	Compensating(Class1)	High Frequency Type	
Value	High Permittivity(Class2)	Note 1	C≦0.047 μF : 10000 MΩ min. C>0.047 μF : 500MΩ• μF
Test	Applied voltage	: Rated voltage	
Methods and	Duration	:60±5 sec.	
Remarks	Charge/discharge current	: 50mA max.	

6. Capacitance	(Tolerance)					
	Temperature	Standard	C□ U□ SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%	
Specified Value	Compensating(Class1)	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%	
	High Permittivity (Class2))	-	7, C6, C7, D7, LD(※):: ※LD Low distortion hig	$\pm 10\%$ or $\pm 20\%$ gh value multilayer ceramic	capacitor
			Clas	s 1	Cla	ass 2
- .		Standard	ł	High Frequency Type	C≦10 <i>µ</i> F	C>10 µF
Test Methods and	Preconditioning		No	ne	Thermal treatment (a	t 150°C for 1hr) Note 2
Remarks	Measuring frequency		1MHz	±10%	1kHz±10%	120±10Hz
rtemarks	Measuring voltage Note		0.5 to	ōVrms	1±0.2Vrms	0.5±0.1rms
	Bias application				one	

7. Q or Dissipat	tion Factor							
Specified	Temperature		Standard		DpF:Q≧400+20C DpF:Q≧1000 (C:N	ominal capacitance)		
Value Compensating(Class1)		High Frequency Type		Refer	to detailed specification			
	High Permittivity (Class2)			BJ, B7, C6, C7, D7:2.5%				
			Class 1			Class 2		
			Standard		High Frequency Type	C≦10 <i>µ</i> F	C>10 µF	
	Preconditioning				one	Thermal treatment (at 150°C for 1hr) Note 2		
Test	Measuring frequey		1MHz±10	D%	1GHz	1kHz±10%	120±10Hz	
Methods and	Measuring voltage Note	1		0.5 to	5Vrms	1 ± 0.2 Vrms	0.5±0.1Vrms	
Remarks	Bias application					None		
	High Frequency Type							
	Measuring equipment	: HP	4291A					
	Measuring jig	: HP	16192A					

			Tem	perature Charac	teristic [ppm/°	C1	Tole	rance [ppm/°C]
			-	•	1	-	1 510	G: ±30
			C□: 0 CG,CH, CJ,			CK		H:±60
	Temperature	Standard		750				J: ±120
	Compensating(Class1)		U□ :	- /50	UJ, UK			K:±250
	compensating (classify		SL :	+350 to -100	0		•	
			Tem	perature Charac	teristic [ppm/°	C1	Tole	rance [ppm/°C]
		High Frequency Type	C□ :	•	CH	-1		H:±60
Specified				-		D-	ference	
Value				Specification	Capacitance change		iperature	Temperature Range
				В	±10%		20°C	−25 to +85°C
			BJ	X5R	±15%		25°C	-55 to +85°C
			B7	X7R	±15%		25°C	$-55 \text{ to } +125^{\circ}\text{C}$
	High Permittivity (Class2)	C6	X6S	±22%		25°C	−55 to +105°C
			C7	X7S	±22%		25°C	−55 to +125°C
			D7	X7S	+22/-33%		25°C	−55 to +125°C
			LD(X)	X5R	±15%		25°C	−55 to +85°C
			Note : 🗦	LD Low disto	rtion high value	multila	yer ceram	ic capacitor
	Class 1							
	Capacitance at 20°C and	l 85°C shall be measure	d in thern	nal equilibrium, a	and the tempera	ture c	haracteris	tic shall be calculate
	following equation.							
	(C ₈₅ -C ₂₀)	10 ⁶ (ppm/°C)						
	$C_{20} \times \Delta T$		T=65					
Test	Class 2							
Methods and	Capacitance at each step equation.	shall be measured in the	ermal equi	ilibrium, and the	temperature cha	aracter	ristic shall	be calculated from th
Remarks	Step	В		X5R, X7R, X6S,	VIC VIT			
	1	Minimum op			, , / 3, , / 1			
	2	20°C		25°C				
	3			emperature				

 $\frac{(C-C_2)}{C_2} \times 100(\%)$

C : Capacitance in Step 1 or Step 3 C2 : Capacitance in Step 2

9. Deflection Appearance : No abnormality Standard Capacitance change : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. Temperature Compensating(Class1) : No abnormality Appearance Specified High Frequency Type Cpaitance change : Within $\pm 0.5 \text{ pF}$ Value Appearance : No abnormality High Permittivity (Class2) Capacitance change : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD(\bigotimes)) Note: XLD Low distortion high value multilayer ceramic capacitor Multilayer Ceramic Capacitors ^{**1}105 Type 042, 063, The other types Board Glass epoxy-resin substrate Test Thickness 0.8mm 1.6mm Methods and Warp 1mm (Soft Termination type:3mm) Remarks Duration 10 sec. ^{*1:}105 Type thickness, C: 0.2mm ,P: 0.3mm. (Unit: mm) Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength					
0.15.1	Temperature	Standard	-			
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.			
- Taldo	High Permittivity (Class2))	-			
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	← A → X	R0.5 Pressing jig Chip Chip			

11. Adhesive St	11. Adhesive Strength of Terminal Electrodes							
Specified Value	Temperature	Standard						
	Compensating(Class1)) High Frequency Typ	oe No terminal separat	No terminal separation or its indication.				
	High Permittivity (Cla	ss2)						
		Multilayer Cera	mic Capacitors	Hooked jig				
Test		042, 063 Type	105 Type or more					
Methods and Remarks	Applied force	2N	5N	R=05 Deard				
	Duration	30±5	5 sec.					
				」 ■∎←Chip I [/ / 序 Chip				

12. Solderability	2. Solderability						
Specified Value	Temperature	Standard					
	Compensating(Class1)	High Frequency Type	At least 95	At least 95% of terminal electrode is covered by ne			
	High Permittivity (Class2))					
		Eutectic so	older	Lead-free solder			
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu			
Remarks	Solder temperature	230±5°	С	245±3°C			
	Duration		4 ±1	1 sec.			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

13. Resistance	to Soldering		
Specified Value	Temperature	Standard	Appearance: No abnormalityCapacitance change: Within ±2.5% or ±0.25pF, whichever is larger.Q: Initial valueInsulation resistance: Initial valueWithstanding voltage(between terminals) : No abnormality
	Compensating(Class1) High Frequency Type	Appearance : No abnormality Capacitancecange : Within ±2.5% e Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality
	High Permittivity(Cla	ss2) Note 1	Appearance: No abormalityCapactace change: Within ±7.5% (BJ, B7, C6, C7, D7, LD(X))Dissipation factor: Initial valueInsulation resistance: Initial valueWithstanding voltage(between terminals): No abnormalityNote: XLD Low distortion high value multilayer ceramic capacitor
			lss 1
		042, 063 Type	105 Туре
	Preconditioning		None
	Preheating	150°C, 1 to 2 min.	80 to 100°C, 2 to 5 min. 1. 150 to 200°C, 2 to 5 min.
	Solder temp.		270±5°C
	Duration		3±0.5 sec.
Test Methods and	Recovery	6 to 24 hrs	rs(Standard condition)Noe 5
Remarks			Class 2
		042、063 Type	105, 107, 212 Туре 316, 325 Туре
	Preconditioning		Thermal treatment (at 150°C for 1 hr) Note 2
	Preheating	150°C, 1 to 2 min.	80 to 100°C, 2 to 5 min. 80 to 100°C, 5 to 10 min. 1. 150 to 200°C, 2 to 5 min. 150 to 200°C, 5 to 10 min.
	Solder temp.		270±5°C
	Duration		3±0.5 sec.
	Recovery		24±2 hrs(Standard condition)Note 5
	0 1 (7)	`	
14. Temperatu	re Cycle (Thermal Shock		
	Temperature	Standard	Appearance : No abnormality Capacitance change : Within ±2.5% or ±0.25pF, whichever is larger. Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality
Specified Value	Compensating(Class1) High Frequency Type	Appearance : No abnormality Capacitance change : Within ±0.25pF

Temperature (Between community) . No abhomanty	Specified Value	Temperature	Standard	Capacitance change : W Q : In Insulation resistance : In	o abnormality /ithin $\pm 2.5\%$ or $\pm 0.25 \mu$ iitial value iitial value etween terminals) : No	oF, whichever is larger. o abnormality	
			High Frequency Type	Capacitance change : W Q : In Insulation resistance : In	/ithin $\pm 0.25 pF$ iitial value iitial value	o abnormality	
High Permittivity (Class2) Note 1 High Permittivity (Class2) Note 1 Appearance : No abnormality Dissipation factor : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality Note: **LD Low distortion high value multilayer ceramic capacitor		High Permittivity(Class2) Note 1	Capacitance change : Wi Dissipation factor : Ini Insulation resistance : Ini Withstanding voltage (be	ithin $\pm 7.5\%$ (BJ, B7, 0 itial value itial value etween terminals) : No	abnormality	
Class 1 Class 2				Class 1		Class 2	
Preconditioning None Thermal treatment (at 150°C for 1 hr) Note 2		Preconditioning		None	Thermal treat		
Test Methods and Remarks 1 cycle Step Temperature (°C) Time (min.) 1 Minimum operating temperature 30±3 2 Normal temperature 2 to 3 3 Maximum operating temperature 30±3 4 Normal temperature 2 to 3	Methods and		1Minimum operating2Normal tempe3Maximum operating4Normal tempe		temperature erature temperature erature	$ \begin{array}{r} 30 \pm 3 \\ 2 \text{ to } 3 \\ 30 \pm 3 \end{array} $	
Recovery 6 to 24 hrs (Standard condition) Note 5 24±2 hrs (Standard condition) Note 5			6 to 24 hrs (Star		1	tandard condition) Note 5	-

15. Humidity (Steady State)			
Specified Value	Temperature Compensating(Class)	Standard	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. : C<10pF : Q \geq 200+10C 10 \leq C<30pF : Q \geq 275+2.5C C \geq 30pF:Q \geq 350(C:Nominal capacitance) : 1000 M Ω min.
		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within ±0.5pF, : 1000 MΩmin.
	High Permittivity(Cl	ass2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distor	: No abnormality : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) : 5.0% max.(BJ, B7, C6, C7, D7, LD($\%$)) : 50 M $\Omega\mu$ F or 1000 M Ω whichever is smaller. rtion high value multilayer ceramic capacitor
			ass 1	Class 2
		Standard	High Frequency Typ	pe All items
Test	Preconditioning	Ν	one	Thermal treatment(at 150°C for 1 hr) Note 2
Methods and	Temperature	40±2°C	60±2°C	40±2°C
Remarks	Humidity	90 to	95%RH	90 to 95%RH
	Duration	500+2	4∕ —0 hrs	500+24/-0 hrs
	Recovery	6 to 24 hrs(Stand	ard condition)Note 5	24±2 hrs(Standard condition)Note 5

16. Humidity Lo	pading			
Specified Value	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 7.5\%$ or $\pm 0.75pF$, whichever is larger. : C < 30pF: Q $\ge 100 + 10C/3$ C $\ge 30pF: Q \ge 200$ (C:Nominal capacitance) : 500 M Ω min.
		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : $C \leq 2pF$: Within $\pm 0.4 pF$ $C > 2pF$: Within $\pm 0.75 pF$ (C: Nominal capacitance) : 500 M Ω min.
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distort	: No abnormality : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) : 5.0% max. (BJ, B7, C6, C7, D7, LD($\%$)) : 25 M $\Omega\mu$ F or 500 M Ω whichever is smaller. ion high value multilayer ceramic capacitor
		C	Class 1	Class 2
		Standard	High Frequency Typ	e All items
	Preconditioning		None	Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3
Test	Temperature	40±2°C	60±2°C	40±2°C
Methods and	Humidity	90 t	to 95%RH	90 to 95%RH
Remarks	Duration	500+	24/-0 hrs	500+24/-0 hrs
	Applied voltage	Rate	ed voltage	Rated voltage
	Charge/discharge current	501	mA max.	50mA max.
	Recovery	6 to 24 hrs(Stan	dard condition)Note 5	24±2 hrs(Standard condition) Note 5
	current			

17. High Temp	erature Loading					
Specified Value	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	:C<10pF:Q≧ 10≦C<30pF: C≧30pF:Q≧	±0.3pF, whichever is 200+10C	-
		High Frequency Type	Appearance Capacitance change Insulation resistance		, ±0.3pF, whichever is	s larger.
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: XLD Low dist	: 5.0% max.(BJ, : 50 M <i>Ωμ</i> F or 10	(BJ, B7, C6, C7, D7 B7, C6, C7, D7, LD(※ 000 M Ω whichever is	()) smaller.
		Clas	s 1		Class 2	
		Standard H	ligh Frequency Type	BJ, LD(🔆)	C6	B7, C7, D7
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		• • • •
Test	Temperature	Maximum operatir	ng temperature	Maximum operating temperature		
Methods and	Duration	1000+48,	∕−0 hrs	1000+48/-0 hrs		
Remarks	Applied voltage	Rated vol	tage × 2	Rated voltage × 2 Note 4		
- tomarito	Charge/discharge current	50mA max.		50mA max.		
	Recovery	6 to 24hr(Standard condition)Note 5		24 \pm 2 hrs (Standard condition) Note 5		

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.

Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.

Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

RELIABILITY DATA

1. Operating Temp	I. Operating Temperature Range						
	Temperature Compensating(High Frequency type) CG(C0G) : -55 to +125°C						
Specified Value	High permittivity X7R, X7S : -55 to $+125^{\circ}$ C X5 : -55 to $+85^{\circ}$ C B : -25 to $+85^{\circ}$ C						

2. Storage Temper	rature Range
	Temperature Compensating(High Frequency type) CG(C0G) : -55 to +125°C
Specified Value	High permittivity X7R, X7S : -55 to $+125^{\circ}$ C X5R : -55 to $+85^{\circ}$ C B : -25 to $+85^{\circ}$ C

3. Rated Voltage	
Specified Value	100VDC(HMK,HMJ), 250VDC(QMK,QMJ,QVS), 630VDC(SMK,SMJ)

4. Withstanding Volt	age(Between terminals)	
Specified Value	No breakdown or damage	
Test Methods and Remarks	Applied voltage Duration Carge/discharge current	: Rated voltage × 2.5(HMK,HMJ), Rated voltage × 2(QMK,QMJ,QVS), Rated voltage × 1.2(SMK,SMJ) : 1 to 5sec. : 50mA max.

5. Insulation Resist	5. Insulation Resistance			
Specified Value	Temperature Compensating(High Frequency type) 10000M Ω min High permittivity 100M $\Omega\mu$ F or 10G Ω whichever is smaller.			
Test Methods and Remarks	Applied voltage Duration Charge/discharge current	: Rated voltage(HMK,HMJ, QMK,QMJ,QVS), 500V(SMK,SMJ) : 60±5sec. : 50mA max.		

6. Capacitance (To	6. Capacitance (Tolerance)		
Specified Value	Temperature Compensating(High Frequency type) ± 0.1 pF (C ≤ 5 pF) ± 0.25 pF (C ≤ 10 pF) ± 0.5 pF (5pF $\leq C < 10$ pF) $\pm 2\%$ (C=10pF) $\pm 5\%$ (C ≥ 10 pF) High permittivity $\pm 10\%, \pm 20\%$		
Test Methods and Remarks	Temperature Compensatir Measuring frequency Measuring voltage Bias application High permittivity Measuring frequency Measuring voltage Bias application	ng(High Frequency type) : 1MHz±10% : 0.5 to 5Vrms : None : 1kHz±10% : 1±0.2Vrms : None	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

7. Q or Dissipation	Factor		
	Temperature Compensa	ating(High Frequency type)	
	C<30pF : Q≧800+20C		
	C≧30pF:Q≧1400	C:Normal Capacitance(/pF)	
Specified Value			
	High permittivity		
	3.5%max(HMK,HMJ)		
	2.5%max(QMK,QMJ, SMK,SMJ)		
	Temperature Compensating(High Frequency type)		
	Measuring frequency	: 1MHz±10%	
	Measuring voltage	: 0.5 to 5Vrms	
Test Methods and	Bas application	: None	
Remarks	High permittivity		
	Measuring frequency	:1kHz±10%	
	Measuring voltage	: 1±0.2Vrms	
	Bas application	: None	

8. Temperature Cha	aracteristic of Capacitance				
	Temperature Compensating(High Frequency type)COG:±30ppm(25 to +125°C)				
Specified Value	High permittivity B : $\pm 10\%(-25 \text{ to } +85^{\circ}\text{C})$ X5R : $\pm 15\%(-55 \text{ to } +85^{\circ}\text{C})$ X7R : $\pm 15\%(-55 \text{ to } +125^{\circ}\text{C})$ X7S : $\pm 22\%(-55 \text{ to } +125^{\circ}\text{C})$				
Test Methods and Remarks	Temperature Compensating(High Frequency type) Capacitance at 25°C and 85°C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. $\frac{(C_{85}-C_{25})}{C_{25} \times \Delta T} \times 10^{6} \times [ppm/°C]$ High permittivity Capacitance value at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. Step B X5R, X7R, X7S 1 Minimum operating tempeature 2 20°C 25°C 3 Maximum operating temperature				
	$\frac{(C-C_2)}{C_2} \times 100 (\%)$ C : Capacitance value in Step 1 or Step 3 C2 : Capacitance value in Step 2				

9. Deflection Specified Value Temperature Compensating(High Frequency type) Appearance : No abnormality Capacitance change :±5% or ±0.5pF, whichever is larger. High permittivity Appearance Appearance : No abnormality Capacitance change :Within±10%

Test Methods and Remarks	Warp Duration Test board Thicknss	: 1mm (Soft Termination type:3mm) : 10sec. : Glass epoxy-resin substrate : 1.6mm	Board R-230 Warp 45 ± 2 45 ± 2
			(Unit: mm)
	Capacitance n	neasurement shall be conducted with the b	pard bent.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

10. Adhesive Stren	10. Adhesive Strength of Terminal Electrodes				
Specified Value	No terminal separation or its indication.				
Test Methods and Remarks	Temperature Compensating(High Frequency type) Applied force : 2N Duration : 10±5sec. High permittivity Applied force : 5N Duration : 30±5sec.				

11. Solderability				
Specified Value	At least 95% of terminal electrode is covered by new solder			
		Eutectic solder	Lead-free solder	
Test Methods and	Solder type	H60A or H63A	Sn-3.0Ag-0.5Cu	
Remarks	Solder temperature	230±5°C	245±3°C	
	Duration	4±1	sec.	

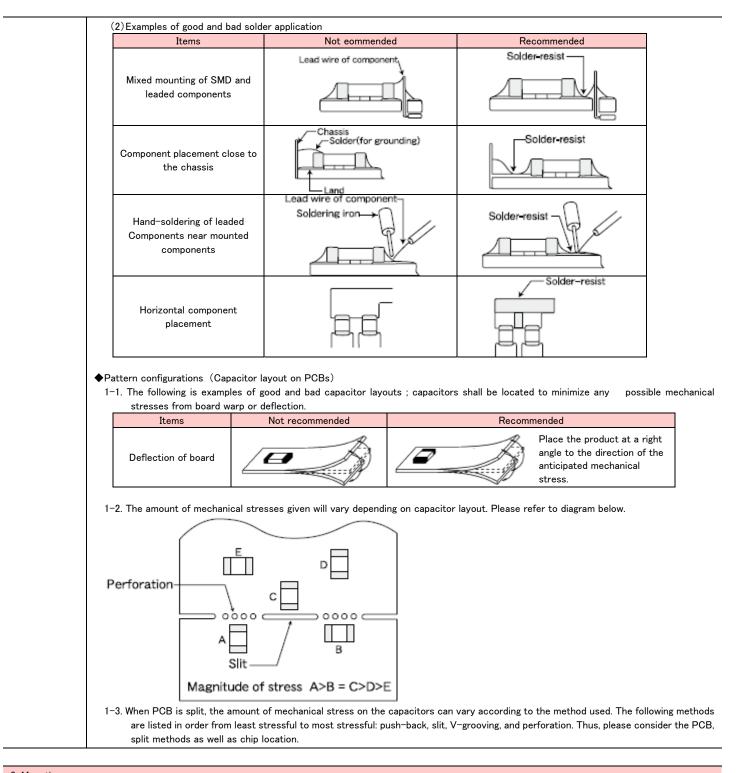
12. Resistance to S	12. Resistance to Soldering			
	Temperature Compensating(High Frequency type) Appearance : No abnormality Capacitance change : C※≦10pF :±0.25pF C※>10pF :±2.5% ※Normal capacitance Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality			
Specified Value	High permittivityAppearance: No abnormalityCapacitance change <td::within±15%(hmk,hmj), smk,smj)<="" td="" ±10%(qmk,qmj,="">Dissipation factor: Inital valueInsulation resistance: Initial valueWithstanding voltage(between terminals) : No abnormality</td::within±15%(hmk,hmj),>			
Test Methods and Remarks	Preconditioning: Thermal treatment (at 150°C for 1hr) Note1 (Only High permittivity)Solder temperature: 270±5°CDuration: 3±0.5sec.Preheating conditions: 80 to 100°C, 2 to 5 min.Recovery: 24±2hrs under the stadard condition Note3			

13. Temperature C	perature Cycle (Thermal Shock)				
	Tempera	Temperature Compensating(High Frequency type)			
	Appearance		: No abnormality		
	Capacita	nce change	: C※≦10pF :±0.25% C※>10pF :±2.5%		
	Insulation resistance		: Initial value		
	Withstan	ding voltage	(between terminals) : No abnormality		
Specified Value	High per	mittivity			
	Appeara	nce	: No abnormality		
	Capacitance change		: Within±15%(HMK,HMJ), ±7.5%(QMK,QMJ, SMK,SMJ)		
	Dissipation factor		: Initial value		
	Insulation resistance		: Initial value		
	Withstanding voltage		(between terminals) : No abnormality		
	Precond	itioning : Thern	nal treatment (at 150°C for 1hr) No	ote1	
	Conditions for 1 cycle				
	Step		temperature (°C)	Time (min.)	
Test Methods and	1		Minimum operating temperature	30 ± 3 min.	
Remarks	2		Normal temperature	2 to 3min.	
Remarks	3		Maximum operating temperature	30±3min.	
	4		Normal temperature	2 to 3min.	
	Number	of cycles : 5 ti	nes		
	Recovery : 24±2hrs under the standard condition Note3				

14. Humidity (Steady state)				
	Temperature Compensati	ng(High Frequency type)		
	Appearance	: No abnormality		
	Capacitance change	: C※≦10pF :±0.5pF C※>10pF :±5% ※Normal capacitance		
	Insulation resistance	: 1000M Ωmin		
Specified Value	High permittivity			
	Appearance	: No abnormality		
	Capacitance change	: Within $\pm 15\%$		
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).		
	Insulation resistance	: 25M $\Omega\mu$ or 1000M Ω , whichever is smaller.		
	Preconditioning	: Thermal treatment(at 150°C for 1hr) Note1 (Only High permittivity)		
Test Methods and	Temperature	: 40±2°C		
	Humidity	: 90 to 95%RH		
Remarks	Duration	: 500 +24/-0 hrs		
	Recovery	: 24 \pm 2hrs under the standard condition Note3		

15. Humidity Loading				
	Temperature Compensating(High Frequency type)			
	Appearance	: No abnormality		
	Capacitance change	:C‰≦2.0pF:±0.4pF 2.0pF <c≦10pf: c‰="" ±0.75pf="">10pF:±7.5%</c≦10pf:>		
		: XNormal capacitance		
	Insulation resistance	: 500M Ωmin		
Specified Value				
	High permittivity			
	Appearance	: No abnormality		
	Capacitance change	: Within \pm 15%		
	Dissipation factor	:7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).		
	Insulation resistance	: 10M Ω μ F or 500M Ω whichever is smaller.		
	According to JIS 5102 claus	se 9.9.		
	Preconditioning	: Voltage treatment Note2 (Only High permittivity)		
	Temperature	:40±2°C		
Test Methods and	Humidity	: 90 to 95%RH		
Remarks	Applied voltage	: Rated voltage		
	Charge/discharge current	: 50mA max.		
	Duration	: 500 +24/-0 hrs		
	Recovery	: 24 \pm 2hrs under the standard condition Note3		

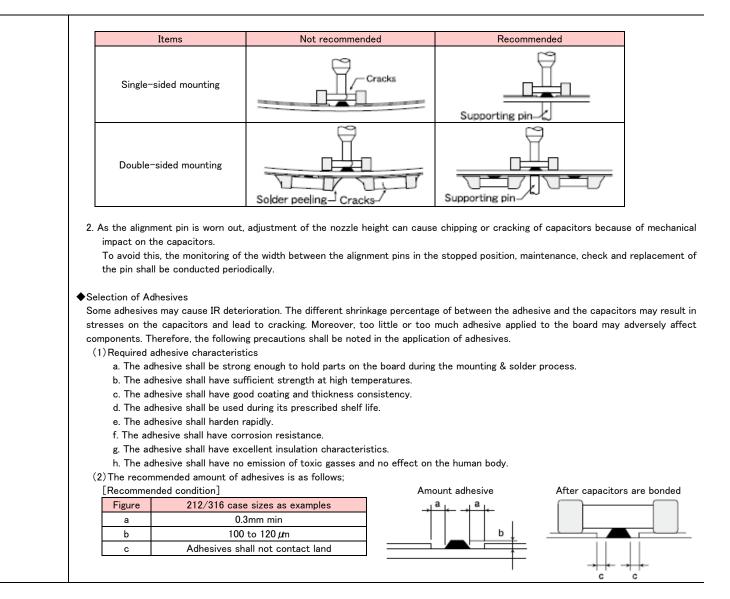
16. High Temperatu	ire Loading				
	Temperature Compensating(High Frequency type)				
	Appearance	: No abnormality			
	Capacitance change	: C≫≦10pF :±0.3pF C≫>10pF :±3%			
	Insulation resistance	:1000M Ωmin			
Specified Value	High permittivity				
	Appearance	: No abnormality			
	Capacitance change	: Within ± 15%			
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).			
	Insulation resistance	: 50M $\Omega\mu$ F or 1000M Ω whichever is smaller.			
	According to JIS 5102 clause 9.10.				
	Preconditioning	: Voltage treatment Note2 (Only High permittivity)			
Test Methods and	Temperature	: Maximum operating temperature			
Remarks	Applied voltage	: Rated voltage × 2(HMK,HMJ,QVS) Rated voltage × 1.5 (QMK,QMJ) Rated voltage × 1.2 (SMK,SMJ)			
Remarks	Charge/discharge current	: 50mA max.			
	Duration	: 1000 +24/-0 hrs			
	Recovery	: 24 \pm 2hrs under the standard condition Note3			
Note1 Thermal treatme		d after test sample is heat-treated at 150 \pm 0 $/-$ 10 $^\circ$ C for an hour and kept at room temperature			
	for 24 ± 2 hours.				
Note2 Voltage treatme		ed after test sample is voltage-treated for an hour at both the temperature and voltage specified in			
Noto? Standard condit		l kept at room temperature for 24±2hours. slative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa			
Notes Standard Condit		concerning measurement results, in order to provide correlation data, the test shall be conducted			
	under the following condition	n.			
		ative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa			
	Unless otherwise specified,	all the tests are conducted under the "standard condition".			



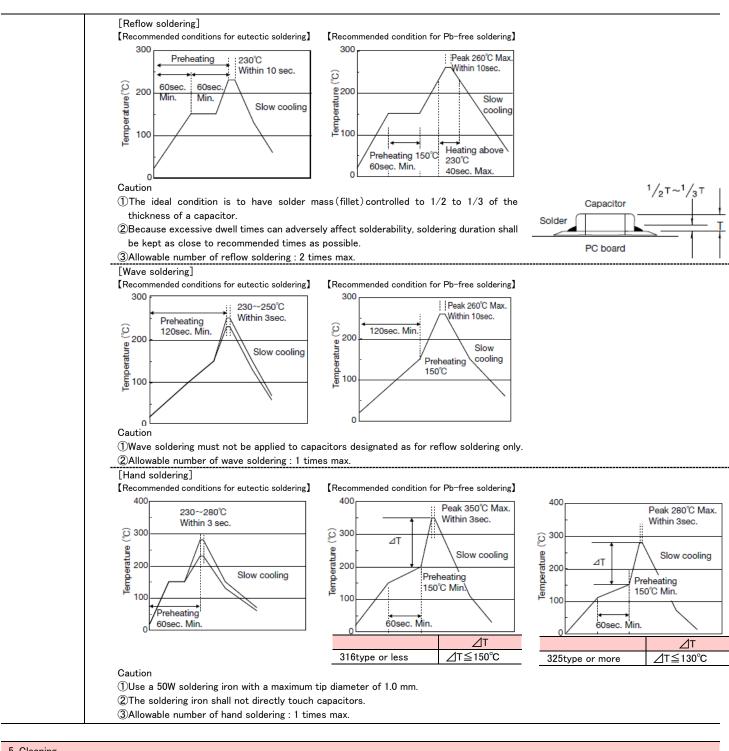
PRECAUTIONS

♦Verification of operating environment, electrical rating and performance
 A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from
them used in general purpose applications.
◆Operating Voltage(Verification of Rated voltage)
1. The operating voltage for capacitors must always be their rated voltage or less.
If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
 Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

2. PCB Design	L .								
Precautions	 When cap. Therefore (1)Exces app (2)When solo ◆Pattern confi After capacit cutting, board 	gurations (Desig acitors are moun a, the following ite sive solder appli ropriate land-pat more than one c der-resist. gurations (Capac ors are mounted d inspection, moun gurations and pos	ted on PCBs, ems must be ca ed can cause terns for prope omponent are citor layout on on boards, th nting of additio	the amount of arefully conside mechanical str er amount of so jointly soldered PCBs) ey can be subj onal parts, asser	red in the desig resses which le Ider. I onto the same ected to mecha nbly into the ch	n of land pattern ead to chip brea e land, each com anical stresses in assis, wave sold	ns: aking or cracki ponent's solder n subsequent n ering of the boa	ng. Therefore, ing point shall l nanufacturing p	please consider be separated by rocesses (PCB
	The following (1)Recomm		oles show som	e examples of r cal chip capacit	ors	nd patterns to p		ve solder amount	or PCBs
	Туре	107	212	316	325		o 1 2	┆╞╧┑┽┍╞╩	
	ai L	1.6	2.0	3.2	3.2			└╎╾╘╍┥╍╍┝╍┚╴	
	Size W	0.8	1.25	1.6	2.5				1
	A	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5				
	В	0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7			Chip capacitor	·
	C	0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5				↑
	Reflow-	soldering						 ←→	_ ↓
	Туре	042	063	105	107	212	316	325	432
	. L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Technical	Size W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
considerations	A	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
	В	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
	С	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5
		commended land s Recommended la	-			ance of the size	·	LWDC	
	Туре	105	107	212				I I Î Î	
			0.8	1.25					
	Size W	1.0	1.6	2.0				vv	
	A	0.18 to 0.22	0.25 to 0	0.3 0.5 to	0.7			+	
	В	0.2 to 0.25	0.3 to 0.						
	C	0.9 to 1.1	1.5 to 1.					1 L 1	
		-			1				


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.
Technical considerations	 Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection. (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:


hq_c_mlcc_prec_e-E06R01

	◆Selection of Flux
	Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;
	(1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content sha not be applied.
	(2)When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
Precautions	(3)When water-soluble flux is used, special care shall be taken to properly clean the boards.
	◆ Soldering
	Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.
	Sn-Zn solder paste can adversely affect MLCC reliability.
	Please contact us prior to usage of Sn-Zn solder.
	♦ Selection of Flux
	1-1. When too much halogenated substance(Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
	1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitt and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling syste
	1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in hi humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleanit
Technical considerations	methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.
	♦ Soldering
	· Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
	Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive therm shock.
	 Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be with 100 to 130°C.
	 Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

hq_c_mlcc_prec_e-E06R01

5. Cleaning					
Precautions	 Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 				
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/l or less Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less 				

hq_c_mlcc_prec_e-E06R01

6. Resin coating a	 With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 	hardening period or			
Precautions	2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors.				
	The use of such resins, molding materials etc. is not recommended.				

	 Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	◆Mechanical considerations
	Be careful not to subject capacitors to excessive mechanical shocks.
	(1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used.(2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage condi	 Storage To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions			
Technical considerations	150°C for 1hour. If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding above period, please check solderability before using the capacitors.			

Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

单击下面可查看定价,库存,交付和生命周期等信息

>>Taiyo Yuden(太阳诱电)