

Main Table of Contents

Navigating the Catalog	3
1. RFI Power Line Filters	9
RFI Power Line Filter Selector Chart	11
AQ Series	2
B Series	-
DK Series	_
EBP Series	
EDP Series	
EOP Series	
EMC Series	
FC Series	
FL Series	
G Series	
HQ Series	
HT Series	0
HZ Series NEW 4, 6, 10 and 20A versions	
IK Series	
K Series	9
MV Series	4
N Series	6
Q Series	8
R Series	
RK Series	
S Series	
SB Series NEW High Performance B Series	
SK Series	
U Series	
V Series	
W Series	-
WG Series	
X Series	2
Y Series	2
Z Series	2
2. Three Phase Filters	7
Three Phase Selector Chart	
A Series	
ADT Series)1
AYA Series	4
AYC Series	8
AYO Series1	
BCF Series NEW Compact Three Phase Filters	
CFN Series	
FCD Series	
3. Power Inlet Filters & Power Entry Modules	5
Introduction	-
Selector Chart	
Power Entry Module Selector Guide12	
C Series	
CU Series NEW Compact 1U Height Power Entry Module	
EBF Series	
EC Series	
ED Series	
EAS & EBS Models	
EAH & EBH Models	
EEJ Series	

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

Table of Contents (continued)

EJH & EJHS Models	
EJM & EJMS Models	
EJS Models	
EF Series	
EJT Series	
H Series	
J Series	
L Series	
LA Series	
M SeriesP Series	
SR Series	
SRB Series	203
4. DC Filters	209
Introduction	
Selector Chart	
DA Series DB Series <mark>NEW - Compact RFI High Current DC Inlet</mark>	
DC Series	
P Series	
5. Feedthrough Filters and Capacitors	225
Feedthrough Application Selector Chart	225
FFA Series	
AFC Series	
DFC Series	
6. Signal Line Products	
6. Signal Line Products	241 242
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks	241 242 243
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information	241 242 243 244
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart	241 242 243 244 245
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information	241 242 243 244 245 247
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series	241 242 243 244 245 247 248 249
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series	241 243 243 244 245 247 248 249 250
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series	241 242 243 244 245 247 248 249 250 251
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series N Series X Series	241 242 243 244 245 247 248 249 250 251 252
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions	241 242 243 244 245 247 248 249 250 251 252 253 255
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions	241 242 243 244 245 247 248 249 250 251 252 255 255
6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions	241 242 243 244 245 247 248 249 250 251 252 255 255 257
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions 	241 242 243 244 245 247 248 249 250 251 252 255 255 257 261
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Introduction 	241 242 243 244 245 247 248 249 250 251 255 255 255 257 261 262
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Technical Notes Introduction Understanding RFI Power Line Filters 	241 242 243 244 245 247 248 249 250 251 255 255 255 257 261 262 263
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Introduction 	241 242 243 244 245 247 248 249 250 251 255 255 255 257 261 262 263 266
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series LCT Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions 7. Technical Notes Introduction Understanding RFI Power Line Filters Understanding Leakage Current (Touch Current) Understanding Insertion Loss 	241 242 243 244 245 247 248 249 250 251 255 255 255 257 261 262 263 266 267 268
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series LCT Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Introduction Understanding RFI Power Line Filters Understanding Leakage Current (Touch Current) Understanding Insertion Loss Appendix A - Conducted RFI Emissions Testing 	241 242 243 244 245 247 248 249 250 251 255 255 255 255 257 261 262 263 266 267 268 269
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LCT Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Technical Notes Introduction Understanding RFI Power Line Filters Understanding Leakage Current (Touch Current) Understanding Insertion Loss Appendix A - Conducted RFI Emissions Testing Appendix B - Conducted RFI Susceptibility Testing 	241 242 243 244 245 247 248 249 250 251 255 255 255 255 255 257 261 262 263 266 267 268 269 270
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions 7. Technical Notes Introduction Understanding RFI Power Line Filters Understanding Hipot Testing Understanding Insertion Loss Appendix A - Conducted RFI Emissions Testing Appendix C - Health Care Equipment Appendix D - Safety Agency File Numbers 	241 242 243 244 245 247 248 249 250 251 255 255 255 255 257 261 262 263 266 267 268 269 270 271
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Introduction Understanding RFI Power Line Filters Understanding Leakage Current (Touch Current) Understanding Insertion Loss Appendix A - Conducted RFI Emissions Testing Appendix A - Conducted RFI Susceptibility Testing Appendix C - Health Care Equipment Appendix D - Safety Agency File Numbers Part Number Index and Cross Reference 	241 242 243 244 245 247 248 249 250 251 255 255 255 255 257 261 262 263 266 267 268 269 270 271 273
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Introduction Understanding RFI Power Line Filters Understanding Leakage Current (Touch Current) Understanding Insertion Loss Appendix A - Conducted RFI Emissions Testing Appendix B - Conducted RFI Susceptibility Testing Appendix C - Health Care Equipment Appendix D - Safety Agency File Numbers Part Number Index and Cross Reference North American Sales Representatives 	241 242 243 244 245 247 248 249 250 251 255 255 255 255 255 255 257 261 262 263 266 267 268 269 270 271 273 286
 6. Signal Line Products Introduction SignalSentry Filtered Modular Jacks SignalSentry Part Number Matrix / Ordering Information SignalSentry Selector Chart L Series L - Ganged Series LC Series LCT Series N Series X Series Z Series Model Dimensions L, LC, LCT and X Series RJ Jack Dimensions N and Z Series RJ Jack Dimensions Introduction Understanding RFI Power Line Filters Understanding Leakage Current (Touch Current) Understanding Insertion Loss Appendix A - Conducted RFI Emissions Testing Appendix A - Conducted RFI Susceptibility Testing Appendix C - Health Care Equipment Appendix D - Safety Agency File Numbers Part Number Index and Cross Reference 	241 242 243 244 245 247 248 249 250 251 255 255 255 255 255 255 255 255 255 255 255 255 266 266 267 268 268 269 270 271 273 286 288

Navigating the Catalog

Step 1: Determine the product family.

Corcom Product Families

The Corcom product guide contains seven sections with six distinct product families. Use the index numbers along the side of the catalog to quickly jump to that section.

RFI Power Line Filters

Solutions associated with EMI/RFI susceptibility as well as compliance to international emissions standards for single phase power applications. Includes chassis and board mountable designs as well as single and two-stage filters.

Three Phase Filters

Solutions associated with EMI/RFI susceptibility as well as compliance to international emissions standards for three phase and high current applications.

IEC Inlet and Power Entry Modules

IEC inlet power filters and modular products that address a variety of power entry needs by combining several functions such as on/off switching, voltage selection switching, fuseholder, filtering in combination with the IEC inlet connector.

DC Power Line Filters

EMI/RFI solutions for emissions and susceptibility specifically related to DC systems often found in central office and telecommunication applications.

Feedthrough Filters and Capacitors

Products designed for through-bulkhead mounting for high frequency filtering. Designed to meet EN133200 and EN132400 safety requirements. Available in a variety of standard as well as custom configurations.

Signal Line Products

Products that combine different levels of filtering with various sized RJ modular jacks. Signal line products are used to protect data transmissions as they pass through the RJ jacks or as they are transmitted on the PCB.

Technical Notes

The appendices in the back of the catalog offer information such as safety agency classifications, general information regarding RFI, and testing procedures.

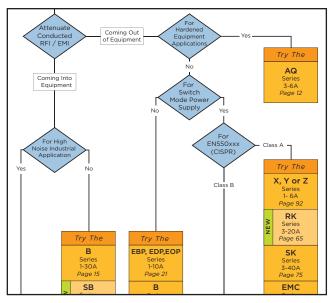
(continued on next page)

Looking for Corcom EMI Facility Products?

Power, data and signal line filters for shielded installations Available in Catalog 1654986 - see page 8 for more information

> For email, phone or live chat, please go to te.com/help corcom.com

Navigating the Catalog (continued)


Step 2: Use selector charts

Selector charts at the beginning of each section help you to narrow the selection.

Follow the chart to locate one or several product series that could fit your specific application and requirements.

Optimal filter selection requires testing in your specific system, as all systems have unique characteristics.

Selector charts generally show filters in order of performance from good (at the top) to best performance (at the bottom).

Step 3: Open to the page referenced by the selector chart

Each product series contains three technical sections. The majority of questions relating to product applications can be answered directly from these sections.

<u>Technical Characteristics</u>: This first section contains pictures, appropriate safety agency classifications, a description of the series' capabilities, applications, electrical specifications, schematics, ordering information and available part numbers.

<u>Drawings</u>: The second section contains drawings and dimensions of the parts as well as the recommended cutouts. Dimensions are shown in inches with metric equivalents.

<u>Performance Data</u>: The third section contains performance data in the form of typical insertion loss graphs and minimum insertion loss tables.

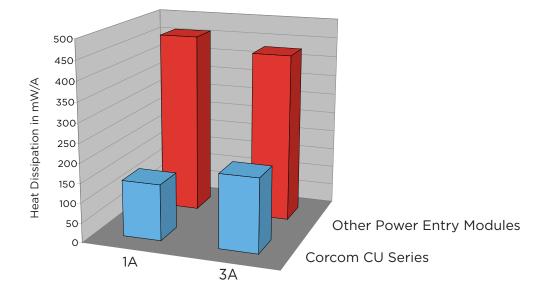
If you already know the catalog number or series, the table of contents lists each series in the catalog within each section. The back of the catalog also has an index in alphanumeric order. The index will reference the technical section for that catalog number or series. The index also provides the unique TE ordering number for each part.

Step 4: Contact your local Corcom product sales representative

Corcom product sales representatives for North America as well as distributors and global contacts are listed in the back of the catalog. Contact the sales representative or office closest to you for technical assistance, stock and pricing.

Corcom EMI/RFI Filters and Energy Efficiency

The efficiency of an electrical device is the ratio of the power it delivers to the power that it consumes. The difference is wasted as heat, and to prevent overheating of a device and the system in which it resides, this heat must be transferred out of the system and dissipated. The efficiency of every component, including the power entry module and selected filter, factors into the system's overall efficiency. When the amount of heat is too great to dissipate through the system's enclosure, forced air cooling becomes necessary. This is often accomplished with a fan, and the power used by that fan, (including its own thermal losses) further decreases the system efficiency by another 2% to 5%. Providing room for the fan and air passageways in the equipment increases its size and cost. Careful attention to the efficiency of every component in the system results in a simpler, smaller, lighter, cooler, more competitive product.


Corcom EMI filters can help meet energy efficiency goals, including Energy Star rating and the new 80 Plus certification, which now recognizes systems that exceed 90% efficiency. By using the most energy efficient design and materials, Corcom filters can be the beginning of an energy efficient system strategy.

Energy efficient power components don't just lower energy bills and demand for power from the grid, they also increase product reliability. Small efficiency increases can decrease component temperatures throughout the system, and semiconductor life doubles for every 10°C decrease in temperature. Corcom filters are more efficient and run cooler, and this can help reduce system warranty costs, service calls and total support costs.

Corcom filters

- Have heat dissipation ratings as little as one third that of comparable filters.
- Create less heat and run cooler
- Improve system reliability
- Are more efficient than PC board equivalents
- Can help meet system power efficiency standards
- Enable systems to be smaller and lighter
- Save customers money by reducing energy costs

Downloaded From Oneyac.com

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Corcom Products Engineering Services and Custom Solutions

Corcom Products Engineering Services and Custom Solutions

TE Connectivity Corcom products were established as the world leader in EMI/RFI filtering technology with the introduction of the first line of catalog filter products over 50 years ago.

Today, TE continues to pursue the latest in EMI/RFI filter design by testing and evaluating application specific solutions for a wide range of industries.

In addition to our complete catalog of standard EMI/RFI filtering solutions, TE offers a full range of engineering services and custom products designed for unique applications.

Corcom custom EMI/RFI product solutions can:

- Optimize both cost and performance to target a unique application
- Fit unique mechanical size, installation and/or connection requirements
- Ensure conformance with EMI/RFI requirements of an entire system
- Apply EMI/RFI filtering in a specific frequency or range

With design and testing facilities worldwide, TE is well suited to design an EMI/RFI solution that meets a wide range of unique application needs.

To discuss application specific filtering, contact the TE Corcom product sales representative or office closest to you. A complete list of sales representative and worldwide contacts is listed in the back of this catalog.

Corcom Custom Filters Key Features:

- Custom filter options
- Custom wire harness design
- Fully customizeable options including packaging
- Agency approvals available as needed by customer
- Time and cost savings to customer
- Simplify installation

Termination and Wiring Customization Options:

- Wire length
- Wire gauge
- Wire color
- Molded connectors
- Ring terminals
- Custom terminations

Corcom Engineering Services and Custom Solutions

EMI/RFI Testing Services

Kev Features:

- We can test product to the FCC / EN / EFT specifications
- Let us know your testing needs and time frame to ensure flexibility of testing and timely results

Available Testing Standards:

- Conducted EMI in accordance with FCC part 15 and 18
- EN55011. EN55022 and EN55014
- EFT (Electrically Fast Transient) in accordance with EN61000-4-4
- Tests conducted up to 30A with insertion loss measured up to 10GHz
- MIL-STD-461 CE101 & CE102

Corcom Products Test Lab An increase in electronic content and stringent regulatory compliance requirements have increased the need for time spent in gualifying test houses. At these "test labs," products undergo a number of qualifying tests which include conducted emissions, EFT, and harmonic content. Failure to comply with associated standards can lead to delayed time-to-market and product redesign resulting in lost revenue and market share and an increase in time spent at the test lab.

> TE Connectivity can help by heading off some of the potential pitfalls during testing and qualifying phases of new products. We offer complimentary testing to existing regulatory standards. We aim for a high standard of accuracy, and can help identify potential problems.

We are not a certifying body and our test lab is not a qualified test lab; however, we test to the same standards and take product through the same rigor as any certifying lab. In addition, our engineers will recommend a solution and help with a design should a product fail to comply with conducted emissions, EFT and/or harmonic content standards.

The advantage is clear: TE will provide you with a high degree of confidence that a product which passed our in-house testing will pass agency testing at a certifying test house in reduced time and with reduced cost.

TE has three Corcom filter testing facilities:

- Mundelein, IL, USA (main office and design center)
- West Hills, CA, USA (regional office)
- Ottobrunn, Germany (regional office and design center)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Corcom EMI / RFI Product Solutions for Facility and Heavy Power

Corcom EMI Facility Products

Power, data and signal line filters for shielded installations

TE Connectivity has dedicated more than 50 years to developing RFI filter technology for electronic devices. We're proud that our focus on the design and production of the highest quality products has made TE a world leader in RFI technology.

Our leadership in the filter and power entry module markets was enhanced in 1988 with the aquisition of the Heavy Power Line Division of Cornell Dubilier. The high quality designs and manufacturing of these heavy power line filter products is maintained and enhanced by TE.

We have continued that dedication to excellence begun by Cornell Dubilier and inherent to TE's way of doing business. Only the highest quality designs, capacitors, inductors, and workmanship are used to produce these filters. We recognize the need for great care demanded by hi-rel military filters and automatically apply like quality to the heavy power line products. We treat all product as if it is high-reliability.

The Mundelein, IL office provides application engineering service for these heavy power line and military products. Our engineers can help to design a special filter in the rare case a standard product from this catalog cannot adequately solve the problem. Additional product performance data and test results are available from the engineers at this facility.

TE's worldwide sales offices can help you locate information on these products or any of the hundreds of high quality power line filters, power entry modules and SignalSentry products made by TE.

For more information on the complete line of EMI Facility products, request catalog number 1654986 or visit www.corcom.com

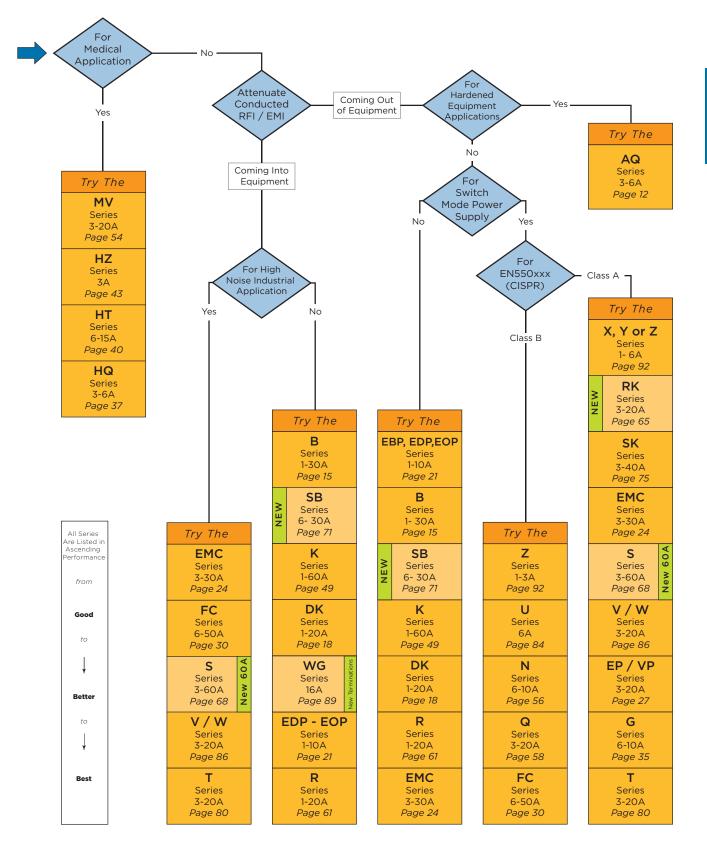
1. RFI Power Line Filters — Table of Contents

R	FI Power Line Filter Selector Chart			11
	AQ Series			.12
	B Series			.15
	DK Series			.18
	EBP Series			.21
	EDP Series			.21
	EOP Series			.21
	EMC Series			
	EP & VP Series			.27
	FC Series			
	FL Series			
	G Series			.35
	HQ Series			
	HT Series			.40
	HZ Series			
	IK Series			
	K Series			
	MV Series			
	N Series			
	Q Series			
	R Series			
	RK Series			
	S Series			
	SB Series			
	SK Series			
	T Series			
	U Series			
	V Series			
	W Series			
	WG Series			
	X Series			
	Y Series			
	Z Series			
		•••	•••	

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

9

Downloaded From Oneyac.com



Engineering Notes

							_								_					
															_					
									_											
							_	_	_						_	_				
		 													_					
								_	_					_						
						$\left \right $		+					++							
							$ \rightarrow $						+							++
			+ $-$			$\left \cdot \right $	\rightarrow	\rightarrow		+		$\left \cdot \right $	++							
						\square							++							$\left - \right $
							\rightarrow	\rightarrow					++							$\left - \right $
- + +	+ $+$ $+$	$\left \cdot \right $	+	- -		\square	\rightarrow	+		++	+	$\left \cdot \right $	++		+			$\left - \right $		$\left - \right $
															_					
							_	_	_						_	_				
						$\left \right $									_		+			
															_					
					_		_	_	_						_	_				
		 													_					
							\rightarrow	\rightarrow					+							\square
						$\left \cdot \right $	\rightarrow						++							$\left - \right $
		+	+	$\left - \right $		+	+	+		+	+	$\left \cdot \right $	++				+	$\left \cdot \right $		$\left - \right $
						\square							++							
- - -				- -			\square	\square							\square			\square		\square
						$\left \cdot \right $	_					$\left \cdot \right $	+							+
						\square				++-			+							$\left - \right $
						+						\vdash	+							$\left - \right $
													\square							\square
						$\left \cdot \right $	_	\rightarrow				$\left \cdot \right $	++							+
						$\left \cdot \right $	\rightarrow					$\left \cdot \right $	++							$\left - \right $
						+				++-		\vdash	++							$\left - \right $
+ +	+					$\left \cdot \right $	\rightarrow			 +		$\left \cdot \right $	+					$\left \cdot \right $		$\left - \right $
				$\left \cdot \right $		\square	+	+		++-			++		+					$\left - \right $
						$\left \right $		+					++							
													\square							\square

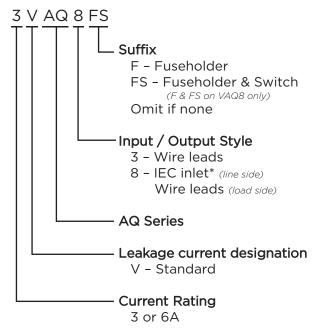
RFI Power Line Filter Selector Chart

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

11 For email, phone or live chat, please go to te.com/help corcom.com

Downloaded From Oneyac.com

High Frequency Power Line Filter or Power Entry Module


UL Recognized CSA Certified

AQ Series

- Low cost solution to power line noise at high frequencies
- High common and differential mode performance from 10kHz to 1GHz
- Available with an IEC inlet, fuseholder and switch
- Suitable for applications where computers are used to process secret or confidential information

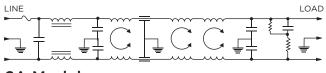
Ordering Information

Available Part Numbers

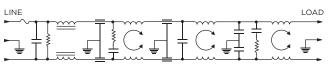
Specifications subject to change.

3VAQ3	6VAQ3
3VAQ8F	6VAQ8F
3VAQ8FS	6VAQ8FS

*IEC 60320-1 C14 inlet mates with C13 connector

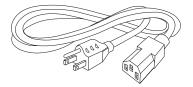

Specifications

Maximum leakage current each Line to Ground:


	<u>3A Models</u>	6A Models
@ 120 VAC 60 Hz:	1.2 mA	.7 mA
@250 VAC 50 Hz:	2.3 mA	1.2 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		3 or 6A
Operating Ambient Tempe	rature Range	
(at rated current I _r):	-1	0°C to +40°C
In an ambient temperat	ure (T _a) high	er than +40°C

In an ambient temperature (T_a) higher than +40 the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

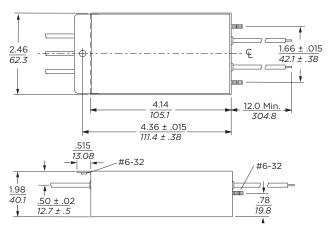
Electrical Schematics 3A Models



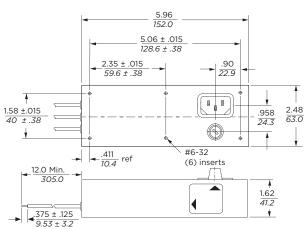
6A Models

Accessories

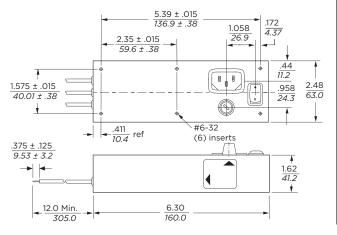
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord



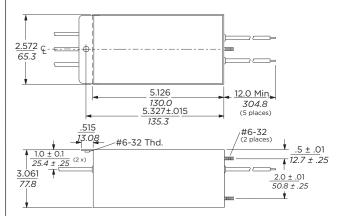
High Frequency Power Line Filter or Power Entry Module (continued)


AQ Series

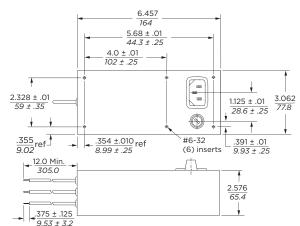
Case Styles and Dimensions


3VAQ3

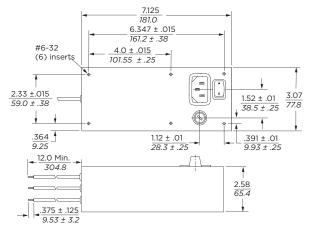
3VAQ8F



3VAQ8FS



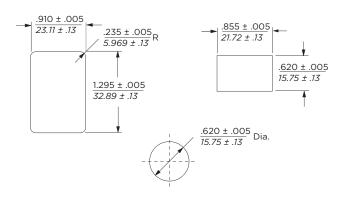
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


6VAQ3

6VAQ8F

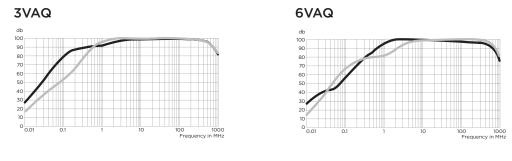
6VAQ8FS

For email, phone or live chat, please go to te.com/help corcom.com


Downloaded From Oneyac.com

High Frequency Power Line Filter or Power Entry Module (continued)

AQ Series


Recommended Panel Cutouts

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) —Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode /	[/] Asymmetrical (Line to	Ground)
0011111011110000/		or oran a)

Current		Frequency – MHz Current Frequency – MHz																	
Rating	.01	.1	.5	1	10	50	100	300	1000	Rating	.01	.1	.5	1	10	50	100	300	1000
3A	10	80	88	88	100	100	100	93	85	3A	6	51	78	88	100	100	100	93	85
6A	26	59	80	80	100	100	100	93	85	6A	10	65	86	95	100	100	100	93	85

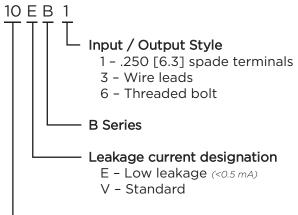
14

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Differential Mode / Symmetrical (Line to Line)

General Purpose RFI Filters for High Impedance Loads at Low Current

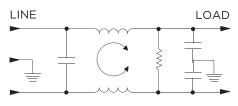
B Series



UL Recognized CSA Certified VDE Approved

B Series

- Small size & low cost
- General purpose
- Wide variety of termination options
- Meets low leakage current requirements of VDE portable equipment and non-patient medical equipment


Ordering Information

Current Rating

1, 2, 3, 5, 10, 20 or 30A

Electrical Schematic

Specifications

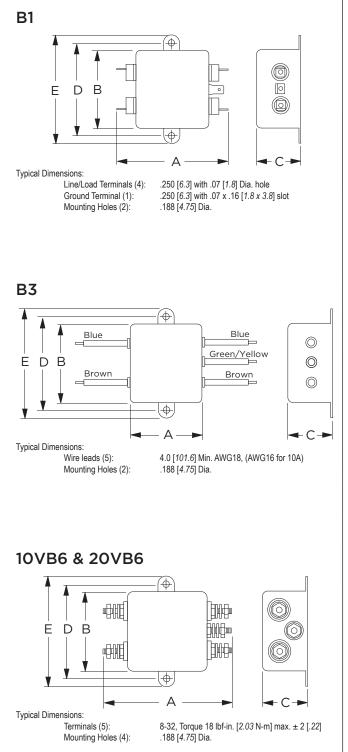
Maximum leakage current each Line to Ground:

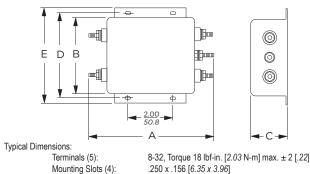
	<u>VB Models</u>	<u>EB Models</u>
@ 120 VAC 60 Hz:	.4 mA	.21 mA
@250 VAC 50 Hz:	.7 mA	.36 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 30A
Operating Ambient Tempe	rature Range	
(at rated current I _r):	-1	0°C to +40°C
In an ambient temperat	uro (T) high	$r + h_{20} + 40^{\circ}C$

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Available Part Numbers

1VB1	1EB1
1VB3	1EB3
2VB1	2EB1
2VB3	2EB3
3VB1	3EB1
3VB3	3EB3
5VB1	5EB1
5VB3	5EB3
10VB1	10EB1
10VB3	10EB3
10VB6	20EB1
20VB1	
20VB6	
30VB6	


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


General Purpose RFI Filters for High Impedance/ Low Current (continued)

B Series

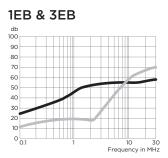
Case Styles

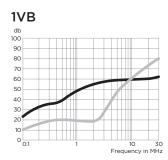
30VB6

Case Dimensions

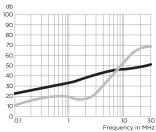
Davt Na	А	В	С	D	Е
Part No.	(max)	(max)	(max)	<u>±.015</u> ±.38	(max)
1VB1, 1EB1,	2.25	1.82	0.66	2.125	2.53
2VB1, 2EB1	57.2	46.2	16.8	53.98	64.3
1VB3, 1EB3,	0.96	1.82	0.66	2.125	2.53
2VB3, 2EB3	24.4	46.2	16.8	53.98	64.3
3VB1, 3EB1,	2.61	1.82	0.78	2.125	2.53
5VB1, 5EB1	66.3	46.2	193.8	53.98	64.3
3VB3, 3EB3,	1.32	1.82	0.78	2.125	2.53
5VB3, 5EB3	33.5	46.2	19.8	53.98	64.3
	2.61	1.82	1.16	2.125	2.53
10VB1, 10EB1	66.3	46.2	29.5	53.98	6.3
	1.32	1.82	1.16	2.125	2.53
10VB3, 10EB3	33.5	46.2	29.5	53.98	64.3
10VB6	2.72	1.82	1.16	2.125	2.53
10 4 80	69.1	46.2	29.5	53.98	64.3
	3.36	2.07	1.16	2.375	2.81
20VB1, 20EB1	85.3	52.6	29.5	60.33	71.4
201/06	3.46	2.07	1.16	2.375	2.81
20VB6	87.9	52.6	29.5	60.33	71.4
	5.34	3.38	1.53	3.75	4.20
30VB6	135.6	85.9	38.9	95.3	106.7

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

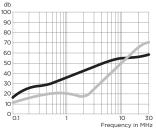

General Purpose RFI Filters for High Impedance/ Low Current (continued)

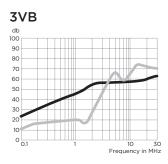

B Series

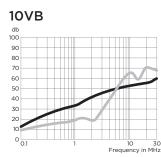
Performance Data


Typical Insertion Loss

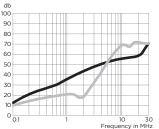
Measured in closed 50 Ohm system

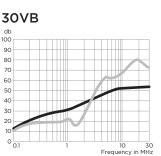






20EB


Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)



Minimum Insertion Loss

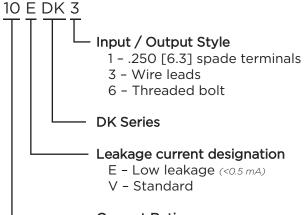
Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

Current	Frequency – MHz										
Rating	.15	.5	1	5	10	30					
VB Models											
1A, 3A	15	30	38	50	50	50					
2A, 5A, 10A, 20A, 30A	7	20	25	40	45	48					
EB Models											
1A, 3A	15	29	35	45	45	48					
2A, 5A, 10A, 20A	7	19	23	34	37	42					

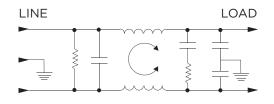
Enhanced Differential Mode Performance K Series RFI Line Filters

DK Series


UL Recognized CSA Certified VDE Approved

DK1

DK Series


- Higher performance Line to Line attenuation than the K Series
- E version meets the low leakage current requirements of VDE portable equipment and non-patient care equipment
- V version features same high performance with more cost-effective design

Ordering Information

Current Rating 1, 3, 6, 10, or 20A

Electrical Schematic

Specifications

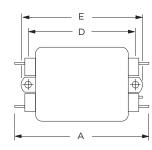
Maximum leakage current each Line to Ground:

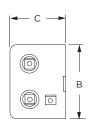
	<u>VDK Models</u>	<u>EDK Models</u>
@ 120 VAC 60 Hz:	.4 mA	.22 mA
@250 VAC 50 Hz:	.7 mA	.38 mA
Hipot rating (one minute)):	
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 20A
Operating Ambient Temp	erature Range	
(at rated current I _r):	-10	°C to +40°C
In an ambient tempera	ature (T _a) highe	r than +40°C
the maximum enerating		

the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Available Part Numbers

1VDK1	1EDK1
1VDK3	1EDK3
3VDK1	3EDK1
3VDK3	3EDK3
6VDK1	6EDK1
6VDK3	6EDK3
10VDK1	10EDK1
10VDK3	10EDK3
20VDK1	20EDK1
20VDK6	

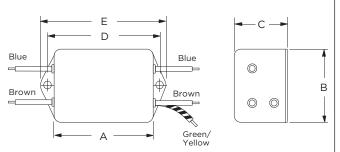



Enhanced Differential Mode K Series RFI Power Line Filters (continued)

DK Series

Case Styles

VDK1 / EDK1

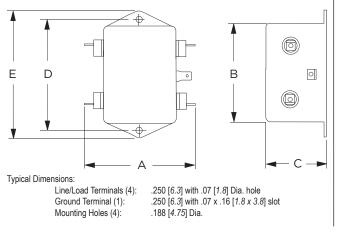


Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

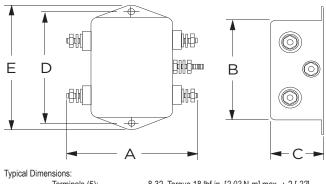
VDK3 / EDK3

.188 [4.75] Dia.


.250 [6.3] with .07 [1.8] Dia. hole

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

Typical Dimensions:


Wire leads (5): Mounting Holes (2): 4.0 [*101.6*] Min., AWG18 (AWG16 for 10A) .188 [*4.75*] Dia.

20VDK1 / 20EDK1

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

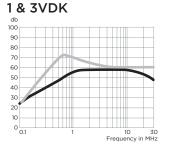
20VDK6

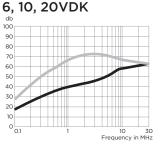
Terminals (5): Mounting Holes (2):

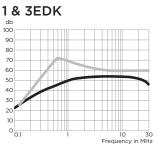
8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .188 [4.75] Dia.

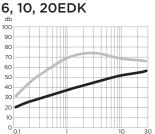
Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
	3.35	2.07	1.16	±.38 2.375	2.81
1VDK1, 1EDK1	85.1	52.6	29.5	60.33	71.4
	2.07	2.07	1.16	2.375	2.81
1VDK3, 1EDK3	52.6	52.6	29.5	60.33	71.4
3VDK1, 3EDK1,	3.85	2.07	1.16	2.938	3.35
6VDK1, 6EDK1	97.8	52.6	29.5	74.63	85.1
3VDK3, 3EDK3,	2.56	2.07	1.16	2.938	3.35
6VDK3, 6EDK3	65.0	52.6	29.5	74.63	85.1
10VDK1,	3.85	2.07	1.32	2.938	3.35
10EDK1	97.8	52.6	33.5	74.63	85.1
10VDK3,	2.57	2.07	1.32	2.938	3.35
10EDK3	65.3	52.6	33.5	74.63	85.1
20VDK1,	3.85	2.58	1.78	2.938	3.35
20EDK1	97.8	65.5	45.2	74.63	85.1
20VDK6	3.46	2.58	1.78	2.938	3.35
200000	87.9	65.5	45.2	74.63	85.1

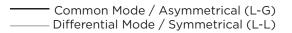

Enhanced Differential Mode K Series RFI Power Line Filters (continued)


DK Series


Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system



Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode	ommon Mode / Asymmetrical (Line to Ground)						Differential Mode	e / Sym	metri	cal (Li	ne to l	_ine)	
Current		Fr	Frequency – MHz			Current		Fr	equen	cy – M	Hz		
Rating	.15	.5	1	5	10	30	Rating	.15	.5	1	5	10	30
VDK Models							VDK & EDK Mode	els					
1A, 3A	18	30	40	48	48	40	1A, 3A	18	47	62	60	50	45
6A, 10A, 20A	10	22	30	39	44	50	6A, 10A, 20A	20	43	55	65	60	55
EDK Models													
1A, 3A	17	27	33	45	45	40							
6A, 10A, 20A	10	19	25	34	40	46							



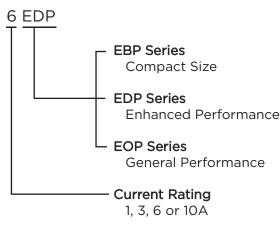
PC Board Mountable General Purpose RFI Filters

EBP, EDP & EOP Series

UL Recognized* CSA Certified* VDE Approved*

EBP Series

- General purpose
- Low leakage current
- Cost-effective
- Compact size


EDP Series

- Enhanced differential mode performance
- Low leakage current
- Cost-effective

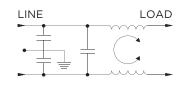
EOP Series

- General purpose
- Low leakage current
- Cost-effective

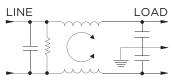
Ordering Information

*EBP models are approved to VDE standards only

Specifications


Maximum leakage current each Line to Ground:

	<u>EDP/EOP</u>	EBP
@ 120 VAC 60 Hz:	.22 mA	.13 mA
@250 VAC 50 Hz:	.38 mA	.21 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 10A
Operating Ambient Tempe	rature Range	•
(at rated current I _r):	-*	10°C to +40°C
•		


In an ambient temperature (Ta) higher than +40°C the maximum operating current (I_0) is calculated as follows: $I_0 = I_r \sqrt{(85-T_a)/45}$

Electrical Schematic

EBP

EDP & EOP

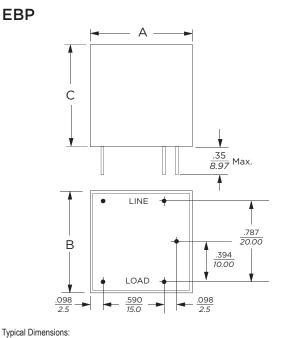
Available Part Numbers

1EBP	3EBP
1EDP	1EOP
3EDP	3EOP
6EDP	6EOP
10EDP	10EOP

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

PC Board Mountable General Purpose RFI Filters (continued)

EBP, EDP, EOP Series


Case Styles

Pins (5):

EDP / EOP

С

EBP

0.025 [0.635] square

Y .35

.31 ± .02

7.87 ± .5

.36 ± .02

9.10 ± .5

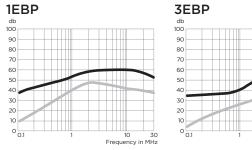
.591 ± .006

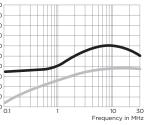
15.00 ± .15

v .295 ± .006 7.50 ± .15

Α

.689 ± .006 17.50 ± .15


LINE


Case Dimensions

Part No.	Α	В	С
Part NO.	(max)	(max)	(max)
	.984	.984	.984
EBP	25.0	25.0	25.0
EDP	1.44	1.24	0.95
EDP	36.6	31.5	24.15
EOP	1.44	1.24	0.78
	36.6	31.5	19.9

Performance Data Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Typical	Dimension	ns:

Pins (5):

В

0.025 [0.635] square

LOAD

PC Board Mountable General Purpose RFI Filters (continued)

6EOP

db 100

90

80

70

60

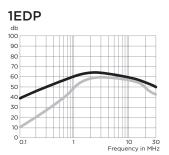
50

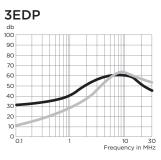
40

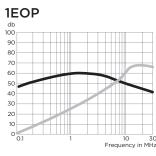
30

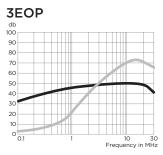
20

10

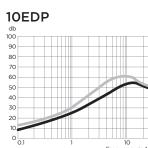

0

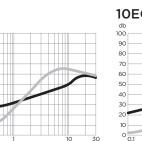

EBP, EDP & EOP Series

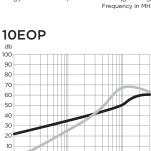

Performance Data (continued)


Typical Insertion Loss

Measured in closed 50 Ohm system






6EDP db 100 90 80 70 60 50 40 30 20 10 0 10 30 Frequency in MHz

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Frequency in MHz

10 30

30

23

ncv in MHz

10

Freau

Minimum Insertion Loss

Measured in closed 50 Ohm system

Current		Fr	equen	су – М	Hz		Current			Frequency – MHz					
Rating	.15	.5	1	5	10	30	Rating		.15	.5	1	5	5	10	30
BP Models							EBP Models								
1A	30	40	40	42	45	45	1A		-	14	25	3	5	33	25
3A	24	29	30	42	45	45	3A		-	14	15	3	1	34	25
OP Models							EOP Models								
1A	32	41	54	54	46	40	1A		4	14	42	4	2	44	38
3A	18	28	35	41	40	40	3A		4	14	24	3	8	38	38
6A	10	20	28	37	40	40	6A		4	14	22	3	0	34	34
10A	5	14	19	27	33	40	10A		6	16	22	4	0	50	45
								Frequency – MHz							
DP Models							EDP Models	.15	.5	1	2	4	10	20	3
1A	32	41	54	54	46	40	1A	1	6	19	39	48	52	38	3
ЗA	18	28	35	41	40	40	3A	1	4	9	9	28	41	36	3
6A	10	20	28	37	40	40	6A	1	4	9	9	40	40	42	3
10A	5	14	19	27	33	40	10A	1	4	9	9	14	35	42	3

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

Compact and Cost-effective Dual Stage RFI Power Line Filters

EMC Series

UL Recognized CSA Certified VDE Approved

EMC Series

• Compact dual stage filter series

• High common mode performance

• High differential mode attenuation in the

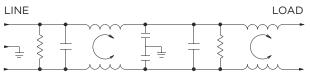
• Suitable for switching mode power supplies

Cost-effective designCurrent rating up to 30A

lower frequency range

EMC6

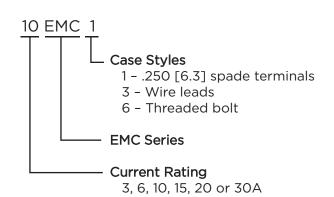
EMCI


Specifications

Maximum leakage current	each Line to Ground:
-------------------------	----------------------

<u>3, 6, 10A</u>	<u>15, 20, 30A</u>
.21 mA	.73 mA
.43 mA	1.52 mA
	2250 VDC
	1450 VDC
	250 VAC
	50/60 Hz
	3 to 30A
ture Range	
-1	0°C to +40°C
re (T _a) highe	er than +40°C
	.21 mA .43 mA ature Range -1

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

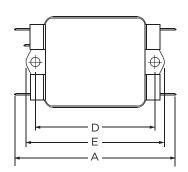

Electrical Schematic

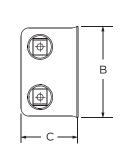
Available Part Numbers

3EMC1	10EMC3
6EMC1	15EMC3
10EMC1	10EMC6
15EMC1	15EMC6
20EMC1	20EMC6
3EMC3	30EMC6
6EMC3	

Ordering Information

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

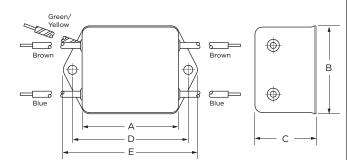



Compact and Cost-effective Dual Stage RFI Power Line Filters (continued)

EMC Series

Case Styles

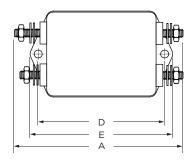
EMC1

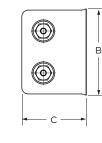


Typical Dimensions:

EMC3

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

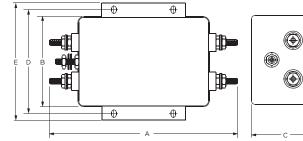



Typical Dimensions: Wire leads (5): Mounting Holes (2):

4.0 [101.6] Min., AWG18 (AWG16 for 15A) .187 ±.008 [4.75 ±.20] Dia.

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .187 ±.008 [4.75 ±.20] Dia.

EMC6




Typical Dimensions: Terminals (5): Mounting Holes (4):

8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .187 ±.008 [4.75 ±.20] Dia.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

30EMC6

Case Dimensions

Part No.	Α	В	С	D	Е
Part NO.	(max)	(max)	(max)	(max)	(max)
3EMC1	3.35	1.81	1.16	2.375	2.78
SEMCI	85.1	46	29.5	60.3	70.6
6FMC1	3.85	2.07	1.16	2.938	3.35
OEMCI	97.8	52.6	29.5	74.6	85.1
10FMC1	3.85	2.07	1.53	2.938	3.35
IDEMCI	97.8	52.6	38.91	74.6	85.1
15EMC1	4.97	2.25	1.78	4.063	4.46
20EMC1	126.2	57.2	45.2	103.2	113.3
3EMC3	2.07	1.81	1.16	2.375	2.78
SEMCS	52.6	46	29.5	60.3	70.6
6FMC3	2.56	2.07	1.16	2.938	3.35
OEMC3	65	52.6	29.5	74.6	85.1
10EMC3	2.56	2.07	1.53	2.938	3.35
IUEMC3	65	52.6	38.9	74.6	85.1
	3.69	2.25	1.78	4.063	4.47
15EMC3	93.7	57.2	45.2	103.2	113.5
10FMC6	3.94	2.07	1.53	2.938	3.35
IUEMC6	99.9	52.6	38.9	74.6	85.1
15EMC6	5.09	2.25	1.78	4.063	4.47
20EMC6	129.3	57.2	45.2	103.2	113.5
	6.05	3.12	2.18	3.5	3.96
30EMC6	153.7	79.2	55.4	88.9	100.6

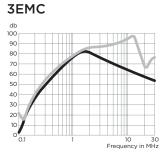
For email, phone or live chat, please go to te.com/help corcom.com

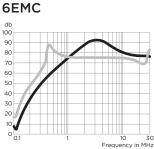
25

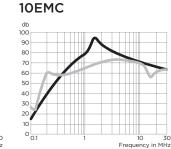
Downloaded From Oneyac.com

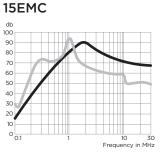
Typical Dimensions: Terminals (5): Mounting Slots (4):

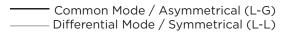
^{10-32,} Torque 27 lbf-in. [3.05 N-m] max. ± 3 [.34] .203 x .156 [5.16 x 3.96]

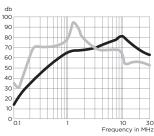

Compact and Cost-effective Dual Stage RFI Power Line Filters (continued)

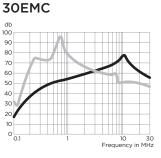

EMC Series


Performance Data


Typical Insertion Loss


Measured in closed 50 Ohm system





20EMC

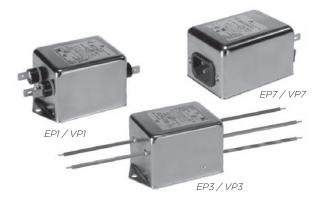
Minimum Insertion Loss

Common Mode / Asymmetrical (Line to Ground)

Current	t	Frequency – MHz							
Rating	.05	.07	.11	.15	1	2	10	20	30
3A	6	6	3	16	65	66	62	60	59
6A	6	6	2	15	65	67	65	62	63
10A	5	2	13	24	72	72	56	50	48
15A	3	1	12	22	70	68	57	54	53
20A	2	2	11	21	58	57	63	55	52
30A	2	2	14	22	47	52	60	48	43

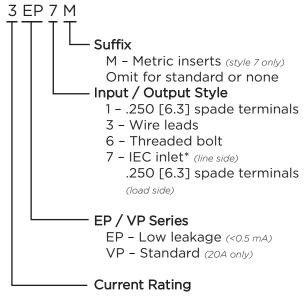
Differential Mode / Symmetrical (Line to Line)

Current		Frequency – MHz								
Rating	.05	.07	.11	.15	1	2	10	20	30	
3A	12	13	7	18	64	69	65	60	52	
6A	12	12	8	27	61	61	59	56	54	
10A	14	15	12	33	54	58	47	34	36	
15A	16	16	13	34	61	52	36	36	23	
20A	17	19	15	37	67	62	36	32	30	
30A	17	18	14	40	62	53	30	28	26	

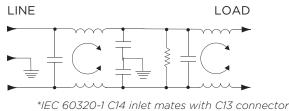


Dual Stage RFI Power Line Filters for Switching Mode Power Supplies

EP / VP Series


UL Recognized CSA Certified VDE Approved

EP & VP Series


- Dual stage filter offers high insertion loss
- Well suited for meeting CISPR 22 A and FCC Part 15J, Class B
- EP model meets very low leakage current requirements
- 7A and 12A versions offer optimum package size

Ordering Information

3, 6, 7, 10, 12 or 20A

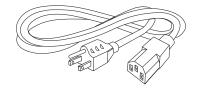
Electrical Schematic

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Specifications

Maximum leakage current each Line to Ground:

	<u>VP Models</u>	<u>EP Models</u>
@ 120 VAC 60 Hz:	.73 mA	.21 mA
@250 VAC 50 Hz:	1.27 mA	.36 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		3 to 20A
Operating Ambient Tempe	rature Range	
(at rated current I _r):	-1	0°C to +40°C
In an ambient temperat	ure (T _a) highe	er than +40°C

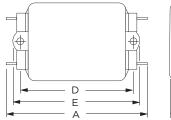

the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

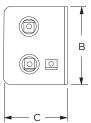
Available Part Numbers

3EP1	10EP1
3EP3	10EP3
3EP7	12EP1
3EP7M	12EP3
6EP1	20EP1
6EP3	20EP6
7EP1	20VP1
7EP3	20VP6

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord




Dual Stage RFI Filters for Switching Power Supplies (continued)

EP / VP Series

Case Styles

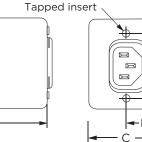
EP1 / VP1 (1-15A)

В

Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

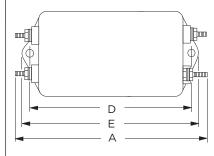
.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

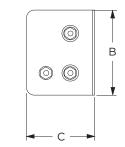

.250 [6.3] with .07 [1.8] Dia. hole

.188 [4.78] Dia.

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

EP7 & EP7M

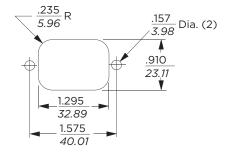

В D -E С


Typical Dimensions:

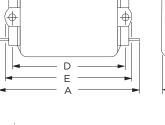
Load Terminals (2): Line Inlet (1): EP7 Tapped Inserts (2): EP7M Tapped Inserts (2):

.250 [6.3] with .07 [1.8] Dia. hole IEC 60320-1 C14 6-32 x 1/4 M3 x .5

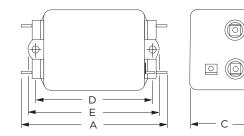
20EP6 / VP6



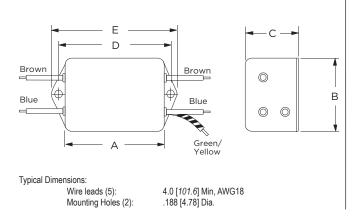

Typical Dimensions: Terminals (5): Mounting Holes (2):


8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .188 [4.78] Dia.

Recommended Panel Cutout



Tolerance ± .005 [0.13]


20EP1 / VP1

Typical Dimensions:

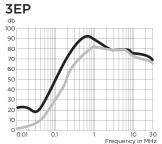
Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

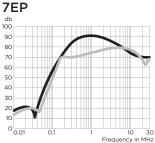
EP3

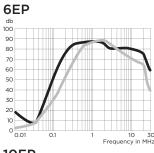
28

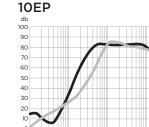
Dual Stage RFI Filters for Switching Power Supplies (continued)

EP / VP Series

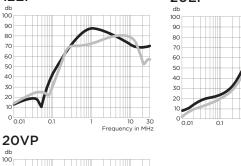

Case Dimensions

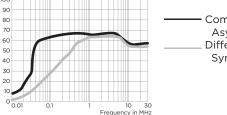

Davit Ma	Α	В	С	D	Е
Part No.	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
7001	3.85	2.07	1.78	2.938	3.35
3EP1	97.8	52.6	45.2	74.63	85.1
7507	2.56	2.07	1.78	2.938	3.35
3EP3	65.0	52.6	45.2	74.63	85.1
	3.21	2.25	1.78	1.575	0.63*
3EP7/7M	81.5	57.2	45.2	40.01	12.1*
6EP1	6.62	2.07	2.28	5.625	6.03
0201	168.1	52.6	57.9	142.88	153.2
6EP3	5.33	2.07	2.28	5.625	6.03
0EP3	135.4	52.6	57.9	142.88	153.2
7FP1	4.79	2.07	1.53	3.947	4.33
/EPI	121.7	52.6	38.9	10.25	109.98
7EP3	3.50	2.07	1.53	3.947	4.33
/EPS	88.9	52.6	38.9	100.25	109.98
10EP1	6.62	2.07	2.78	5.625	6.03
IUEPI	168.1	52.6	70.6	142.88	153.2
10EP3	5.35	2.03	2.78	5.625	6.03
IULFJ	135.9	52.6	70.6	142.88	153.2
12EP1	4.97	1.78	1.78	4.063	4.46
IZEPI	126.2	45.2	45.2	103.20	113.28
12EP3	3.624	1.78	1.78	4.063	4.46
IZEP3	92.05	45.2	45.2	103.20	113.28
20EP1/VP1	4.95	1.8	1.8	4.063	4.47
	125.7	45.7	45.7	103.20	113.5
	5.09	1.78	1.78	4.063	4.46
20EP6/VP6	127.3	45.2	45.2	103.20	113.3
					*±0.02 [0.5]


Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system





Typical Insertion Loss (continued) 12EP 20EP

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

10

Minimum Insertion Loss

Measured in closed 50 Ohm system

Current	Frequency – MHz								
Rating	.01	.05	.15	.5	1	5	10	30	
EP Models									
3A	12	10	58	65	65	66	62	30	
6, 10A	10	15	60	65	65	65	60	35	
7A	15	28	63	75	78	75	75	55	
12A	12	7	52	68	70	70	70	45	
20A	3	6	28	50	55	60	55	55	

VP Models

20A	3	2	42	60	65	65	55	55
Differential Mo	ode /	Svm	metri	cal (L	ine t	o Lin	e)	

	,	5						
Current			Fre	quen	cy – I	MHz		
Rating	.01	.05	.15	.5	1	5	10	30
EP Models								
ЗA	1	3	36	65	65	65	58	58
6, 10A	1	3	30	65	65	65	65	35
7A	10	13	55	65	68	70	65	50
12A	11	7	43	70	70	70	65	45
20A	8	25	60	65	65	58	58	58
VP Models								
20A	8	-	25	60	65	65	58	58

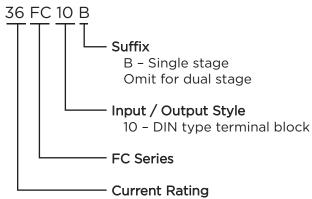
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

10 30 ncy in MHz

Frequer

Single Phase Power Line Filter for Frequency Converters

FC Series


UL Recognized

FC Series

- Designed for frequency inverters and variable speed motor drives
- Suitable for electronically noisy environments
- Protects programmable logic controllers from RF noise on the AC power line
- Side flanges for easy mounting
- Touch safe terminals provide easy connections and prevent inadvertent contact for safety in the most demanding applications

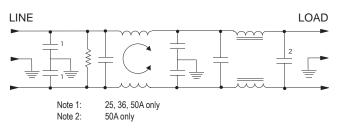
Ordering Information

6, 12, 16, 25, 36 or 50A

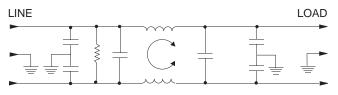
Available Part Numbers

6FC10	
12FC10	12FC10B
16FC10	16FC10B
25FC10	25FC10B
36FC10	36FC10B
50FC10	50FC10B

Specifications


Maximum leakage current each Line to Ground:

	<u>B suffix</u>	<u>no suttix</u>							
@ 120 VAC 60 Hz:	3.9 mA	3.8 mA							
@250 VAC 50 Hz:	7.0 mA	6.7 mA							
Hipot rating (one minute):									
Line to Ground:		2250 VDC							
Line to Line:		1450 VDC							
Rated Voltage (max):		250 VAC							
Operating Frequency:		50/60 Hz							
Rated Current:		6 to 50A							
Operating Ambient Temperature Range									
(at rated current I _r):	-1	0°C to +40°C							
In an ambient temperatu	ıre (T _a) highe	er than +40°C							
the end of the state of the sta									


In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematics

FC10

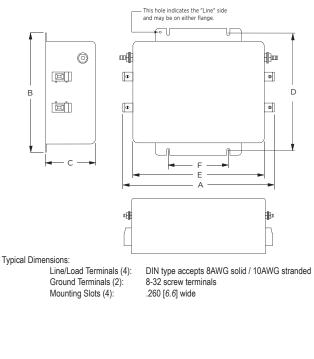
FC10B

-

Single Phase Filter for Frequency Converters (continued)

FC Series

Case Styles



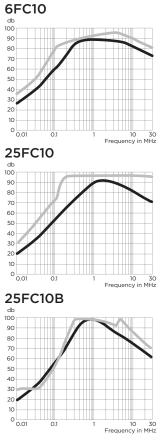
Case Dimensions

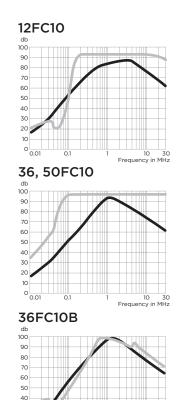
Part No.	A	в	C	D	E	F
Part NO.	(max)	(max)	(max)	<u>± .020</u> ± .510	(max)	<u>± .010</u> ± .254
6FC10	4.60	3.10	1.78	2.677	3.70	2.0
	116.8	78.7	45.21	67.8	94.0	50.8
12FC10/10B	5.47	3.96	2.18	3.50	4.53	2.0
16FC10/10B	139.0	100.6	55.4	88.9	114.8	5.08
25, 36, 50	6.90	5.48	2.55	4.90	5.94	2.756
FC10/10B	175.3	139.2	64.77	124.5	150.9	70.0

~

FC10 / FC10B (25, 36, 50A)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


Single Phase Filter for Frequency Converters (continued)

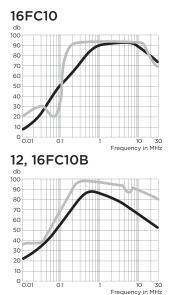

FC Series

Performance Data

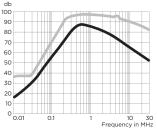
Typical Insertion Loss

Measured in closed 50 Ohm system

30


20

10


0_____

0.1

10 30 Frequency in MHz

50FC10B

Minimum Insertion Loss

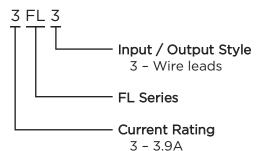
Common Mode / Asymmetrical (Line to Ground)

Differential Mode / Symmetrical (Line to Line)

			F	requ	ency	– Mł	Ηz							F	requ	ency	– Mł	Ηz		
Part No.	.01	.03	.05	.1	.5	1	5	10	30	_	Part No.	.01	.03	.05	.1	.5	1	5	10	30
6FC10	9	19	26	37	65	65	50	40	35	-	6FC10	10	10	35	60	75	75	60	50	45
12FC10	5	17	25	37	65	65	65	60	35		12FC10	14	14	30	51	75	75	75	70	45
16FC10	4	15	22	36	65	65	70	70	35		16FC10	14	14	29	55	75	75	75	70	45
25FC10	2	14	22	36	75	75	70	70	48		25FC10	14	14	17	42	75	75	70	70	50
36, 50FC10	-	6	14	27	68	75	70	70	50		36, 50FC10	14	14	17	42	75	75	70	70	50
12, 16FC10B	16	28	37	50	81	76	63	55	38		12, 16FC10B	30	32	46	64	91	86	77	78	65
25FC10B	14	25	36	49	91	88	71	64	46		25FC10B	24	24	31	46	92	87	86	75	55
36FC10B	11	25	37	50	81	87	73	66	49		36FC10B	27	33	27	41	89	88	82	74	55
50FC10B	11	24	36	49	81	75	62	54	37		50FC10B	30	32	48	64	91	87	82	79	67

Differential Mode Filter for Fluorescent Lighting Applications

FL Series



FL Series

- Specifically designed for fluorescent lights
- Suitable for industrial environments
- UL Listed for aftermarket installation

Ordering Information

Available Part Number

3FL3

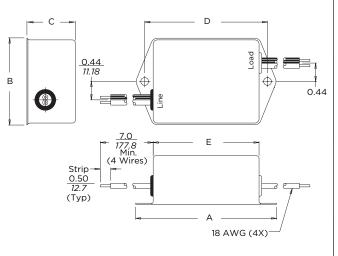
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Specifications

Maximum leakage current each Line	to Ground:
@ 125 VAC 60 Hz:	3.0 mA
@280 VAC 50 Hz:	6.0 mA
Hipot rating (one minute):	
Line to Ground:	1560 VAC
Line to Line:	1560 VAC
Rated Voltage:	125/280 VAC
Operating Frequency:	50/60 Hz
Rated Current:	3.9 A
Operating Ambient Temperature Ran	ige
(at rated current lr):	-10°C to +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

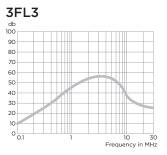
Electrical Schematic



Differential Mode Filter for Fluorescent Lighting Applications (continued)

FL Series

Case Styles


Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
3FL3	3.35	2.07	1.16	2.938	2.57
	85.09	52.58	29.5	74.63	65.3

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

—— Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

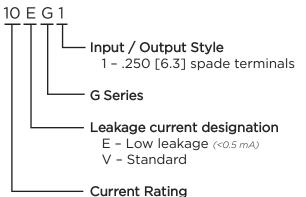
Differential Mode /	'Symmetrical	(Line to Line)
---------------------	--------------	----------------

			Frequ	iency	– MHz	z	
Part No.	.15	.3	.6	1	4	10	20
3FL3	10	18	34	46	56	38	26

High Performance RFI Filters for Switching Power Supplies

G Series

UL Recognized CSA Certified VDE Approved



6EG1 / 6VG1

G Series

- Designed to provide excellent attenuation for most digital electronics equipment
- Broad frequency range of performance from 20kHz to 30MHz
- Size and cost-effective solution
- Designed to help comply with EN55022 Level A and FCC Part 15J Class B

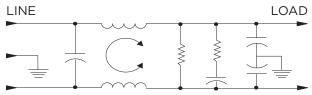
Ordering Information

6 or 10A

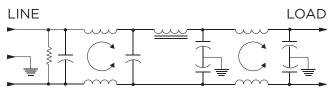
Available Part Numbers

6EG1	6VG1
10EG1	10VG1

Specifications


Maximum leakage current each Line to Ground:

@ 120 VAC 60 Hz: @250 VAC 50 Hz:	<u>EG Models</u> .30 mA .50 mA	<u>VG Models</u> 1.2 mA 2.0 mA
Hipot rating (one minute): Line to Ground: Line to Line:		2250 VDC 1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		6 & 10A
Operating Ambient Tempe	rature Range	
(at rated current I _r): In an ambient temperat		0°C to +40°C er than +40°C


In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: I_o = I_r $\sqrt{(85-Ta)/45}$

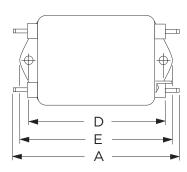
Electrical Schematics

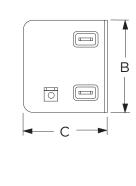
6EG1 & 6VG1

10EG1 & 10VG1

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

35


Downloaded From Oneyac.com



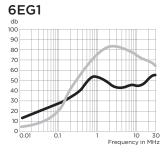
High Performance RFI Filters for Switching Power Supplies (continued)

G Series

Case Styles

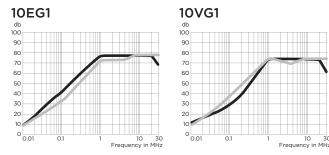
Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
6EG1/VG1	3.56	2.15	1.56	2.938	3.38
	90.4	54.6	39.6	74.63	85.8
10EG1/VG1	4.69	2.27	1.8	4.063	4.47
	119.1	57.7	45.7	103.2	113.5


Typical Dimensions: Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system

6VG1

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Common Mode / Asymmetrical (Line to Ground)

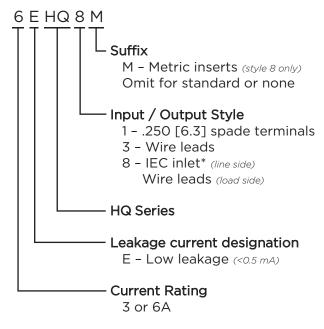
Current				Fre	quen	cy –	MHz			
Rating	.01	.05	.07	.1	.15	.5	1	5	10	30
EG Mode	ls									
6A	6	19	23	25	29	48	44	43	40	40
10A	8	10	15	18	42	64	65	65	60	60
VG Mode	ls									
6A	4	18	21	25	30	56	55	53	45	45
10A	5	10	24	37	50	72	70	70	60	60

Differential Mode / Symmetrical (Line to Line)

Current		Frequency – MHz								
Rating	.01	.05	.07		.15			5	10	30
EG Mode	ls									
6A	4	6	10	24	37	66	75	72	50	50
10A	5	5	5	26	40	65	65	60	70	70
VG Mode	ls									
6A	4	7	7	26	39	67	75	68	55	55
10A	5	5	7	26	39	65	60	60	70	70

Highest Performance RFI Filters for Medical Equipment

HQ Series


UL Recognized CSA Certified VDE Approved

HQ Series

- Designed to provide the highest available attenuation of RFI noise in the frequency range from 10kHz to 30MHz for low leakage current applications
- Size and cost-effective

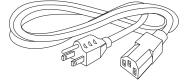
Ordering Information

*IEC 60320-1 C14 inlet mates with C13 connector

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Specifications

Maximum leakage current each Line to Ground:								
@ 120 VAC 60 Hz:	2 µA							
@250 VAC 50 Hz:	5 µA							
Hipot rating (one minute):								
Line to Ground:	2250 VDC							
Line to Line:	1450 VDC							
Rated Voltage (max):	250 VAC							
Operating Frequency:	50/60 Hz							
Rated Current:	3 & 6A							
Operating Ambient Temperature Ran	ge							
(at rated current I _r):	-10°C to +40°C							


In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

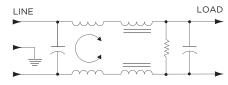
Available Part Numbers

3EHQ1	6EHQ1
3EHQ3	6EHQ3
3EHQ8	6EHQ8
3EHQ8M	3EHQ8M

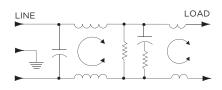
Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

For email, phone or live chat, please go to te.com/help corcom.com

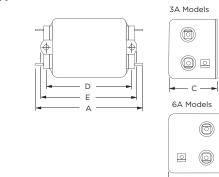


Highest Performance RFI Filters for Medical Equipment (continued)


HQ Series

Electrical Schematics

3EHQ

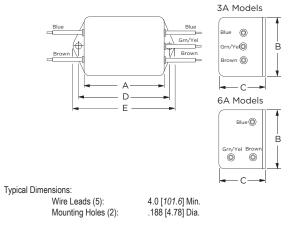


6EHQ

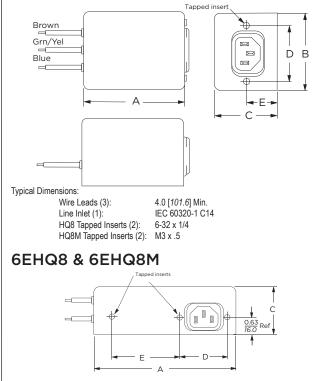
Case Styles

HQ1

Typical Dimensions:


Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

С


В

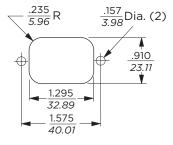
R

HQ3

3EHQ8 & 3EHQ8M

Typical Dimensions:

Wire Leads (3):	4.0 [101.6] Min.
Line Inlet (1):	IEC 60320-1 C14
HQ8 Tapped Inserts (2):	6-32 x 1/4
HQ8M Tapped Inserts (2):	M3 x .5

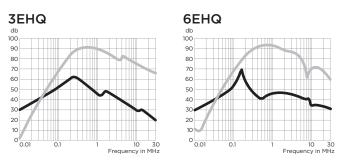


Highest Performance RFI Filters for Medical Equipment (continued)

HQ Series

Recommended Panel Cutout

Tolerance ± .005 [0.13]


Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
3EHQ1	3.85	2.07	1.78	2.938	3.34
SERGI	97.8	52.6	45.2	74.63	84.8
3EHQ3	2.56	2.07	1.78	2.938	3.34
SERGS	65.0	52.6	45.2	74.63	84.8
3EHQ8,	3.07	2.25	1.78	1.575	0.63*
3EHQ8M	78.0	57.2	45.2	40.01	16.0*
6EHQ1	4.98	2.27	1.8	4.063	4.47
DEHQI	126.5	57.7	45.7	103.2	113.5
	3.69	2.27	1.8	4.063	4.47
6EHQ3	93.7	57.7	45.7	103.2	113.5
6EHQ8,	5.47	2.07	1.78	1.575	2 .7 [*]
6EHQ8M	138.9	52.6	45.2	40.01	68.6*
					*±0.02 [0.5]

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) — Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

	Current		Frequency – MHz										С	
_	Rating	.01	.02	.05	.15	.5	1	2	5	7	10	20	30	R
	3A	19	24	32	44	44	40	38	28	25	22	13	10	
	6A	24	29	39	42	28	35	36	30	30	24	16	15	

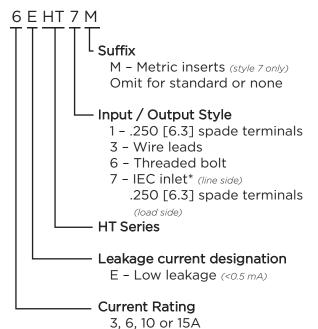
Differential Mode / Symmetrical (Line to Line)												
Current		Frequency – MHz										
Rating	.01	.02	.05	.15	.5	1	2	5	7	10	20	30
3A	1	18	43	68	75	75	72	70	66	65	60	60
6A	6	10	43	70	75	75	75	65	50	55	50	40

39

Downloaded From Oneyac.com

High Performance RFI Power Line Filters for Medical Equipment

HT Series


UL Recognized CSA Certified VDE Approved

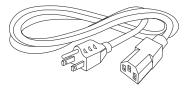
HT Series

- Designed to provide significant attenuation of RFI noise in the frequency range from 10kHz to 30MHz
- Size and cost-effective

Ordering Information

Specifications

Maximum leakage current each Line to	o Ground:
@ 120 VAC 60 Hz: @250 VAC 50 Hz:	2 μΑ 5 μΑ
Hipot rating (one minute):	
Line to Ground:	2250 VDC
Line to Line:	1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	3 to 15A
Operating Ambient Temperature Rang	ge
(at rated current I _r):	-10°C to +40°C
In an ambient temperature (T _a) hig	her than +40°C
the maximum operating current (1)	

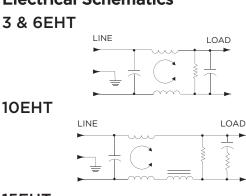

the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

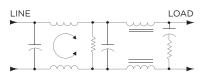
Available Part Numbers

3EHT1	6EHT7
3EHT3	6EHT7M
3EHT7	10EHT1
3EHT7M	10EHT3
6EHT1	15EHT1
6EHT3	15EHT6

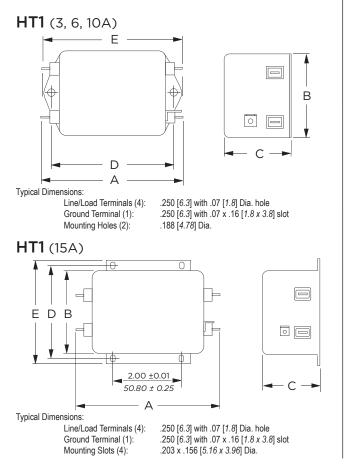
Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

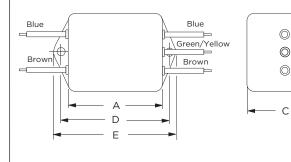



High Performance Power Line Filters for Medical Equipment (continued)

HT Series


Electrical Schematics

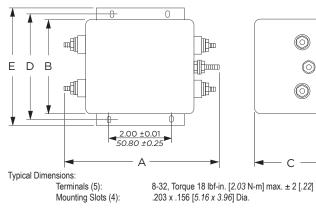
15EHT

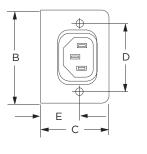


Case Styles

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

HT3



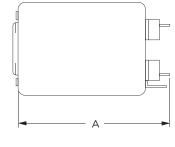

Mounting Holes (2):

4.0 [*101.6*] Min., 18AWG 6.0 [152.4] Min., 18AWG .188 [4.78] Dia.

HT6

HT7 & HT7M

Load Terminals (2):


Ground Terminal (1):

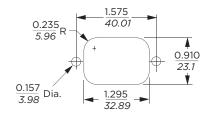
HT7 Tapped Inserts (2):

HT7M Tapped Inserts (2):

Line Inlet (1):

Typical Dimensions:

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot IEC 60320-1 C14 6-32 x 1/4 M3 x .5 В

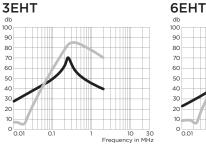

For email, phone or live chat, please go to te.com/help corcom.com

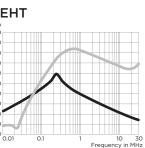
High Performance Power Line Filters for Medical Equipment (continued)

HT Series

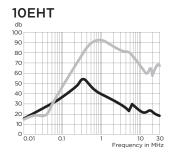
Recommended Panel Cutout

Tolerance ± .005 [0.13]

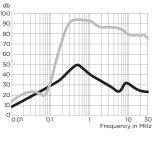

Case Dimensions


Part No.	Α	В	С	D	Е
	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
3EHT1,	3.56	2.15	1.81	2.938	3.38
6EHT1	90.4	54.6	46.0	74.63	85.9
3EHT3,	2.55	2.15	1.81	2.938	3.38
6EHT3	64.8	54.6	46.0	74.63	85.9
3EHT7 / 7M,	3.52	2.25	1.78	1.575	0.63 *
6EHT7 / 7M	89.4	57.2	45.2	40.01	16.0*
10EHT1	4.69	2.27	1.8	4.063	4.47
IUEHTT	119.1	57.7	45.7	103.2	113.5
	3.69	2.27	1.8	4.063	4.47
10EHT3	93.7	57.7	45.7	103.2	113.5
	5.45	3.12	2.18	3.5	3.96
15EHT1	138.4	79.2	55.4	88.9	100.6
15EHT6	5.95	3.12	2.18	3.5	3.96
IJENIO	151.1	79.2	55.4	88.9	100.6
					*±0.02 [<i>0.5</i>]

Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system



Common Mode / Asymmetrical (L-G) — Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Common Mode / Asymmetrical (Line to Ground)

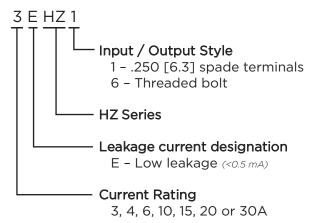
Current		Frequency – MHz										
Rating	.02	.02	.05	.08	.15	.5	1	2	5	10	20	30
3A	22	32	36	-	49	46	40	30	22	12	12	12
6A	16	23	32	41	46	41	33	26	15	9	6	2
10A	9	15	24	30	36	42	34	22	11	12	8	8
15A	4	9	18	22	27	41	34	22	12	12	5	2

Differential Mode / Symmetrical (Line to Line)

Current		Frequency – MHz										
Rating	.02	.02	.05	.08	.15	.5	1	2	5	10	20	30
3A	3	1	30	-	61	70	65	65	48	40	32	32
6A	4	1	14	45	51	70	70	65	55	47	37	37
10A	7	8	17	32	52	70	70	70	65	55	40	35
15A	12	16	15	10	51	70	70	70	70	70	65	55

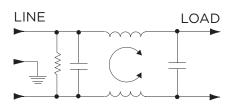
High Performance Power Line Filter for Medical Applications

HZ Series


UL Recognized CSA Certified VDE Approved

HZ Series

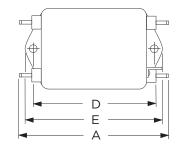
- Designed to provide good attenuation to RFI noise in the frequency range from 10kHz to 30MHz
- Size and cost-effective
- Low leakage current
- New versions up to 30A

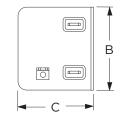

Ordering Information

Available Part Numbers

3EHZ1	4EHZ1
6EHZ1	10EHZ1
15EHZ1	20EHZ1
30EHZ6	

Electrical Schematic


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.



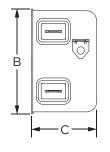
Maximum leakage current each Line	to Ground:
@ 120 VAC 60 Hz:	2 µA
@250 VAC 50 Hz:	5 µA
Hipot rating (one minute):	
Line to Ground:	2250 VDC
Line to Line:	1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	3 to 30A
Operating Ambient Temperature Ran	ge
(at rated current I _r):	-10°C to +40°C
1 ·	

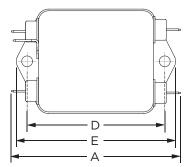
In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: $I_o = I_r \sqrt{(85-Ta)/45}$

Case Styles 3EHZ1

Typical Dimensions: Line/Load Terminals (4):

Ground Terminal (1): Mounting Holes (2):

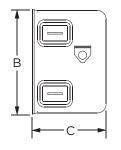


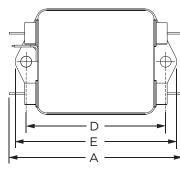

High Performance Power Line Filter for Medical Applications (continued)

HZ Series

Case Styles (continued)

4EHZ1



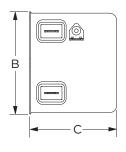


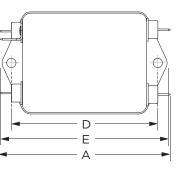
Typical Dimensions:

- Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):
- .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

6EHZ1

.250 [6.3] with .07 [1.8] Dia. hole

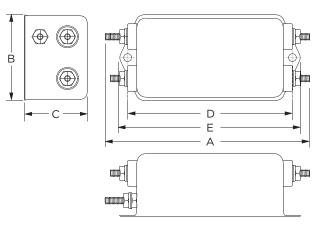

.188 [4.78] Dia.


.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

10, 15 & 20EHZ1



Typical Dimensions: Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

30EHZ6

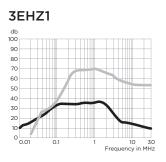
Typical Dimensions:

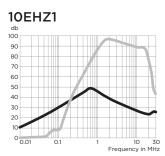
Terminals (5): Mounting Holes (4): 8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .188 [4.75] Dia.

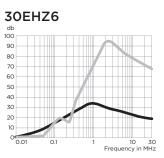
Case Dimensions

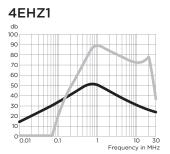
Part No.	A (max)	B (max)	C (max)	D <u>±.015</u> ±.38	E (max)
	3.54	2.08	1.31	2.938	3.35
3EHZ1	89.91	52.8	33.3	74.63	85.1
4EHZ1	3.07	1.82	1.16	2.375	2.78
	77.98	46.23	29.46	60.33	70.61
051171	3.07	1.82	1.28	2.375	2.78
6EHZ1	77.98	46.23	32.51	60.33	70.61
10EHZ1 15EHZ1	3.54	2.047	1.805	2.938	3.54
20EHZ1	89.92	51.99	45.85	74.63	89.92
30EHZ6	4.92 124.97	2.07 52.58	1.53 38.86	3.947 100.25	4.33 109.98

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.




High Performance Power Line Filter for Medical Applications (continued)


Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system

15EHZ1

100

90

80

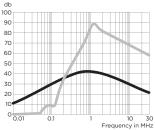
70

60

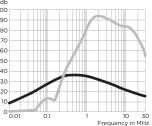
50

40

30


20


10


0 0.01

0.1

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

10

Frequ

30

in MHz

Minimum Insertion Loss

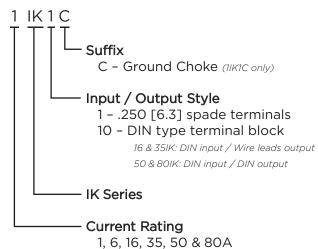
Common Mode / Asymmetrical (Line to Ground)

			F	requ	ency	– MI	Ηz		
Part No.	.01	.05	.1	.15	.5	1	5	10	30
3EHZ1	10	24	30	34	34	35	15	10	5
4EHZ1	12	24	31	35	47	47	30	25	18
6EHZ1	9	21	27	30	36	34	27	22	16
10EHZ1	7	21	25	31	43	40	26	21	14
15EHZ1	7	27	27	30	43	37	24	17	12
20EHZ1	5	19	24	28	31	29	14	9	4
30EHZ6	-	5	11	14	27	30	20	17	14

Differential Mode /	' Symmetrical	(Line to Line)
---------------------	---------------	----------------

		Frequency – MHz							
Part No.	.01	.05	.1	.15	.5	1	5	10	30
3EHZ1	10	25	30	54	70	70	65	55	55
4EHZ1	-	-	14	32	72	83	68	63	30
6EHZ1	-	-	7	17	59	80	67	60	52
10EHZ1	-	-	4	21	63	80	80	74	36
15EHZ1	-	-	7	15	51	77	80	74	48
20EHZ1	-	-	11	9	54	77	74	69	47
30EHZ6	-	-	13	14	47	67	76	70	58

Single and 2-phase RFI Filters for Industrial Applications


IK Series

IK Series

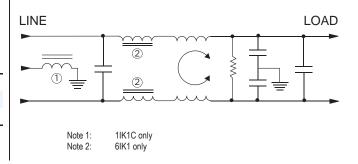
- Excellent performance for applications with high interference levels
- Designed for single or two-phase applications
- Wide current range
- For small to medium sized industrial equipment, power converters and variable speed motors
- Touch safe terminals on the 6 to 60A product provide easy connections and prevent inadvertent contact for safety in the most demanding applications

Ordering Information

Available Part Number

1IK1C	6IK1
16IK10	35IK10
50IK10	80IK10
501110	001110

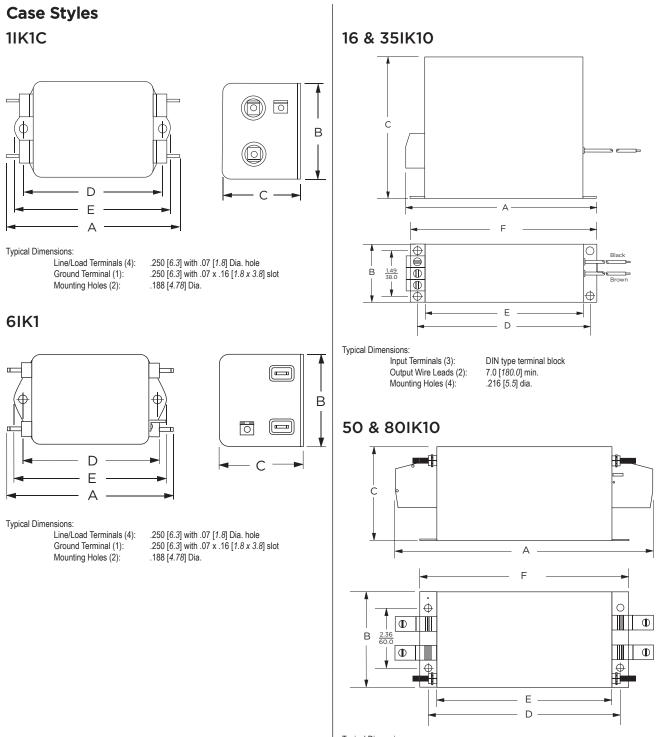
Specifications


Maximum leakage current each Line to Ground: @120 VAC 60 Hz:

-	1IK & 6IK:	0.6 mA
	16, 35 & 50IK:	1.7 mA
	80IK:	5.2 mA
@289 VAC 50 Hz:	00111.	5.2 mA
@289 VAC 30 HZ.	1117.	10 4
	1IK:	1.2 mA
@277 VAC 50 Hz:		
	6IK:	1.15 mA
	16, 35 & 50IK:	3.2 mA
	80IK:	9.9 mA
Hipot rating (one minu Line to Ground: Line to Line:	te):	2250 VDC 1450 VDC
Line to Line.		1450 VDC
Rated Voltage (max):	<u>11K</u>	<u>6 to 80IK</u>
Line to Ground:	289 VAC	500 VAC
Line to Line:	277 VAC	480 VAC
Operating Frequency:		50/60 Hz
operating riequency.		50/00 112
Rated Current:		1 to 80A
Operating Ambient Ter	mperature Range	

Operating Ambient Temperature Range (at rated current I_r): -10°C to +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$


Electrical Schematic

Single and 2-phase RFI Filters for Industrial Applications

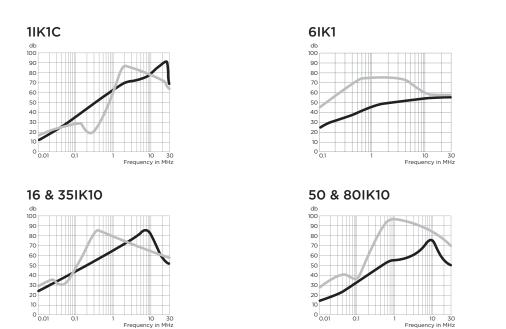
IK Series

Typical Dimensions: Line / Load terminals (4): DIN Ground terminals (2): 1/4-Mounting Holes (4): .260

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Single and 2-phase RFI Filters for Industrial Applications

IK Series


Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .020</u> ± .510	E (max)	F <u>± .010</u> ± .254
1IK1C	3.85	2.07	1.53	2.93	3.35	-
IIKIC	97.8	52.6	38.9	74.4	85.1	
6IK1	4.69	2.27	1.8	4.063	4.47	_
0111	119.1	57.7	45.7	103.2	113.5	
1611/10	6.28	1.97	4.76	5.90	5.35	6.34
16IK10	159.5	50.0	121.0	150.0	136.0	161.0
7511/10	6.48	1.97	4.76	5.90	5.35	6.34
35IK10	164.5	50.0	121.0	150.0	136.0	161.0
50IK10	9.45	3.94	3.54	6.89	6.3	7.48
80IK10	240.0	100.0	90.0	175.0	160.0	190.0

Performance Data

Typical Insertion Loss

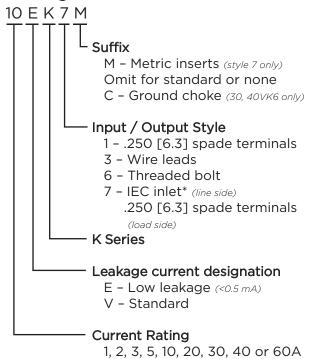
Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) ——Differential Mode / Symmetrical (L-L)

48

General Purpose RFI Power Line Filters - Ideal for High Impedance Load

K Series



UL Recognized CSA Certified VDE Approved**

K Series

- Suitable for high impedance loads
- Well suited to applications where pulsed, continuous and/or intermittent RFI interference is present
- EK models meet the very low leakage current requirements for VDE portable equipment and non-patient care medical equipment
- Available with ground line inductor (choke)

Ordering Information

*1-15A: IEC 60320-1 C14 inlet mates with C13 connector 20VK7: C20 inlet mates with C19 connector

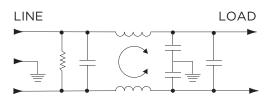
Specifications

Maximum leakage current each Line to Ground:

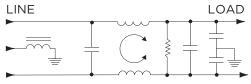
	VK Models	<u>EK Models</u>
@ 120 VAC 60 Hz:	.5 mA	.21 mA
@250 VAC 50 Hz:	1.0 mA	.36 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 60A*
Operating Ambient Tempe	rature Rang	e
(at rated current Ir):	-	-10°C to +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

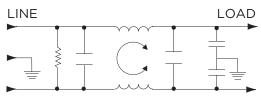
Available Part Numbers


1VK1 10VK6 2EK3 1VK3 10VK7 3EK1 2VK1 10VK7M 3EK3 2VK3 20VK1 3EK7 3VK1 20VK6 3EK7M 3VK3 20VK7* 5EK1 3VK7 30VK6 5EK3 3VK7M 30VK6C 5EK7 5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M			
2VK1 10VK7M 3EK3 2VK3 20VK1 3EK7 3VK1 20VK6 3EK7M 3VK3 20VK7* 5EK1 3VK7 30VK6 5EK3 3VK7 30VK6C 5EK7 5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	1VK1	10VK6	2EK3
2VK3 20VK1 3EK7 3VK1 20VK6 3EK7M 3VK3 20VK7* 5EK1 3VK7 30VK6 5EK3 3VK7M 30VK6C 5EK7 5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	1VK3	10VK7	3EK1
3VK1 20VK6 3EK7M 3VK3 20VK7* 5EK1 3VK7 30VK6 5EK3 3VK7M 30VK6C 5EK7 5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	2VK1	10VK7M	3EK3
3VK3 20VK7* 5EK1 3VK7 30VK6 5EK3 3VK7M 30VK6C 5EK7 5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	2VK3	20VK1	3EK7
3VK7 3OVK6 5EK3 3VK7M 3OVK6C 5EK7 5VK1 4OVK6 5EK7M 5VK3 4OVK6C 10EK1 5VK7 6OVK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	3VK1	20VK6	3EK7M
3VK7M 30VK6C 5EK7 5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	3VK3	20VK7*	5EK1
5VK1 40VK6 5EK7M 5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	3VK7	30VK6	5EK3
5VK3 40VK6C 10EK1 5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	3VK7M	30VK6C	5EK7
5VK7 60VK6 10EK3 5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	5VK1	40VK6	5EK7M
5VK7M 1EK1 10EK7 10VK1 1EK3 10EK7M	5VK3	40VK6C	10EK1
10VK1 1EK3 10EK7M	5VK7	60VK6	10EK3
	5VK7M	1EK1	10EK7
	10VK1	1EK3	10EK7M
IOVK3 2EKI 20EKI	10VK3	2EK1	20EK1

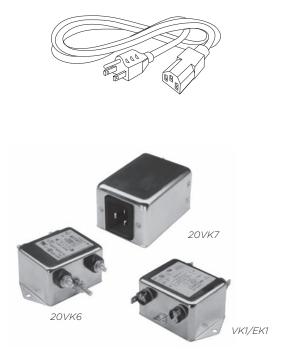
**20VK7, 20A model tested by Underwriters Laboratories to US and Canadian requirements and is VDE approved at 16A, 250VAC



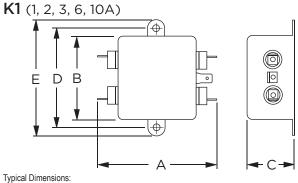
K Series


Electrical Schematics

30 & 40VK6C (Inductor in Ground Line)

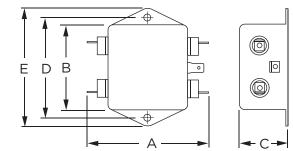


60VK6



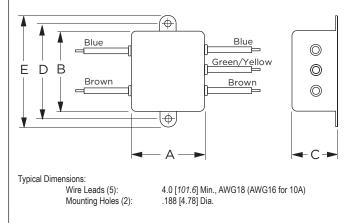
Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord



Case Styles

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.


K1 (20A)

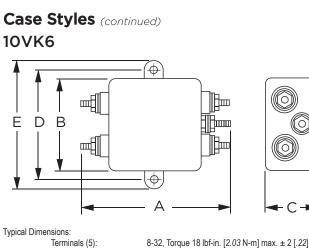
Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

K3

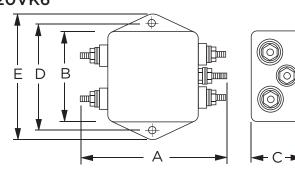
50

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


For email, phone or live chat, please go to te.com/help corcom.com

60VK6

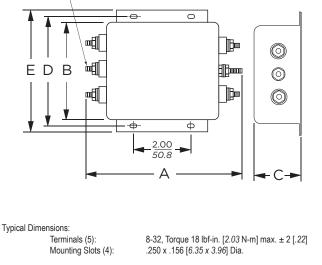
Ε D В ШЯ


K Series

 (\bigcirc) (0)(0)))

20VK6

Mounting Holes (2):


.188 [4.78] Dia.

Typical Dimensions: Terminals (5): Mounting Holes (2):

8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .188 [4.78] Dia.

30VK6/6C & 40VK6/6C

Terminal on 30VK6C and 40VK6C only

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Δ Typical Dimensions: Terminals (5): 1/4-20, Torque 56 lbf-in. [6.32 N-m] max. ± 2 [.22] Mounting Slots (4): .250 x .156 [6.35 x 3.96] Dia. K7 & K7M (3, 5, 10A) Tapped insert × А ·Ε Typical Dimensions: Load Terminals (2): Ground Terminal (1): Line Inlet (1): IEC 60320-1 C14 K7 Tapped Inserts (2):

0

 Φ

2.00 50.8

H

R

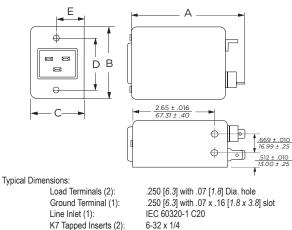
 \odot

 $\langle \mathfrak{o} \rangle$

 \bigcirc

В

D


.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot 6-32 x 1/4 M3 x .5

20VK7

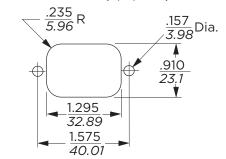
• \bigcirc

K7M Tapped Inserts (2):

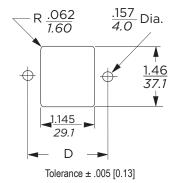
K7M Tapped Inserts (2):

6-32 x 1/4 M3 x .5

For email, phone or live chat, please go to te.com/help corcom.com


K Series

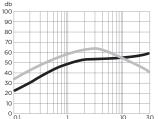
Case Dimensions

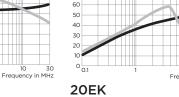

Part No.	Α	В	С	D	Е
Fart NO.	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
1VK1, 1EK1,	3.1	2.07	0.91	2.375	2.81
2VK1, 2EK1	78.7	52.6	23.1	60.33	74.1
1VK3, 1EK3,	1.81	2.07	0.91	2.375	2.81
2VK3, 2EK3	46.0	52.6	23.1	60.33	74.1
3VK1, 3EK1,	3.10	2.07	1.16	2.375	2.81
5VK1, 5EK1	78.7	52.6	29.5	60.33	74.1
3VK3, 3EK3,	1.81	2.07	1.16	2.375	2.81
5VK5, 5EK3	46.0	52.6	29.5	60.33	74.4
3VK7/7M,	3.21	2.25	1.28	1.575	0.63 *
3EK7/7M	81.5	57.2	32.5	40.01	16.0*
5VK7/7M,	3.21	2.25	1.28	1.575	0.63 *
5EK7/7M	81.5	57.2	32.5	40.01	16.0 [*]
10VK1,	3.35	2.07	1.16	2.375	2.81
10EK1	85.1	52.6	29.5	60.33	71.4
10VK3,	2.07	2.07	1.16	2.375	2.81
10EK3	52.6	52.6	29.5	60.33	71.4
10VK6	3.46	2.07	1.16	2.375	2.81
	87.9	52.6	29.5	60.33	71.4
10VK7/7M,	3.71	2.25	1.28	1.575	0.63 *
10EK7/7M	94.2	57.2	32.5	40.01	16.0 [*]
20VK1,	3.35	2.56	1.53	2.938	3.35
20EK1	85.1	65.0	38.9	74.63	85.1
20VK6	3.46	2.56	1.53	2.938	3.35
20000	87.9	65.0	38.9	74.63	85.1
20VK7	3.8	2.28	1.78	1.575	.846
20010	90.4	54.6	39.6	74.63	85.8'
30VK6,	5.34	3.38	1.53	3.75	4.20
30VK6C	135.6	85.9	38.9	95.25	106.7
40VK6,	5.34	3.38	1.53	3.75	4.20
40VK6C	135.6	85.9	38.9	95.25	106.7
60VK6	6.0	3.38	1.53	3.75	4.20
	152.4	85.9	38.9	95.25	106.7
					*±0.02 [0

Recommended Panel Cutouts

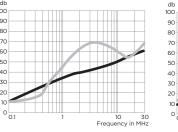
K7 & K7M Cutout (3, 5, 10A)

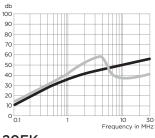
20VK7 Cutout

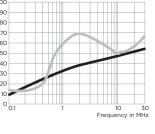



Performance Data

Typical Insertion Loss


Measured in closed 50 Ohm system


1 & 3EK



2 & 10EK

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

5EK

db 100

90

80

70

60

50

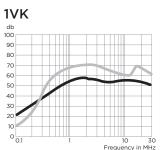
40

30

20

10

1±0.01 [0.25]



K Series

Performance Data (continued)

Typical Insertion Loss

Measured in closed 50 Ohm system

10VK

db 100

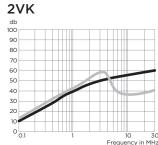
90

80

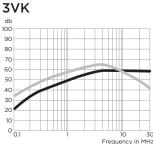
70

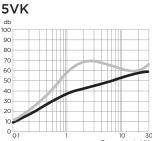
60

50

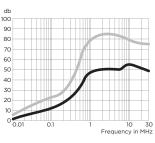

40

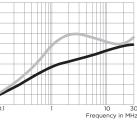

30

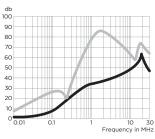

20


10


0 _____







RFI Power Line Filters

db 100 90 80 70 60 50 40 30 20 10 Frequ

40VK & 40VK6C

30

Differential Mode / Symmetrical (L-L)

Common Mode / Asymmetrical (L-G)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

Current		Fr	equen	су – М	Hz	
Rating	.15	.5	1	5	10	30
VK Models						
1A, 3A	15	30	38	50	50	50
2A, 5A, 10A	6	19	28	42	45	50
20A	6	19	28	42	45	50
30A, 40A	6	19	28	42	45	50
60A	6	22	28	32	39	35
EK Models						
1A, 3A	15	29	35	45	45	50
2A, 5A, 10A	8	19	25	38	40	45
20A	8	19	25	38	40	45

Differential Mode /	Symmetrical	(Line to	o Line)
---------------------	-------------	----------	---------

Current		Fr	equen	су – М	Hz	
Rating	.15	.5	1	5	10	30
VK Models						
1A, 3A	-	-	48	55	50	35
2A, 5A, 10A	-	-	30	50	30	30
20A	6	6	30	50	30	30
30A, 40A	2	40	60	65	57	55
60A	13	49	67	57	53	53
EK Models						
1A, 3A	-	-	48	55	50	35
2A, 5A, 10A	-	-	30	50	30	30
20A	6	6	30	50	30	30

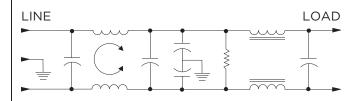
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Multi-purpose Medical Filter for Power Line Noise Protection

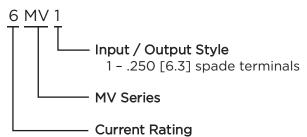
MV Series

UL Recognized CSA Certified VDE Approved

MV Series


- Multi-purpose medical filter
- Improved Line to Ground performance
- A good solution to emission or immunity problems
- Meets leakage current requirements of UL2601 for health care equipment

Specifications


Maximum leakage current each Line t	o Ground:
@ 120 VAC 60 Hz:	.07 mA
@250 VAC 50 Hz:	.13 mA
Hipot rating (one minute):	
Line to Ground:	2250 VDC
Line to Line:	1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	3 to 20A
Operating Ambient Temperature Ran	ge
(at rated current I _r):	-10°C to +40°C
In an ambient temperature (T _a) hig	gher than +40°C
the maximum operating current (1)	

the maximum operating current (I_0) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

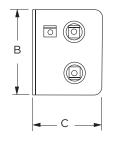
Electrical Schematic

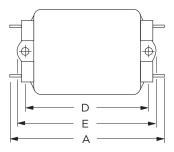
Ordering Information

3, 6, 10 or 20A

Available Part Numbers

3MV1	6MV1
10MV1	20MV1

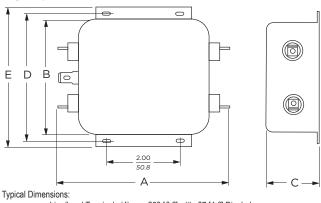



Multi-purpose Medical Filter for Power Line Noise Protection (continued)

MV Series

Case Styles

MV1 (3, 6, 10A)



.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

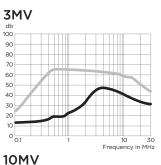
Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

20MV1

.188 [4.78] Dia.

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.


Case Dimensions

Part No.	А	В	С	D	Е
Part NO.	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
3MV1	3.36	1.82	1.28	2.375	2.78
	85.3	46.2	32.5	60.33	70.6
CN4)/1	3.86	2.08	1.53	2.938	3.34
6MV1	98.0	52.8	38.9	74.63	84.8
10MV1	3.86	2.08	1.53	2.938	3.34
	98.0	52.8	38.9	74.63	84.8
2014/1	5.23	3.38	1.53	3.75	4.20
20MV1	132.8	85.9	38.9	95.25	106.7

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

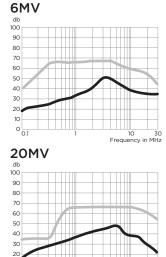
db 100

90

80

70

60


50

40

30

20

10

RFI Power Line Filters

Common Mode / Asymmetrical (L-G) — Differential Mode / Symmetrical (L-L)

30

10

0

Minimum Insertion Loss

Measured in closed 50 Ohm system

Frea

Common Mode / Asymmetrical (Line to Ground)

Current	Frequency – MHz								
Rating	.15	.5	1	2	5	10	20	30	
3A	14	19	20	30	46	40	34	31	
6A	19	27	30	38	50	40	35	35	
10A	15	25	26	34	46	50	44	42	
20A	18	30	34	34	46	40	36	20	

Differential Mode / Symmetrical (Line to Line)

Current	Frequency – MHz								
Rating	.15	.5	1	2	5	10	20	30	
3A	33	65	65	65	65	60	53	50	
6A	40	65	65	65	65	60	57	55	
10A	33	65	65	65	65	65	55	55	
20A	25	65	65	65	65	60	57	45	

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

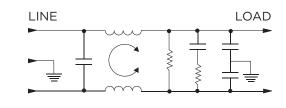
High Performance RFI Filters for Switching Power Supplies

N Series

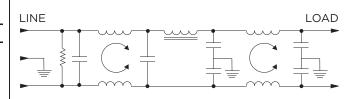
UL Recognized CSA Certified VDE Approved

N Series

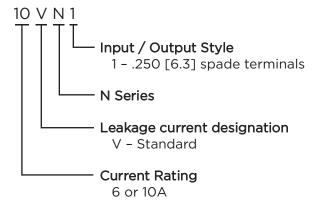
- Superior attenuation for most digital electronic equipment over the frequency range of 10kHz to 30MHz
- Provides excellent common mode and differential mode performance
- Cost-effective solution to very noisy equipment that must meet conducted emission limits


Specifications

Maximum leakage current each Line @ 120 VAC 60 Hz: @250 VAC 50 Hz:	to Ground: 1.2 mA 2.0 mA
Hipot rating (one minute): Line to Ground: Line to Line:	2250 VDC 1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	6 to 10A
Operating Ambient Temperature Ran	ge
(at rated current I _r): In an ambient temperature (T _a) his the maximum operating current (I	


the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematics

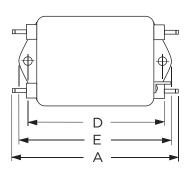

3VN

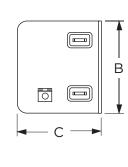
10VN

Ordering Information

Available Part Numbers

6VN1





High Performance RFI Filters for Switching Power Supplies (continued)

N Series

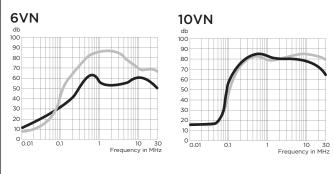
Case Styles

Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
6VN1	3.56	2.15	1.81	2.938	3.38
0 1 1 1	90.4	54.6	45.9	74.63	85.8
10VN1	4.69	2.27	1.8	4.063	4.47
	119.1	57.7	45.7	103.2	113.5


.188 [4.78] Dia.

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G)
 Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

Current	Frequency – MHz								
Rating	.01	.05	.1	.15	.5	1	5	10	30
6A	6	20	28	34	58	54	53	53	43
10A	8	8	44	55	75	70	70	70	55

Differential Mode / Symmetrical (Line to Line)

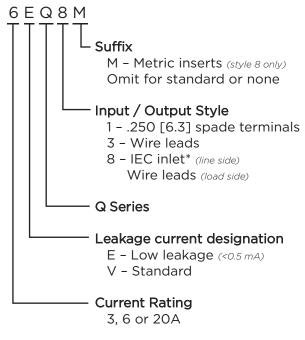
		, ,						·	
Current	Frequency – MHz								
Rating	.01	.05	.1	.15	.5	1	5	10	30
6A	6	14	41	52	66	77	72	60	60
10A	6	6	35	45	72	70	72	75	70

RFI Power Line Filters

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Highest Performance RFI Filters for Switching Power Supplies

Q Series


UL Recognized CSA Certified VDE Approved

Q Series

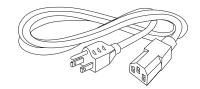
- Specifically developed for switching power supplies
- High attenuation for common and differential mode interference
- Effective from 10kHz to 30MHz
- Optimized for attenuation and size
- 3 or 6A versions available with IEC inlet

Ordering Information

Specifications

Maximum leakage current each Line to Ground:

<u>3 & 20A</u> @120 VAC 60 Hz: @250 VAC 50 Hz:	<u>VQ Models</u> .73 mA 1.27 mA	<u>EQ Models</u> .22 mA .38 mA
<u>6A</u> @120 VAC 60 Hz: @250 VAC 50 Hz:		.29 mA .51 mA
Hipot rating (one minute) Line to Ground: Line to Line:):	2250 VDC 1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		3 to 20A
Operating Ambient Temp	erature Range	
(at rated current I _r):	-10	0°C to +40°C
In an ambient tempera	ature (T _a) highe	r than +40°C


In an ambient temperature (I_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Available Part Numbers

3EQ1	6EQ8M
3EQ3	20EQ1
3EQ8	3VQ1
3EQ8M	3VQ3
6EQ1	3VQ8
6EQ3	3VQ8M
6EQ8	20VQ1

Accessories

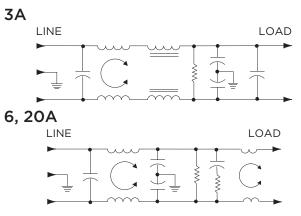
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

*IEC 60320-1 C14 inlet mates with C13 connector

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

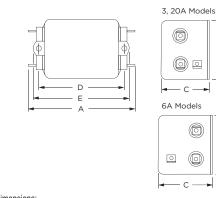
В

В

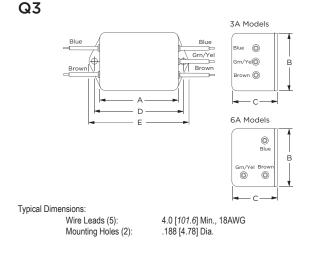

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

.188 [4.78] Dia.

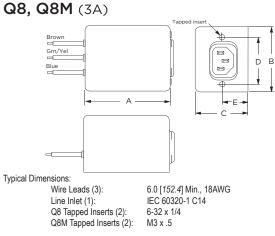
Highest Performance RFI Filters for Switching Power Supplies (continued)


Q Series

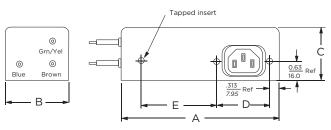
Electrical Schematics


Case Styles

Q1



Typical Dimensions:


Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

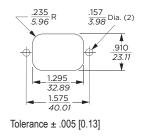
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Typical Dimensions:

Wire Leads (3): Line Inlet (1): Q8 Tapped Inserts (3): Q8M Tapped Inserts (3):

6.0 [152.4] Min., 18AWG IEC 60320-1 C14 6-32 x 1/4 M3 x .5

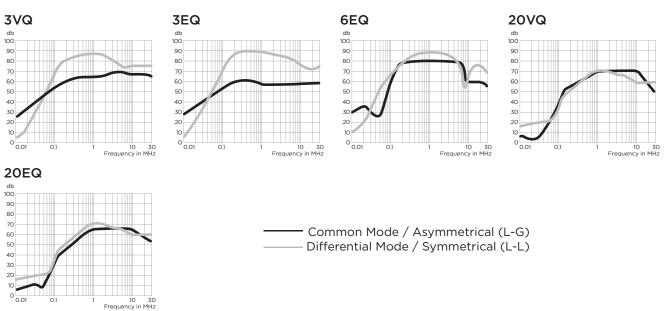
Case Dimensions


Part No.	A (max)	B (max)	C (max)	D <u>±.015</u> ±.38	E (max)
71/01 7501	3.85	2.07	1.78	2.938	3.34
3VQ1, 3EQ1	97.8	52.6	45.2	74.63	84.8
	2.56	2.07	1.78	2.938	3.34
3VQ3, 3EQ3	65.0	52.6	45.2	74.63	84.8
3VQ8/8M,	3.07	2.25	1.78	1.575	0.63 [*]
3EQ8/8M	78.0	57.2	45.2	40.01	16.0*
6501	4.98	2.27	1.80	4.063	4.47
6EQ1	126.5	57.7	45.7	103.2	113.5
6EQ3	3.69	2.27	1.80	4.063	4.47
DEQS	93.7	57.7	45.7	103.2	113.5
	5.47	2.07	1.78	1.575	2.70
6EQ8/8M	138.9	52.6	45.2	40.01	68.0
20EQ1,	6.66	2.07	2.28	5.625	6.03 [*]
20VQ1	168.1	52.6	57.9	142.9	153.2*
					*±0.02 [0.5

*±0.02 [*0.5*]

Highest Performance RFI Filters for Switching Power Supplies (continued)

Q Series


Recommended Panel Cutout

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Minimum Insertion Loss

Common Mode / Asymmetrical (Line to Ground)

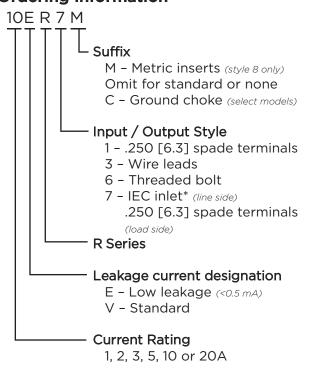
Current			F	reque	ency	– MH	z		
Rating	.01	.02	.05	.15	.5	1	5	10	30
3VQ	22	27	37	50	55	55	55	50	55
3EQ	22	27	36	47	47	43	45	45	45
6EQ	26	31	20	68	72	72	65	65	65
20EQ	6	10	8	39	60	65	65	65	55
20VQ	6	3	17	52	65	70	70	70	70

Differential Mode / Symmetrical (Line to Line)

Current	Frequency – MHz								
Rating	.01	.02	.05	.15	.5	1	5	10	30
3VQ	1	17	42	65	75	75	60	65	65
3EQ	1	17	42	65	75	75	65	65	60
6EQ	6	10	43	70	75	75	65	55	55
20EQ	15	20	20	46	65	70	65	60	60
20VQ	15	20	20	46	65	70	65	60	60

Two-stage General Purpose RFI Power Line Filter

R Series


UL Recognized CSA Certified VDE Approved

R Series

- Dual T section RFI filter provides premium performance
- Well suited for low impedance loads where noisy RFI environments are present
- Controls pulsed, continuous and/or intermittent interference
- ER models offer low leakage current without deterioration of insertion loss

Ordering Information

*IEC 60320-1 C14 inlet mates with C13 connector

Dimensions are in inches and millimeters unless otherwise specified. Values in italics

IDVR6

Maximum leakage current ed		ound.
	VR Models	ER Models
@120 VAC 60 Hz:	.4 mA	.21 mA
@250 VAC 50 Hz:	.7 mA	.36 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 20A
Operating Ambient Tempera	ture Range	
(at rated current I _r):	-10	°C to +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_0) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Available Part Numbers

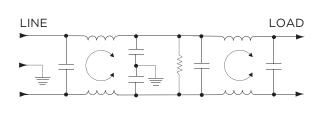
1VR1	1ER1
1VR3	1ER3
2VR1	2ER1
2VR3	2ER3
3VR1	3ER1
3VR3	3ER3
3VR7	3ER7
3VR7M	3ER7M
5VR1	5ER1
5VR3	5ER3
5VR7	5ER7
5VR7M	5ER7M
10VR1	10ER1
10VR3	10ER3
10VR6	10ER7
10VR7	10ER7M
10VR7M	20ER1
20VR1	
20VR6	

he Filters

are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

В

В

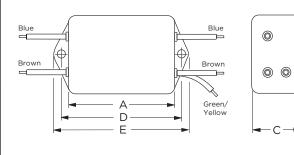

Two-stage General Purpose RFI Power Line Filter (continued)

R Series

Case Styles

R1 (1, 2, 3, 5, 10A)

Electrical Schematic


Case Styles (continued) R3

Mounting Holes (2):

D

Е

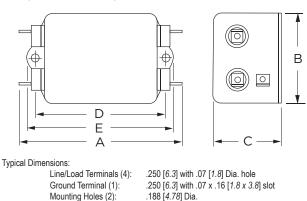
А

Typical Dimensions: Wire Leads (5):

4.0 [*101.6*] Min., AWG18 .188 [4.78] Dia.

)in Boo

Ìйнани


 \oplus

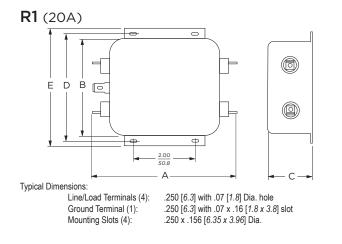
10VR6

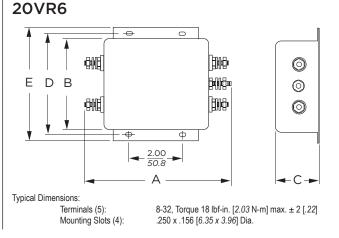
αÐ

咽

Œ

Typical Dimensions: Terminals (5): Mounting Holes (2):


8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .188 [4.78] Dia.


 \bigcirc

 \bigcirc

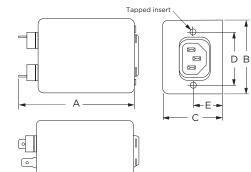
С

 \bigcirc

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

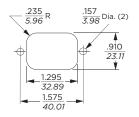
Downloaded From Oneyac.com


Two-stage General Purpose RFI Power Line Filter (continued)

Case Dimensions

R Series

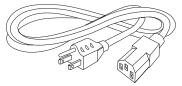
Case Styles (continued)


R7 & R7M

Typical Dimensions:

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot IEC 60320-1 C14 6-32 x 1/4 M3 x .5

Recommended Panel Cutout



Tolerance ± .005 [0.13]

Part No.	Α	В	С	D	Е
	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
1VR1, 1ER1,	3.35	1.81	1.16	2.375	2.78
2VR1, 2ER1	85.1	46.0	29.5	60.33	70.6
1VR3, 1ER1,	2.07	1.81	1.16	2.375	2.78
2VR3, 2ER3	52.6	46.0	29.5	60.33	70.6
3VR1, 3ER1,	3.85	2.07	1.16	2.938	3.35
5VR1, 5ER1	97.8	52.6	29.5	74.63	85.1
3VR3, 3ER3,	2.56	2.07	1.16	2.938	3.35
5VR3, 5ER3	65.0	52.6	29.5	74.63	85.1
3VR7/7M,	4.33	2.25	1.28	1.575	0.64*
3ER7/7M	110.0	57.2	32.5	40.01	16.3 [*]
5VR7/7M,	4.33	2.25	1.28	1.575	0.64*
5ER7/7M	110.0	57.2	32.5	40.01	16.3 [*]
10VR1,	3.85	2.07	1.53	2.938	3.35
10ER1	97.8	52.6	38.9	74.63	85.1
10VR3,	2.56	2.07	1.53	2.938	3.35
10ER3	65.0	52.6	38.9	74.63	85.1
10VR6	3.96	2.07	1.53	2.938	3.35
	100.6	52.6	38.9	74.63	85.1
10VR7/7M,	4.33	2.25	1.53	1.575	0.88*
10ER7/7M	110.0	57.2	38.9	40.01	22.4*
20VR1,	5.23	3.37	1.53	3.75	4.20
20ER1	132.8	85.6	38.9	95.25	106.7
20VR6	5.34	3.37	1.53	3.75	4.20
	135.6	85.6	38.9	95.25	406.7
					*±0.02 [0.5]

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

Downloaded From Oneyac.com

Load Terminals (2): Ground Terminal (1): Line Inlet (1): K7 Tapped Inserts (2): K7M Tapped Inserts (2):

Two-stage General Purpose RFI Power Line Filter (continued)

3VR

db 100

90

80

70

60

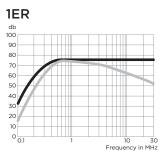
50

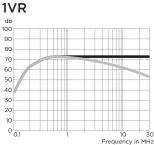
40

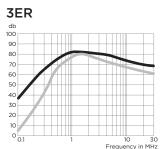
30

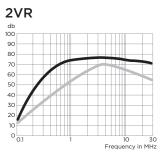
20

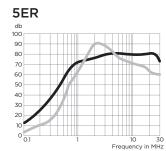
10

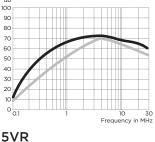

0 0.1

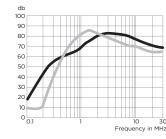

R Series


Performance Data

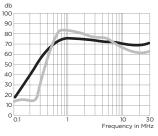

Typical Insertion Loss


Measured in closed 50 Ohm system





2ER, 10ER & 20ER



30

db 100 90 80 70 60 50 40 30 20 10 30 v in MHz Frea

10VR

20VR

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

10 30

Frequency in MHz

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode /	Asymmetrical	(Line to	Ground)
		(=	0.000.000

Current		Fr	equen	су – М	Hz	
Rating	.15	.5	1	5	10	30
VR Models						
1A, 3A	30	65	65	65	65	65
2A, 5A, 10A, 20A	5	44	60	65	65	60
ER Models						
1A, 3A	25	60	65	65	65	65
2A, 5A, 10A, 20A	2	35	51	63	60	50

Differential Mode / Symmetrical (Line to Line)

Current		Fr	equen	су – М	Hz	
Rating	.15	.5	1	5	10	30
VR Models						
1A, 3A	-	-	65	60	54	46
2A, 5A, 10A, 20A	-	-	35	60	57	45
ER Models						
1A, 3A	-	-	65	60	54	46
2A, 5A, 10A, 20A	-	-	35	60	57	45

64

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

High Performance Compact Power Line Filter

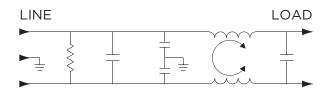
RK Series

UL Recognized CSA Certified VDE Approved

RK Series

- Compact
- Single stage
- Chassis mount
- Significant differential mode performance
- Suitable for industrial machinery

Ordering Information


• Low input leakage current makes it suitable for portable equipment

Specifications

Maximum leakage current each Line to Ground:					
@ 120 VAC 60 Hz:	0.16 mA				
@250 VAC 50 Hz:	0.26 mA				
Hipot rating (one minute):					
Line to Ground:	2250 VDC				
Line to Line:	1450 VDC				
Rated Voltage (max):	250 VAC				
Operating Frequency:	50/60 Hz				
Rated Current:	3 to 20A				
Operating Ambient Temperature Ra	ange				
(at rated current I _r):	-10°C to +40°C				
In an ambient temperature (T_{i})	higher than + 10°C				

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

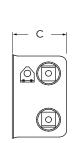
Electrical Schematic

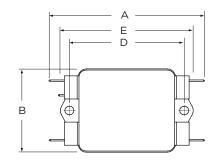
10 E RK 1 Input / Output Style 1 - .250 [6.3] spade terminals RK Series Leakage current designation E - Low leakage (<0.5 mA)

Current Rating 3, 6, 10, 15 or 20A

Available Part Numbers

3ERK1	6ERK1
10ERK1	15ERK1
20ERK1	

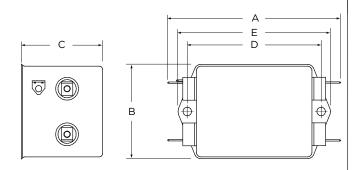



High Performance Compact Power Line Filter (continued)

RK Series

Case Styles

RK1 (3 & 6A)



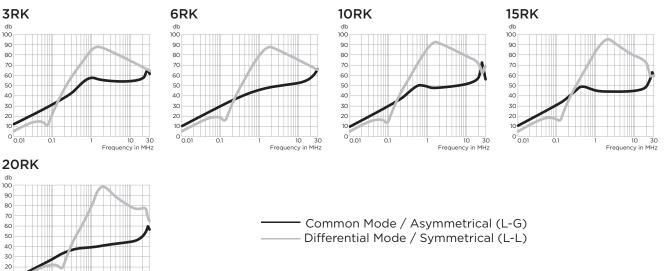
Case Dimensions

Part No.	Α	В	С	D	Е
i di citto.	(max)	(max)	(max)	<u>±.015</u> ±.38	(max)
	3.35	1.82	1.16	2.38	2.78
3ERK1	85.09	46.23	29.46	74.68	70.61
6ERK1	3.35	1.82	1.28	2.38	2.78
OERIKI	85.09	46.23	32.51	74.68	70.61
10ERK1, 15ERK1,	3.85	2.07	1.78	2.94	3.35
20ERK1	97.79	52.58	45.21	74.67	85.09

RK1 (10, 15 & 20A)

Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.


High Performance Compact Power Line Filter (continued)

RK Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Minimum Insertion Loss

Erea

0_____

Common Mode / Asymmetrical (Line to Ground)

Current	Frequencies/International International Internatione International International International Internationa									
Rating	.05	.10	.15	.5	1	2	5	10	20	30
3A	21	27	30	43	49	50	50	48	50	49
6A	19	29	29	37	43	44	48	46	50	48
10A	20	27	31	45	45	44	46	47	53	44
15A	21	28	31	45	43	41	42	42	47	57
20A	19	25	29	34	36	38	40	41	43	52

Differential Mode / Symmetrical (Line to Line)

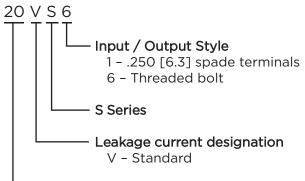
Current		Frequency – MHz										
Rating	.05	.10	.15	.5	1	2	5	10	20	30		
3A	9	20	35	67	78	78	72	66	61	60		
6A	14	14	13	59	74	80	72	68	61	60		
10A	14	12	30	65	80	84	78	70	60	50		
15A	15	13	20	61	76	88	70	72	64	50		
20A	16	19	16	54	74	90	74	67	61	54		

67

RFI Power Line Filters

Multipurpose Power Line RFI Filter for Emission Control

S Series


UL Recognized CSA Certified VDE Approved

S Series

- Combines Line to Ground interference rejection filters with additional circuitry to reduce Line to Line noise and transients
- Designed for use when equipment impedance at RF frequencies is high
- Effective for use with switch-mode power supplies
- Effective when used to control emissions in equipment using SCR and T2L circuits for compliance with FCC Part 15, Subpart J and EN55022, Level A, down to 150kHz

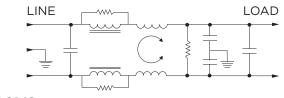
Ordering Information

Current Rating 3, 6, 10, 20 or 60A

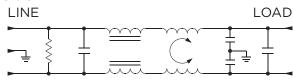
Available Part Numbers

3VS1	20VS1
6VS1	20VS6
10VS1	60VS6

Specifications


Maximum leakage current each	n Line to Gr	ound:
	<u>3 & 20A</u>	<u>60A</u>
@120 VAC 60 Hz:	.4 mA	.75 mA
@250 VAC 50 Hz:	.7 mA	1.25 mA
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		3 to 60A
Operating Ambient Temperatu	re Range	
(at rated current I _r):	-10°	°C to +40°C
In an ambient temperature	(T) higher	than +10°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

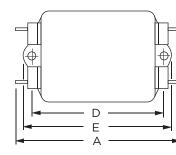

Electrical Schematics

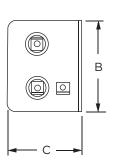
3, 6, 10VS

20VS

60VS

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

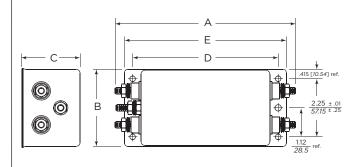



Multipurpose Power Line RFI Filter for Emission Control (continued)

S Series

Case Styles

S1 (3, 6, 10A)



Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

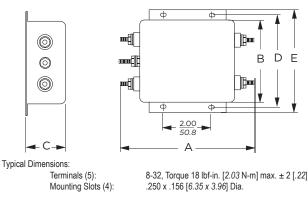
60VS6

Typical Dimensions: Terminals (5): Mounting Holes (5):

1/4-20, Torque 56 lbf-in. [6.32 N-m] max. ± 2 [.22] .218 [5.53] Dia. ± .006 [.152]

Case Dimensions

20VS1	
A	


Typical Dimensions:

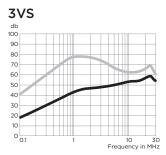
Line/Load Terminals (4): Ground Terminal (1): Mounting Slots (4):

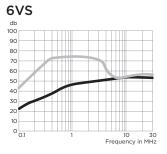
.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .250 x .156 [6.35 x 3.96] Dia.

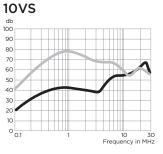
С Ε Α В D Part No. ±.015 +.38 (max) (max) (max) (max) 3.36 1.82 1.16 2.375 2.78 3VS1 60.33 85.3 46.2 29.5 70.6 3.86 2.08 1.53 2.938 3.34 6VS1 98.0 52.8 38.9 74.63 84.8 3.86 2.08 1.53 2.938 3.34 10VS1 98.0 52.8 38.9 74.63 84.8 5.23 3.38 1.53 3.75 4.20 20VS1 132.8 85.9 38.9 95.25 106.7 5.34 3.38 1.53 3.75 4.20 20VS6 135.6 85.9 38.9 95.25 106.7 7.2 3.08 2.28 5.625 6.25 60VS6 182.88 78.23 57.91 142.87 158.75

20VS6

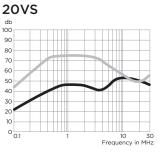
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

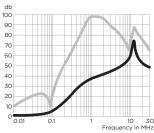

Multipurpose Power Line RFI Filter for Emission Control (continued)


S Series


Performance Data

Typical Insertion Loss


Measured in closed 50 Ohm system



Differential Mode / Symmetrical (Line to Line)

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

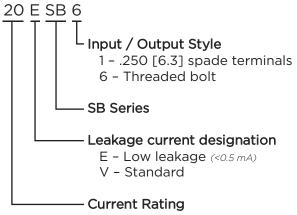
Measured in closed 50 Ohm system

C			Synn	neun			0 010	una)		Differentiari	louc	/ 59						-)	
	Current			Fre	quen	cy – I	MHz			Current			F	requ	ency	/ — M I	Hz		
	Rating	.15	.5	1	2	5	10	20	30	Rating	.15	.3	.5	1	2	5	10	20	30
	3A	15	27	35	40	32	44	47	47	3A	35	50	65	65	65	60	50	40	45
	6A	15	27	35	40	32	44	47	47	6A	35	50	65	65	65	60	45	48	48
	10A	15	27	35	40	32	44	47	47	10A	35	50	65	65	65	60	50	40	45
	20A	15	30	38	38	32	43	42	40	20A	35	50	65	65	65	60	45	48	48
	60A	7	27	34	38	45	54	44	40	60A	37	-	77	93	86	70	54	64	54

Common Mode / Asymmetrical (Line to Ground)

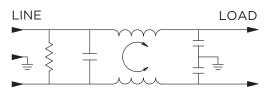
High Performance B Series RFI Line Filters

SB Series



UL Recognized CSA Certified VDE Approved

SB Series


- Enhanced performance version of our popular B Series of RFI line filters
- Small size with enhanced performance
- 30A version half the size of other 30A filters
- Low leakage version available that meets current requirements of VDE portable equipment and non-patient care medical equipment

Ordering Information

6, 10, 20 or 30A

Electrical Schematic

Specifications

Maximum leakage current each Line to Ground:

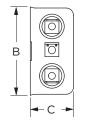
@ 120 VAC 60 Hz:	<u>VSB Models</u> .75 mA	ESB Models .22 mA
@250 VAC 50 Hz:	1.25 mA	.36 mA
Hipot rating (one minute)	:	
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
		250 VDC
Operating Frequency:		50/60 Hz
Rated Current:		6 to 30A
Operating Ambient Temp	erature Range	9
(at rated current I _r):	-	10°C to +40°C

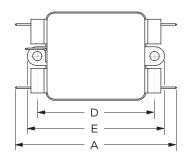
In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Available Part Numbers

6ESB1	6VSB1
10ESB1	10VSB1
10ESB6	10VSB6
20ESB1	20VSB1
20ESB6	20VSB6
30ESB6	30VSB6

71

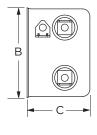


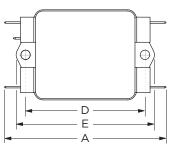

High Performance B Series RFI Line Filters (continued)

SB Series

Case Styles

6ESB1 & 6VSB1

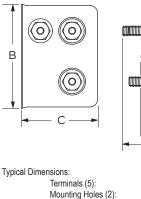


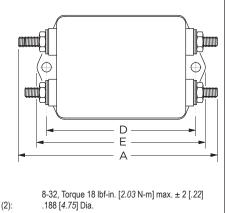


Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.75] Dia.

10ESB1, 10VSB1, 20ESB1 & 20VSB1





Typical Dimensions:

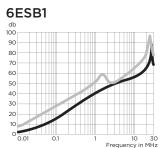
Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.75] Dia.

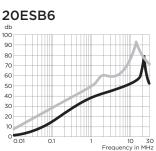
ESB6 & VSB6

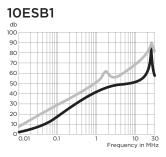
Case Dimensions

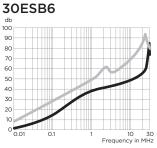
Part No.	А	В	С	D	Е
- are not	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
6ESB1,	3.36	1.82	0.91	2.375	2.78
6VSB1	85.34	46.23	23.11	60.325	70.61
10ESB1,	3.36	1.82	1.28	2.375	2.78
10VSB1	85.34	46.23	32.51	60.325	70.61
10ESB6,	3.47	1.82	1.53	2.375	2.78
10VSB6	88.14	46.23	38.86	60.325	70.61
20ESB1,	3.85	2.07	1.31	2.938	3.35
20VSB1	97.79	52.58	33.27	74.625	85.09
20ESB6,	4.00	2.07	1.53	2.938	3.35
20VSB6	101.60	52.58	38.86	74.625	85.09
30ESB6,	4.92	2.07	1.53	3.947	4.33
30VSB6	124.97	52.58	38.86	100.254	109.98

High Performance B Series RFI Line Filters (continued)

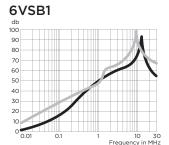

SB Series

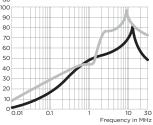

Performance Data

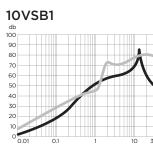

Typical Insertion Loss


Measured in closed 50 Ohm system

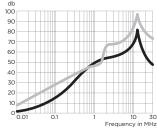
ESB Models

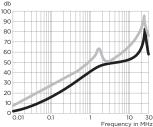


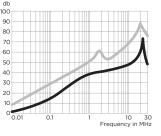


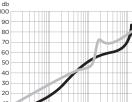


VSB Models






30VSB6



10ESB6

20ESB1

10

10 30 Frequency in MHz

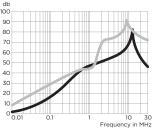
10VSB6

db 100

90

60

50


40

20

30

Frequency in MHz

20VSB1

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

RFI Power Line Filters

Downloaded From Oneyac.com

High Performance B Series RFI Line Filters (continued)

SB Series

Performance Data (continued)

Minimum Insertion Loss

Measured in closed 50 Ohm system

	Frequency – MHz										
Part No.	.03	.05	.1	.15	.5	1	2	5	10	20	30
ESB Models	s										
6ESB1	3	8	13	17	31	37	40	47	50	58	62
10ESB1	3	9	15	19	31	39	41	44	47	54	51
10ESB6	3	9	14	18	31	39	41	44	47	54	54
20ESB1	3	7	13	15	30	35	37	39	40	46	40
20ESB6	3	7	13	16	30	35	39	40	44	58	46
30ESB6	3	7	13	17	30	34	37	40	42	49	58
VSB Models	S										
6VSB1	3	8	14	19	37	47	51	58	66	59	49
10VSB1	3	9	15	21	41	49	50	56	64	54	46
10VSB6	4	9	15	21	39	49	50	56	64	54	44
20VSB1	3	7	14	19	37	45	47	50	60	48	40
20VSB6	3	7	14	19	37	44	49	52	62	48	41
30VSB6	3	6	13	18	37	45	49	51	60	50	42

Common Mode / Asymmetrical (Line to Ground)

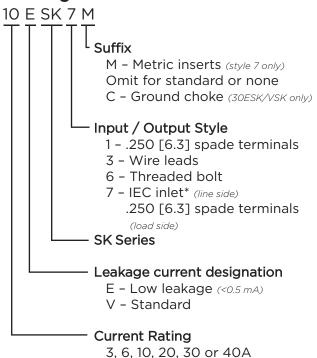
Differential Mode / Symmetrical (Line to Line)

	Frequency – MHz											
Part No.	.01	.03	.05	.1	.15	.5	1	2	5	10	20	30
ESB Mode	s											
6ESB1	5	14	20	25	29	41	49	47	50	60	74	72
10ESB1	5	15	20	26	29	41	47	50	54	64	74	74
10ESB6	5	14	20	25	29	41	47	48	50	60	62	64
20ESB1	5	15	21	26	29	41	45	48	54	63	70	66
20ESB6	5	15	21	26	29	41	44	48	54	63	70	66
30ESB6	5	14	20	25	29	40	46	50	50	58	70	70
VSB Mode	s											
6VSB1	5	14	20	25	29	40	41	57	66	78	56	62
10VSB1	5	15	21	26	29	39	40	60	64	67	67	64
10VSB6	5	14	20	25	29	39	40	60	64	68	70	64
20VSB1	5	15	20	26	29	40	42	60	68	70	70	67
20VSB6	5	15	21	26	29	39	38	58	68	70	70	66
30VSB6	5	15	20	25	29	39	39	56	62	70	70	66

Downloaded From Oneyac.com

High Performance K Series RFI Line Filters for SMPS Emission Control

SK Series



UL Recognized CSA Certified VDE Approved

SK Series

- Designed to reduce conducted noise to acceptable limits for equipment that must comply with FCC / EN specifications
- Utilizes significantly higher element values than the general purpose K Series which makes them better suited for equipment with Line to Ground and Line to Line conducted emissions including those with switching power supplies
- ESK6C and VSK6C incorporate separate ground circuit inductor to isolate the equipment chassis from power line ground at RF frequencies

Ordering Information

Specifications

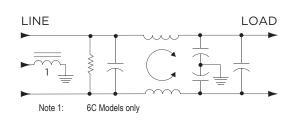
Maximum leakage current each Line to Ground:

5		
<u>3, 6 & 10A</u>	VSK Models	<u>ESK Models</u>
@120 VAC 60 Hz:	.4 mA	.21 mA
@250 VAC 50 Hz:	.7 mA	.36 mA
<u>20, 30 & 40A</u>		
@120 VAC 60 Hz:	.75 mA	.3 mA
@250 VAC 50 Hz:	1.25 mA	.5 mA
Hipot rating (one minute	e):	
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Ratea Venage (max)		200 1/10
Operating Frequency:		50/60 Hz
Rated Current:		3 to 40A
Operating Ambient Tem	perature Range	
(at rated current Ir):	-1	0°C to +40°C
In an ambient temper	atura (T.) high	r + han + 40%

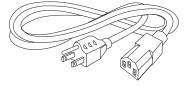
In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Available Part Numbers

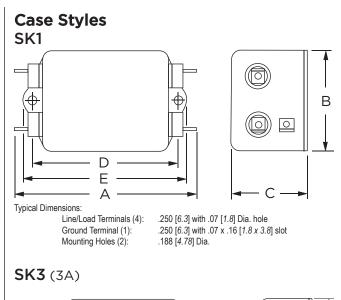
3VSK1	3ESK1	20ESK6
3VSK3	3ESK3	20VSK6
3VSK7	3ESK7	30ESK6
3VSK7M	3ESK7M	30ESK6C
6VSK1	6ESK1	30VSK6
6VSK3	6ESK3	30VSK6C
6VSK7	6ESK7	40VSK6
6VSK7M	6ESK7M	
10VSK1	10ESK1	
10VSK3	10ESK3	
10VSK7	10ESK7	
10VSK7M	10ESK7M	

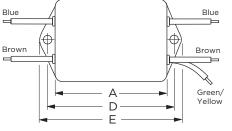

*IEC 60320-1 C14 inlet mates with C13 connector

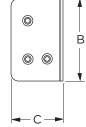
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


SK Series

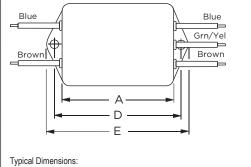
Electrical Schematic

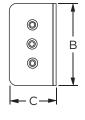



Accessories

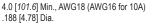

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

ESK6 / VSK6


Typical Dimensions:

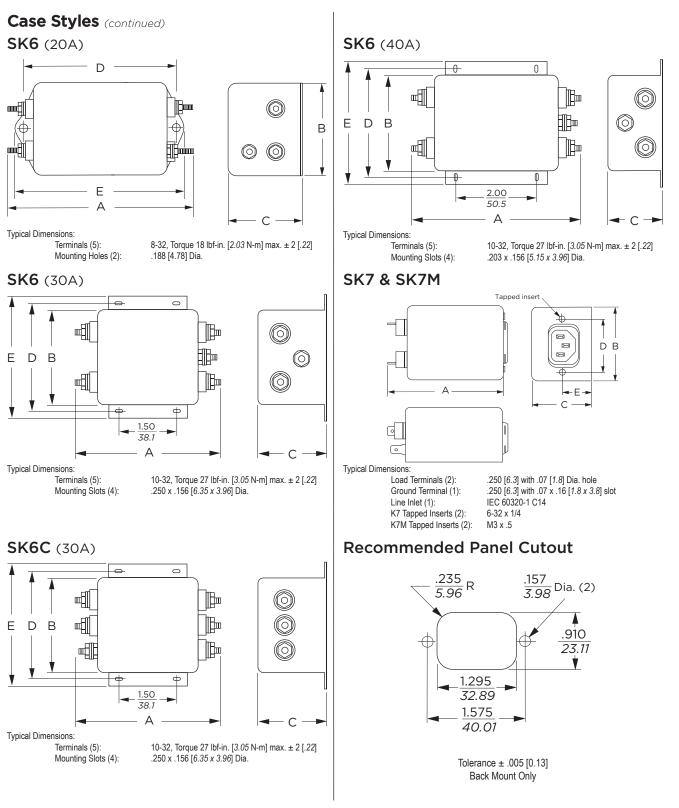

 Wire Leads (5):
 4.0 [

 Mounting Holes (2):
 .188


4.0 [*101.6*] Min., AWG18 .188 [4.78] Dia.

Wire Leads (5): Mounting Holes (2):

76


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

SK Series

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

SK Series

Case Dimensions

Part No.	Α	В	С	D	Е
Part NO.	(max)	(max)	(max)	<u>± .015</u> ± .38	(max)
3VSK1,	3.85	2.07	1.16	2.938	3.35
3ESK1	97.8	52.6	29.5	74.63	85.1
3VSK3,	2.56	2.07	1.16	2.938	3.35
3ESK3	65.0	52.6	29.5	74.63	85.1
3VSK7/7M,	3.21	2.25	1.53	1.575	0.63*
3ESK7/7M	81.5	57.2	38.9	40.01	16.0 [*]
6VSK1,	4.34	2.25	1.28	3.427	3.83
6ESK1	110.2	57.2	32.5	87.05	97.3
6VSK3,	3.05	2.25	1.28	3.427	3.83
6ESK3	77.5	57.2	32.5	87.05	97.3
6VSK7/7M,	3.21	2.25	1.78	1.575	0.63 *
6ESK7/7M	81.5	57.2	45.2	40.01	16.0 [*]
10VSK1,	4.97	2.25	1.78	4.063	4.46
10ESK1	126.2	57.2	45.2	103.2	113.3
10VSK3,	3.69	2.25	1.78	4.063	4.46
10ESK3	93.7	57.2	45.2	103.2	113.3
10VSK7/7M,	4.34	2.25	1.78	1.575	0.63*
10ESK7/7M	110.0	57.2	45.2	40.01	16.0 [*]
20VSK6,	5.09	2.25	1.78	4.063	4.46
20ESK6	127.3	57.2	45.2	103.2	129.3
Part No.	Α	В	С	D	Е
	(max)	(max)	(max)	<u>± .020</u> ± .51	(max)
30VSK6,	4.92	3.12	2.75	3.437	4.00
30ESK6	125.0	79.25	69.85	87.3	101.6
30VSK6C,	4.92	3.12	2.75	3.437	4.00
30ESK6C	125.0	79.25	69.85	87.3	101.6
40VSK6	6.45	3.12	2.18	3.50	3.96
	163.83	79.25	55.4	88.9	100.6

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

3 & 6VSK

10 & 20VSK

db 100

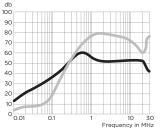
90

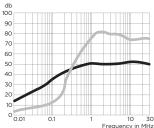
80

70

60

50

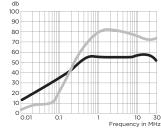

40

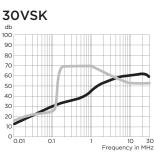

30

20

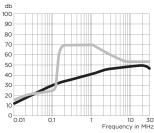
0_0.01

40VSK





10 & 20ESK


3 & 6ESK

10 30 Frequency in MHz

30ESK

*±0.02 [0.5]

- Differential Mode / Symmetrical (L-L)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

Downloaded From Oneyac.com

SK Series

Performance Data (continued)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Current		Frequency – MHz									
Rating	.01	.08	.1	.15	.5	1	5	10	30		
VSK Models											
3A, 6A	4	23	25	29	43	44	42	42	30		
10A	4	23	25	29	43	44	42	42	30		
20A	7	23	25	29	43	44	48	48	48		
30A	2	13	14	15	27	31	46	51	39		
40A	2	15	18	22	40	43	45	50	30		
ESK Models											
3A, 6A	4	22	24	28	42	40	36	36	27		
10A	4	22	24	28	42	40	36	36	27		
20A	7	22	24	28	35	38	45	45	45		
30A	2	13	15	15	27	31	40	41	36		

Differential Mode / Symmetrical (Line to Line)											
Current		Frequency – MHz									
Rating	.01	.08	.1	.15	.5	1	5	10	30		
VSK Models											
3A, 6A	1	3	10	25	59	65	62	40	40		
10A	1	3	3	10	55	65	65	50	50		
20A	1	10	8	8	45	60	65	60	60		
30A	5	13	13	13	60	60	51	43	43		
40A	7	14	16	30	65	65	65	57	50		
ESK Models											
3A, 6A	1	3	10	25	59	65	62	40	40		
10A	1	3	3	10	55	65	65	65	45		
20A	1	10	8	8	45	60	65	60	60		
30A	5	12	12	13	60	60	51	43	43		

High Performance RFI Power Line Filters for Switching Power Supplies

T Series


UL Recognized CSA Certified VDE Approved

T Series

- Superior common-mode and premium differential-mode attenuation
- Smaller package sizes than the EP Series
- Size and cost-effective
- ET models can help meet very low leakage current requirements

Ordering Information

Specifications

Maximum leakage current each Line to Ground:

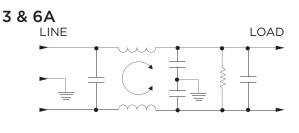
Huximum leukuge current cu		ouna.
<u>3, 6 & 10A</u>	ET Models	<u>VT Models</u>
@120 VAC 60 Hz:	.30 mA	.75 mA
@250 VAC 50 Hz:	.50 mA	1.2 mA
<u>15 & 20A</u>		
@120 VAC 60 Hz:	.30 mA	1.2 mA
@250 VAC 50 Hz:	.50 mA	2.0 mA
Hipot rating (one minute): Line to Ground: Line to Line:		2250 VDC 1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		3 to 20A

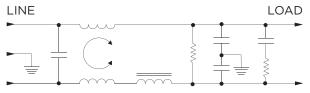
Operating Ambient Temperature Range

(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

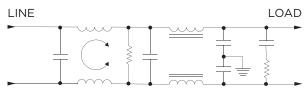
Available Part Numbers

3ET1	10ET1	10VT1
3ET3	10ET3	10VT3
3ET7	15ET1	15VT1
6ET1	15ET6	15VT6
6ET3	20ET1	20VT1
6ET7	20ET6	20VT6
6ET7	20ET6	20VT6

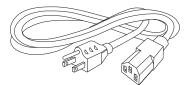

*IEC 60320-1 C14 inlet mates with C13 connector


High Performance RFI Filters for Switching Power Supplies (continued)

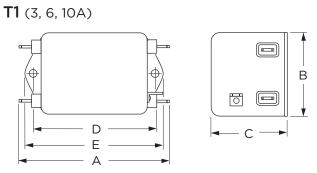
T Series


Electrical Schematics

10A



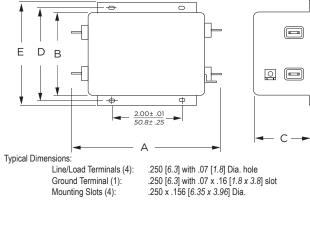
15 & 20A



Accessories

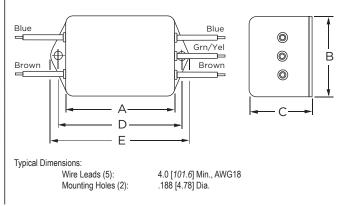
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

Case Styles



Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

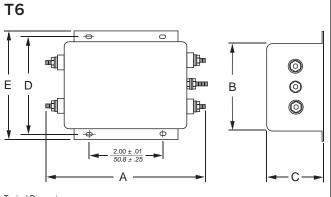

4): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

T1 (15 & 20A)

Т3

Downloaded From Oneyac.com

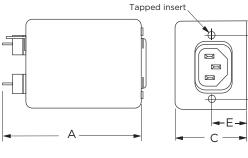
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.



High Performance RFI Filters for Switching Power Supplies (continued)

Case Dimensions

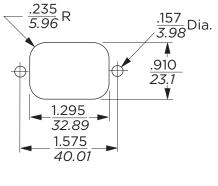
T Series



Typical Dimensions: Terminals (5): Mounting Slots (4):

8-32, Torque 18 lbf-in. [2.03 N-m] max. ± 2 [.22] .250 x .156 [6.35 x 3.96] Dia.

DΒ


T7

Typical Dimensions:

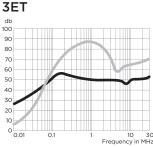
Load Terminals (2): Ground Terminal (1): Line Inlet (1): Tapped Inserts (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot IEC 60320-1 C14 6-32 x 1/4

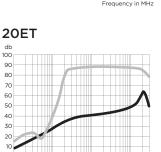
Recommended Panel Cutout

Tolerance ± .005 [0.13]

Case Dimens					
Part No.	Α	В	С	D	Е
Fart NO.	(max)	(max)	(max)	<u>±.015</u> ±.38	(max)
3ET1, 6ET1	3.56	2.15	1.81	2.938	3.38
SETI, OETI	90.4	54.6	46.0	74.63	85.9
3ET3, 6ET3	2.55	2.15	1.81	2.938	3.38
SEIS, 0EIS	64.8	54.6	46.0	74.63	85.9
3ET7, 6ET7	3.52	2.25	1.78	1.575	0.63*
SET7, 0ET7	89.4	57.2	45.2	40.01	16.0*
10ET1, 10VT1	4.69	2.27	1.80	4.063	4.47
10E11, 10V11	119.1	57.7	45.7	103.2	113.5
10ET3, 10VT3	3.69	2.27	1.80	40.63	4.47
IUE13, IUV13	93.7	57.7	45.7	103.2	113.5
15ET1, 15VT1,	5.45	3.12	2.18	3.5	3.96
20ET1, 20VT1	138.4	79.2	55.4	88.9	100.6
15ET6, 15VT6,	5.95	3.12	2.18	3.5	3.96
20ET6, 20VT6	151.1	79.2	55.4	88.9	100.6

*±0.02 [0.5]

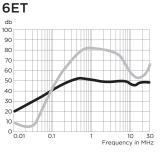

High Performance RFI Filters for Switching Power Supplies (continued)

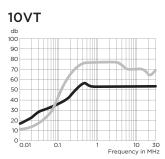

T Series

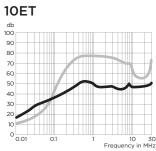
Performance Data

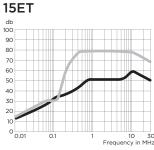
Typical Insertion Loss

Measured in closed 50 Ohm system

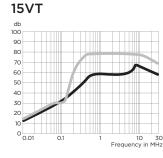


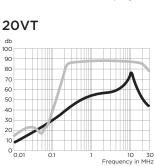

db 100


20


0 0.01

0.1





Common Mode / Asymmetrical (L-G)

Differential Mode / Symmetrical (L-L)

Differential Mode / Symmetrical (Line to Line)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

30

Frequency in MHz

			F	requ	ency	y — N	IHz				Current				Fr	equ	ency	y — N	1Hz			
.01	.03	.05	.15	.5	1	2	5	10	20	30	Rating	.01	.03	.05	.15	.5	1	2	5	10	20	30
											ET Models											
22	32	36	46	47	44	43	40	42	42	42	3A	3	1	30	61	70	70	70	50	50	50	55
16	26	30	41	47	44	43	43	40	42	42	6A	4	2	14	51	70	70	70	65	47	50	55
12	22	26	36	47	42	42	40	42	42	45	10A	7	12	17	52	70	70	70	65	55	50	60
8	17	22	31	43	44	44	42	47	52	43	15A	12	19	15	51	70	70	70	70	70	65	60
3	12	17	26	34	36	37	37	42	47	38	20A	10	17	13	51	70	70	70	70	67	65	60
											VT Models											
12	22	26	38	52	50	50	50	50	50	50	10A	7	12	17	52	70	70	70	65	65	50	65
8	17	22	33	52	52	52	52	57	45	35	15A	12	19	15	51	70	70	70	70	70	65	60
3	12	17	29	42	47	50	51	55	40	30	20A	10	17	13	51	70	70	70	70	67	65	60
	22 16 12 8 3 12 8	22 32 16 26 12 22 8 17 3 12 12 22 8 12 8 17	22 32 36 16 26 30 12 22 26 8 17 22 3 12 17 12 22 26 8 17 22 3 12 17	.01 .03 .05 .15 22 32 36 46 16 26 30 41 12 22 26 36 8 17 22 31 12 22 17 26 14 12 27 31 15 12 17 26 12 22 26 38 12 22 26 38 12 22 26 38 13 12 25 33	.01 .03 .05 .15 .15 22 32 36 46 47 16 26 30 41 47 12 22 26 36 47 32 17 22 31 43 3 12 17 26 34 4 17 26 34 34 12 22 26 38 52 12 22 26 38 52	.01 .03 .05 .15 .5 1 22 32 36 46 47 44 16 26 30 41 47 44 12 22 26 36 47 44 12 22 26 36 47 42 3 17 22 31 43 44 13 12 17 26 34 36 14 12 22 26 38 52 50 14 22 26 38 52 52	.01.03.05.15.5122232364647444316263041474443122226364742428172231434443122231433637122226385250508172233525252	22323646474443401626304147444343122226364742424081722314344423121726343637371222263852505050817223352525252	.01 .03 .05 .15 .1 2 5 10 22 32 36 46 47 44 43 40 42 16 26 30 41 47 44 43 40 42 12 22 30 41 47 44 43 40 42 12 22 26 36 47 42 42 40 42 12 22 26 36 47 43 44 42 42 3 17 22 31 43 44 42 42 41 12 17 26 34 36 37 37 42 12 22 26 38 52 50 50 50 50 14 17 22 33 52 52 52 52 57	.01.03.05.15.5125102022323646474443404242162630414744434340424212222636474242404242817223143444442475212222638525050505050122226335252525745	.01.03.05.15.5125102030223236464744434042424216263041474443434042424212222636474242404242421317223143444442475243141217263436373742473815222638525050505050505014172233525252574555	.01.03.05.15.5125102030Rating22323646474443404242423A16263041474443404242426A12223041474443404242426A122236364742424042424510A81722314344444247524315A131217263436373742473820A142226385250505050505010A1422263852525257453515A	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 22 32 36 46 47 44 43 40 42 42 42 42 42 43 43 40 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42	.01 .03 .05 .15 .1 2 5 10 20 30 Rating .01 .03 22 32 36 46 47 44 43 40 42 42 42 42 $33A$ 3 1 10 26 30 41 47 44 43 40 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 43 43 42 42 43 43 42 42 43 43 43 43 44 42 42 43	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 22 32 36 46 47 44 43 40 42 42 42 3A 33 1 30 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 12 22 30 41 47 44 43 40 42 42 42 6A 4 2 14 12 22 36 36 47 44 42 40 42 45 10A 7 12 14 12 22 31 43 44 42 47 52 43 15A 12 19 15 3 17 22 31 43 44 42 47 48 20A 10A 17 13 14 15 16 50 50 </td <td>.01.03.05.15.125102030Rating.01.03.05.1522323646474443404242423A31306112323041474443404242426A44214511222304147444340424242466A421451122236364742404242455151515131722314344424752435051515131722314353545057535450515113144344424752435151515114525354545454545551515115155454545454545454515115545555575555555555555555551554555555555555555555555555555555555555<</td> <td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 .15 .5 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 16 26 30 41 47 44 43 40 42 42 46 A 4 51 70 16 26 30 41 47 44 43 40 42 42 46 A 4 51 70 17 22 31 47 44 42 47 45 45 46 46 47 12 17 52 70 18 17 22 31 43 44 42 47 38 40A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 16 26 30 41 47 44 43 40 42 42 46A 4 2 14 51 70 70 12 22 26 36 47 44 43 40 42 42 45 10A 7 12 14 51 70 70 12 22 36 36 47 42 40 42 45 45 10A 7 12 14 51 70 70 3 17 22 31 43 44 42 47 38 20A 10 17 13 51 70 70 12 17<td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 2 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 12 22 36 36 47 42 40 42 45 45 16A 12 19 15 51 70 70 70 13 17 22 31 43 44 42 47 38 20A 10 17</td><td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .15 .1 2 5 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50</td><td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .1 2 5 10 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 46 47 44 43 40 42 42 46 4 2 14 51 70 70 70 65 47 47 44 43 40 42 42 6A 4 2 14 51 70 70 70 65 47 12 22 36 36 47 42 40 42 45 45 10A 7 12 17 51 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70</td><td>.01 .03 .05 .15 .5 1 2 5 10 20 8 Rating .01 .03 .05 .15 .1 2 5 10 20 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50</td></td></td>	.01.03.05.15.125102030Rating.01.03.05.1522323646474443404242423A31306112323041474443404242426A44214511222304147444340424242466A421451122236364742404242455151515131722314344424752435051515131722314353545057535450515113144344424752435151515114525354545454545551515115155454545454545454515115545555575555555555555555551554555555555555555555555555555555555555<	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 .15 .5 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 16 26 30 41 47 44 43 40 42 42 46 A 4 51 70 16 26 30 41 47 44 43 40 42 42 46 A 4 51 70 17 22 31 47 44 42 47 45 45 46 46 47 12 17 52 70 18 17 22 31 43 44 42 47 38 40A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 16 26 30 41 47 44 43 40 42 42 46A 4 2 14 51 70 70 12 22 26 36 47 44 43 40 42 42 45 10A 7 12 14 51 70 70 12 22 36 36 47 42 40 42 45 45 10A 7 12 14 51 70 70 3 17 22 31 43 44 42 47 38 20A 10 17 13 51 70 70 12 17<td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 2 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 12 22 36 36 47 42 40 42 45 45 16A 12 19 15 51 70 70 70 13 17 22 31 43 44 42 47 38 20A 10 17</td><td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .15 .1 2 5 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50</td><td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .1 2 5 10 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 46 47 44 43 40 42 42 46 4 2 14 51 70 70 70 65 47 47 44 43 40 42 42 6A 4 2 14 51 70 70 70 65 47 12 22 36 36 47 42 40 42 45 45 10A 7 12 17 51 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70</td><td>.01 .03 .05 .15 .5 1 2 5 10 20 8 Rating .01 .03 .05 .15 .1 2 5 10 20 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50</td></td>	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 16 26 30 41 47 44 43 40 42 42 46A 4 2 14 51 70 70 12 22 26 36 47 44 43 40 42 42 45 10A 7 12 14 51 70 70 12 22 36 36 47 42 40 42 45 45 10A 7 12 14 51 70 70 3 17 22 31 43 44 42 47 38 20A 10 17 13 51 70 70 12 17 <td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 2 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 12 22 36 36 47 42 40 42 45 45 16A 12 19 15 51 70 70 70 13 17 22 31 43 44 42 47 38 20A 10 17</td> <td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .15 .1 2 5 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50</td> <td>.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .1 2 5 10 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 46 47 44 43 40 42 42 46 4 2 14 51 70 70 70 65 47 47 44 43 40 42 42 6A 4 2 14 51 70 70 70 65 47 12 22 36 36 47 42 40 42 45 45 10A 7 12 17 51 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70</td> <td>.01 .03 .05 .15 .5 1 2 5 10 20 8 Rating .01 .03 .05 .15 .1 2 5 10 20 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50</td>	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .5 1 2 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 70 16 26 30 41 47 44 43 40 42 42 42 6A 4 2 14 51 70 70 70 12 22 36 36 47 42 40 42 45 45 16A 12 19 15 51 70 70 70 13 17 22 31 43 44 42 47 38 20A 10 17	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .15 .1 2 5 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	.01 .03 .05 .15 .5 1 2 5 10 20 30 Rating .01 .03 .05 .15 .1 2 5 10 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 46 47 44 43 40 42 42 46 4 2 14 51 70 70 70 65 47 47 44 43 40 42 42 6A 4 2 14 51 70 70 70 65 47 12 22 36 36 47 42 40 42 45 45 10A 7 12 17 51 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70	.01 .03 .05 .15 .5 1 2 5 10 20 8 Rating .01 .03 .05 .15 .1 2 5 10 20 22 32 36 46 47 44 43 40 42 42 42 3A 3 1 30 61 70 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

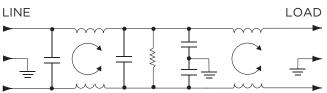
Downloaded From Oneyac.com

RFI Filter for Power Factor Corrected Power Supplies

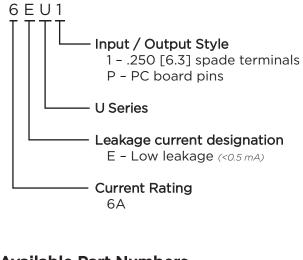
U Series

UL Recognized CSA Certified VDE Approved

U Series


- Designed for equipment using power factor corrected power supplies
- Offers high impedance circuit to mismatch the power supply's impedance characteristics
- Available in PC board mountable version
- All models meet low leakage current requirements

Specifications


Maximum leakage current each Line to	o Ground:
@ 120 VAC 60 Hz:	.30 mA
@250 VAC 50 Hz:	.50 mA
Hipot rating (one minute):	
Line to Ground:	2250 VAC
Line to Line:	1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	6A
Operating Ambient Temperature Rang	ge
(at rated current I _r):	-10°C to +40°C
In an ambient temperature (T_{a}) hig	her than +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

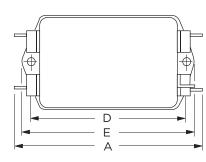
Electrical Schematic

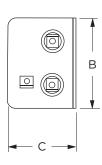
Ordering Information

Available Part Numbers

6EUP

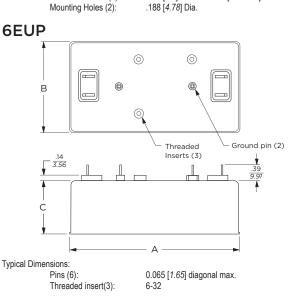
6EU1



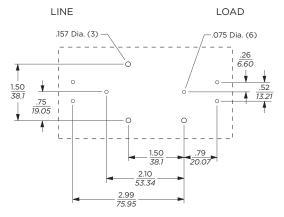

RFI Filter for Power Factor Corrected Power Supplies (continued)

U Series

Case Styles


6EU1

Typical Dimensions:

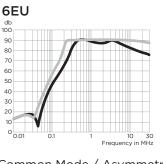

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

.250 [6.3] with .07 [1.8] Dia. hole

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

Recommended PC Board Layout

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
6EU1	4.95 125.73	2.27 57.66	1.80 45.72	4.060 103.12	4.47 113.54
6EUP	4.70 119.4	2.51 66.8	1.22 31.0	-	

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Common Mode / Asymmetrical (Line to Ground)

Current								
Rating	.05	.1	.15	.5	1	5	10	30
6A	4	30	40	70	70	70	65	50

Differential Mode / Symmetrical (Line to Line)

			-							
Cı	urrent	Frequency – MHz								
R	ating	.05	.1	.15	.5	1	5	10	30	
	6A	10	35	45	70	70	70	65	55	

For email, phone or live chat, please go to te.com/help corcom.com

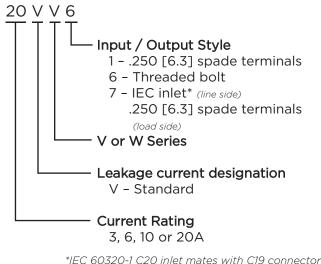
-

Multipurpose Power Line RFI Filter for Emission Control

V and W Series

UL Recognized CSA Certified VDE Approved¹

Both the V and W series are effective to control emissions in equipment using SCR and T²L circuits for compliance with FCC Part 15, Subpart J and EN55022, Level A, down to 150kHz

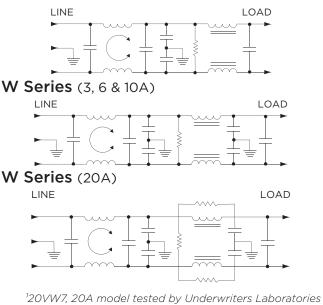

V Series

- Offers an N = 3 ("T") Line to Ground impedance to common mode and an N = 5 "Dbl. Pi") impedance for Line to Line differential mode interference
- Designed for susceptibility use when equipment impedance at RF frequencies is low

W Series

- Offers an N = 4 ("Dbl. L") Line to Ground impedance for common mode and an N=5 ("Dbl. Pi") impedance for Line to Line differential mode interference
- Designed for use when equipment impedance at RF frequencies is high
- Two stage construction provides excellent suppression at high frequencies

Ordering Information


Specifications

Maximum leakage current each Line @ 120 VAC 60 Hz: @250 VAC 50 Hz:	to Ground: .5 mA .82 mA
Hipot rating (one minute): Line to Ground: Line to Line:	2250 VDC 1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	3 to 20A*
Operating Ambient Temperature Rar (at rated current I _r):	ige -10°C to +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: I_o = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematics

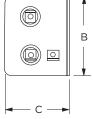
V Series

OVW7, 20A model tested by Underwriters Laboratories? to US and Canadian requirements and is VDE approved at 16A, 250VAC?

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Multipurpose Power Line RFI Filter for Emission Control (continued)

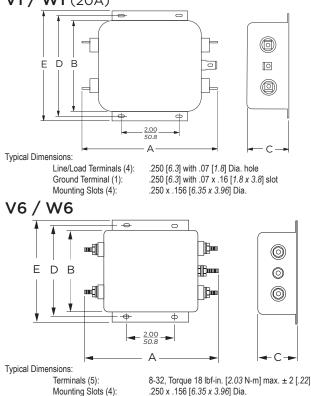
V and W Series


Available Part Numbers

3VV1	3VW1
6VV1	3VW1
10VV1	10VW1
20VV1	20VW1
20VV6	20VW6
	20VW7*

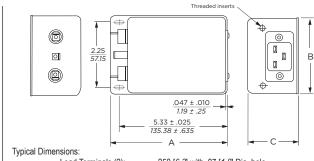
Case Styles

V1 / W1 (3, 6 & 10A)



Typical Dimensions: Line/Load Terminals (4):

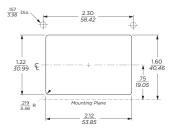
.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.



Ground Terminal (1):

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Case Styles (continued) VW7



Load Terminals (2): Ground Terminal (1): Line Inlet (1):

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot IEC 60320-1 C20 6-32 x 1/4

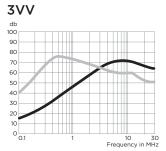
Recommended Panel Cutout

Tapped Inserts (2):

Case Dimensions

Part No.	A (max)	B (max)	C (max)	D <u>± .015</u> ± .38	E (max)
3VV1, 3VW1	3.36	1.82	1.28	2.375	2.78
5 / / 1, 5 / / / 1	85.3	46.2	32.5	60.33	70.6
6VV1. 6VW1	3.86	2.08	1.53	2.938	3.34
0 / / 1, 0 / // 1	98.0	52.8	38.9	74.63	84.8
10VV1, 10VW1	3.86	2.08	1.53	2.938	3.34
	98.0	52.8	38.9	74.63	84.8
20VV1, 20VW1	5.23	3.38	1.53	3.75	4.20
20 v v i, 20 v v i	132.8	85.9	38.9	95.25	106.7
20VV6, 20VW6	5.34	3.38	1.53	3.76	4.20
20000, 200000	135.64	85.9	38.9	95.5	106.7
20VW7	5.65	3.12	2.29	_	_
	143.51	79.25	58.17		

*20VW7, 20A model tested by Underwriters Laboratories to US and Canadian requirements and is VDE approved at 16A, 250VAC


Multipurpose Power Line RFI Filter for Emission Control (continued)

V and W Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

3VW

db 100

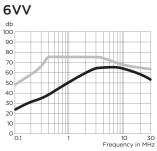
90

80

70

60

50


40

30

20

10

0

6VW

db 100

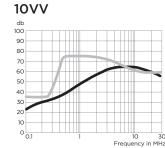
90

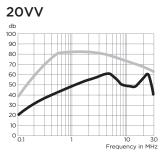
80

70

60

50


40


30

20

10

0

10VW db 100

90

80

70

60

50

40

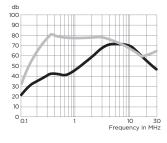
30

20

10

Fre

0


20VW

30

10 30 Frequency in MHz

Differential Mode / Symmetrical (Line to Line)

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Freau

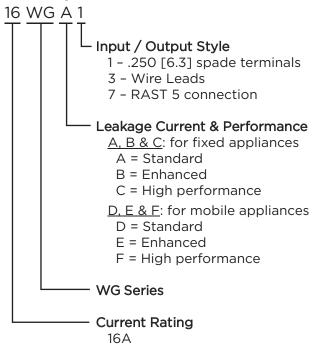
cy in MH;

Current			Fre	quen	cy – I	MHz			Current		Frequency – MHz						
Rating	.15	.5	1	2	5	10	20	30	Rating	.15	.5	1	2	5	10	20	30
V Series									V Series								
3A	15	27	38	47	55	55	50	48	3A	25	25	65	63	60	52	50	50
6A	15	27	28	47	55	55	50	48	6A	40	54	65	65	65	60	57	55
10A	15	27	38	47	55	55	50	48	10A	25	25	65	63	60	52	50	50
20A	15	30	41	49	55	46	36	30	20A	25	25	65	63	60	52	50	50
W Series									W Series								
3A	13	25	20	45	60	65	65	63	3A	25	40	65	65	62	55	35	35
6A	18	30	34	40	65	65	57	47	6A	30	54	65	65	60	55	38	38
10A	18	30	34	40	65	65	57	47	10A	25	25	65	65	65	50	45	45
20A	18	30	34	40	65	65	57	47	20A	25	25	65	65	65	50	45	45

88

High Performance, Low Cost Filter Ideal for Appliance Equipment

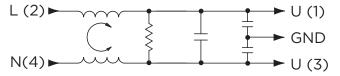
WG Series


UL Recognized CSA Certified VDE Approved

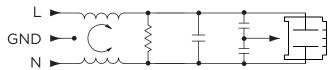
WG Series

- Cost-effective
- Tubular design
- WGA, WGB and WGC versions designed to comply with leakage current for fixed appliances not easily moved from one place to another
- WGD, WGE and WGF versions designed to comply with leakage current requirements for appliances which may be easily moved from one place to another
- Available in a variety of styles

Ordering Information


Specifications

Maximum leakage current each Line to Ground:

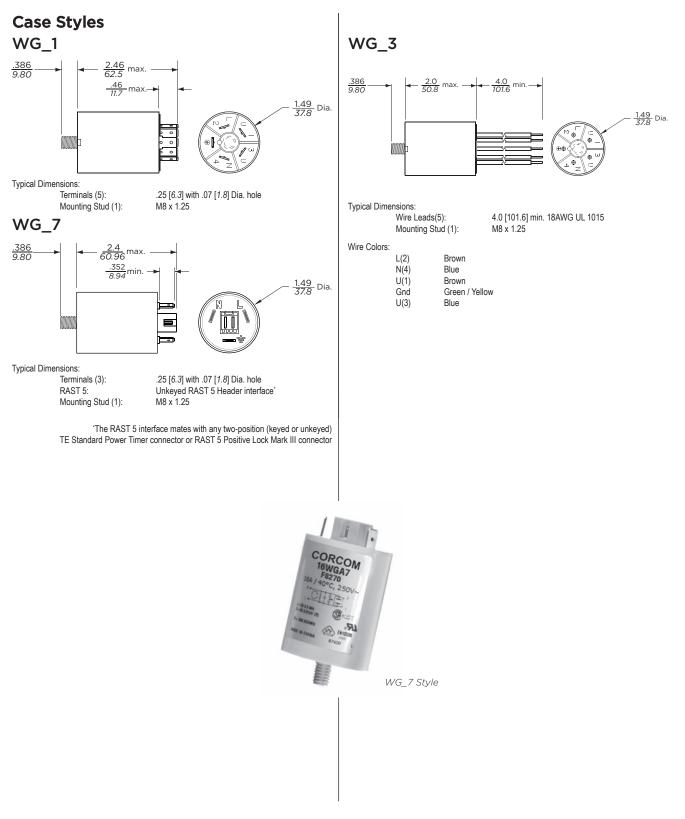

	<u>A, B & C Models</u>	<u>D, E & F Models</u>
@ 120 VAC 60 Hz:	.76 mA	.10 mA
@250 VAC 50 Hz:	1.27 mA	.20 mA
Hipot rating (one min	ute):	
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		16A
Operating Ambient Te	mperature Rang	e

(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematics

With RAST 5 Connector (style 7)

Available Part Numbers

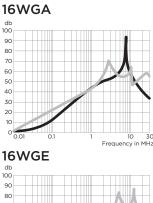

16WGA1	16WGA3	16WGA7
16WGB1	16WGB3	16WGB7
16WGC1	16WGC3	16WGC7
16WGD1	16WGD3	16WGD7
16WGE1	16WGE3	16WGE7
16WGF1	16WGF3	16WGF7

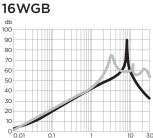
RFI Power Line Filters

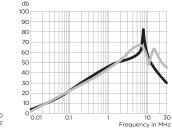
High Performance, Low Cost Filter for Appliance Equipment (continued)

WG Series

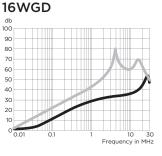
High Performance, Low Cost Filter for Appliance Equipment (continued)

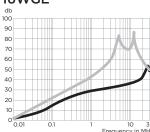

WG Series

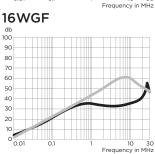

Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system


All Case Styles





16WGC

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)											
Frequency – MHz											
Part No.	.05	.1	.15	.5	1	2	5	10	20	30	
All Styles											
16WGA	3	10	14	33	41	47	54	50	37	30	
16WGB	11	16	21	33	39	44	53	55	37	30	
16WGC	12	18	22	34	41	46	51	52	34	27	
16WGD	3	8	11	22	26	31	31	33	40	44	
16WGE	5	12	15	21	23	25	31	32	37	45	
16WGF	9	14	18	24	26	28	31	32	37	44	

Differential Mode / Symmetrical (Line to Line)

	Frequency – MHz										
Part No.	.05	.1	.15	.5	1	2	5	10	20	30	
All Styles											
16WGA	14	19	22	33	41	51	47	42	48	50	
16WGB	14	19	22	33	41	51	50	45	52	45	
16WGC	13	19	22	33	40	50	58	42	48	42	
16WGD	13	19	22	33	40	48	58	57	54	45	
16WGE	13	19	22	33	40	48	58	57	51	45	
16WGF	13	19	22	33	40	49	58	59	50	44	

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Chassis or PC Board Mountable Power Line Filters for Emission Control

X, Y, Z Series

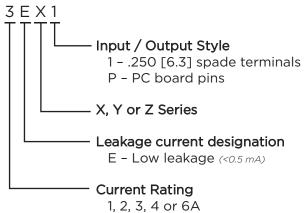
UL Recognized CSA Certified VDE Approved

X, Y, Z Series

- Compact chassis or PC board mountable
- Three levels of performance
- Complete filtering solution in minimal size

X Series

• Designed to bring most digital equipment (including those with switching power supplies) into compliance with FCC Part 15J, Class B conducted emission limits

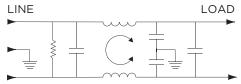

Y Series

• Designed to bring most digital equipment (including those with switching power supplies) into compliance with EN55022, Level A and FCC Part 15J, Class B conducted emission limits

Z Series

• Designed to bring most digital equipment (including those with switching power supplies) into compliance with EN55022, Level B and FCC Part 15J, Class B conducted emission limits

Ordering Information



Specifications

Maximum leakage current each Line to	o Ground:
@ 120 VAC 60 Hz:	.30 mA
@250 VAC 50 Hz:	.50 mA
Hipot rating (one minute):	
Line to Ground:	2250 VDC
Line to Line:	1450 VDC
Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	1 to 6A
Operating Ambient Temperature Rang	ge
(at rated current I _r):	-10°C to +40°C

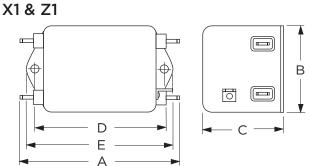
In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Electrical Schematic

Available Part Numbers

3EXP	4EYP
3EX1	1EZP
4EXP	2EZP
6EXP	3EZP
2EYP	3EZ1
3EYP	

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

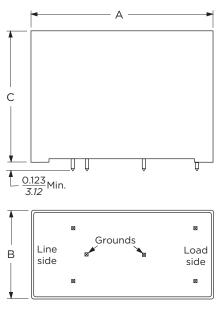


Chassis & PC Board Mountable RFI Filters for Emission Control (continued)

Case Dimensions

X, Y, Z Series

Case Styles

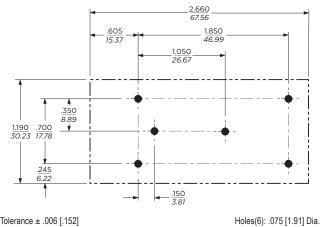


Typical Dimensions:

Line/Load Terminals (4): Ground Terminal (1): Mounting Holes (2):

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .188 [4.78] Dia.

XP, YP & ZP



Typical Dimensions: Pins (5):

0.065 [1.65] max. diagonal

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Part No.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fart NO.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3EXT 76.7 46.8 29.46 60.33 70.8 4EXP 2.61 1.13 1.62	
76.7 46.8 29.46 60.33 70.8 4EXP 2.61 1.13 1.62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
66.6 28.7 41.1 6EXP 2.61 1.13 1.75 - - - 2EYP 2.61 1.13 1.62 -	
6EXP 66.3 28.7 44.5 — _ <	FEXP
66.3 28.7 44.5 2EYP 2.61 1.13 1.62 66.3 28.7 41.1	
<u>66.3 28.7 41.1</u>	
66.3 28.7 41.1	
0.64 4.40 4.75	
3EYP, 4EYP 2.61 1.13 1.75	
66.3 28.7 44.5	CTP, 4CTP
1EZP 2.61 1.13 1.62	
66.3 28.7 41.1	
2EZD ZEZD 2.61 1.13 1.75	
2EZP, 3EZP 66.3 28.7 44.5	EZP, JEZP
3.54 2.08 1.31 2.938 3.3	E71
89.9 52.8 33.3 74.63 85.	

Recommended PC Board Layout

Tolerance ± .006 [.152]

10 30

10 30 cy in MHz

Frequency

in MHz

Frequency

Chassis & PC Board Mountable RFI Filters for Emission Control (continued)

X, Y, Z Series

Performance Data

80

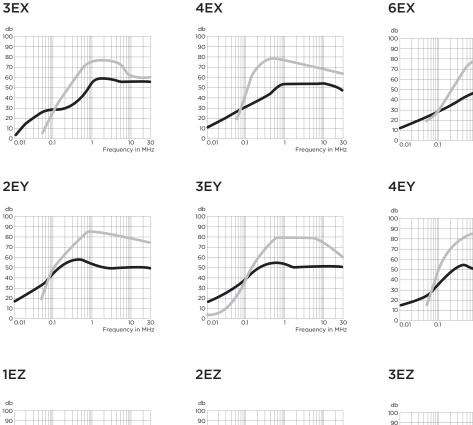
70

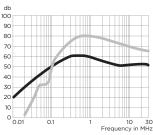
60

50

40

30


20


10

0 _____

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G)
Differential Mode / Symmetrical (L-L)

0.1

10 30

Frequency in MHz

80

70

60

50

40

30

20

10

0_____

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

10

Frequency in MHz

Chassis & PC Board Mountable RFI Filters for Emission Control (continued)

Performance Data (Continued)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

	Frequency – MHz											
Part No.	.01	.05	.15	.5	1	5	10	30				
X Series												
3A	2	13	21	35	46	44	44	44				
4A	2	13	22	38	44	44	44	38				
6A	2	11	20	35	40	40	40	36				
Y Series												
2A	8	21	31	49	44	40	40	40				
3A	11	24	36	43	40	40	40	40				
4A	5	18	28	45	40	40	40	36				
Z Series												
1A	18	32	43	47	44	43	43	45				
2A	18	32	45	41	40	40	40	40				
3A	15	29	39	43	42	40	40	40				

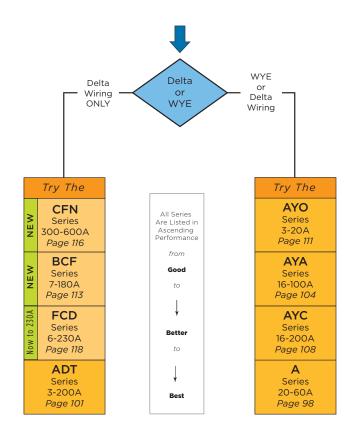
Differential Mode / Symmetrical (Line to Line)												
				Freq	ueno	су –	MHz	:				
Part No.	.02	.03	.05	.07	.15	.5	1	5	10	30		
X Series												
3A	-	-	-	5	34	60	65	60	45	50		
4A	-	-	-	10	37	70	70	70	65	55		
6A	-	-	-	3	31	65	70	70	65	55		
Y Series												
2A	-	-	10	19	40	70	75	70	60	55		
3A	-	-	10	20	42	68	68	67	62	50		
4A	-	-	6	18	41	67	75	70	65	55		
Z Series												
1A	7	29	34	43	62	70	70	70	60	55		
2A	2	15	31	40	57	75	70	65	55	50		
3A	-	10	26	34	53	75	75	70	60	55		

D:44 1 64

Downloaded From Oneyac.com

Engineering Notes

						_															_								_	
											-		-																	
								_																						
	_										_				_			_											_	
	_		+	_		_	 _			_	_		-							_			_						_	
	_				_	_	_	_					-					_				_	_			_	_		_	
													-																	
													-																	
								_																						
	_										_				_			_											_	
	_					_	_	_			_		_		_			_		_	_	_	_			_	_		_	
	_		+			_	 _				_		-														_		_	$\left - \right $
\vdash			+	+	++			_	\vdash			\vdash	-	\vdash		\vdash	+		\vdash	++					$\left \cdot \right $			\vdash	-	\vdash
++			+						\vdash		-		-	\vdash	-		+	-	\square	++					\square			\vdash	-	H
			+										1						\square										-	
ЦЦ			\square	\square		\square															\square			\square		\square				
+ +			\square	+ +									-	\square	_		+	_	\square	\rightarrow								\square	_	$\mid \mid$
+ +			+	+					\vdash			\vdash	-			$\left \cdot \right $	+	_	\vdash	++		_	_	+	 $\left \cdot \right $	_		\vdash	_	\mid
$\left + \right +$			+	+					\vdash			$\left \cdot \right $	-	$\left - \right $			+	_	\vdash	++		_		+	$\left \cdot \right $			\vdash	-	$\left - \right $
			+ +										-										-			_				
++									\vdash			\vdash	-	\vdash			+	-	\vdash	++			-					\vdash	-	Н
													_																	
	_		+	_		_	 _			_	_		-							_			_						_	$\left - \right $
	_		+			_	 _				_		-														_		_	$\left - \right $
													-																	
													-																	
	_																													
	_					_	_	_			_				_			_		_	_	_	_			_	_		_	
	_					_	_	_			_		-		_			_			_	_	_			_	_	_	_	
			+			_					-		-									_				_	_			
++			+						\vdash		-		-	\vdash	-		+	-	\square	++					\square			\vdash	-	Н
ЦД			\square											\square					\square	11					\square					
+ +			\square	\rightarrow									_		_			_	\square	\rightarrow	$ \rightarrow $								_	Н
+ +		\vdash	+	+					\vdash		_	\vdash	-	\vdash	_	\vdash	+	_	\vdash	++	+			+				\vdash	_	$\mid \mid$
+ +			+	+				_	\vdash			$\left \cdot \right $	-	$\left - \right $			+	_	\vdash	++		_		+	$\left \cdot \right $			\vdash	-	Н
$\left + \right $			+						\vdash				+		-		+	+	\square	++	+							\vdash	-	\vdash
+ +														\square											\square					
ЦД			\square											\square					\square	11					\square					
$ \downarrow \downarrow \downarrow$			\square					_					_						\square	\square									_	
+ +			$\left \right $					_					_		_				\square	++								\square	_	Н
+ +		\vdash	+	+	\rightarrow				\vdash		_	\vdash	-	\vdash	_	$\left \cdot \right $	+	_	\vdash	++	+	-		+	$\left \cdot \right $	-	_	\vdash	-	Н
++			+	+					\vdash				-	\vdash	-	\vdash	+	-	\square	++					\vdash			\vdash	-	Н
$\mid \downarrow \downarrow \downarrow$			\square	$ \rightarrow$									_		_			_		\rightarrow										Ц
			+	$ \rightarrow $									_				+	_	\square		_			+	\square			\square	_	Н
+ +			+	+					\vdash		_	\vdash	-			$\left \cdot \right $	+	_	\vdash	++		_	_	+	 $\left \cdot \right $	_		\vdash	_	Н
1 1 1		. I.									1			L 1					1 I						1 I		1			(I


96

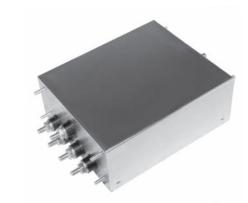
2. Three Phase Filters — Table of Contents

Three Phase Selector Chart	.97
A Series	.98
ADT Series	101
AYA Series	04
AYC Series	80
AYO Series	.111
BCF Series	.113
CFN Series	.116
FCD Series	.118

Three Phase Selector Chart

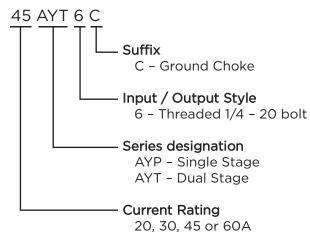
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

97


Downloaded From Oneyac.com

High Performance 3-phase RFI Filters for WYE Applications

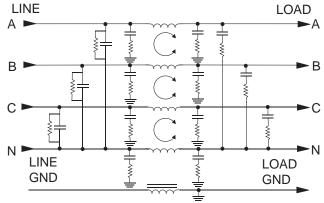
A Series


UL Recognized CSA Certified VDE Approved

A Series

- For 3-phase, four wire, WYE Applications
- Filters each of the three lines plus the neutral and ground line
- Both common mode and differential mode suppression from 50kHz to 30MHz
- Effective for both balanced and unbalanced loads
- Ground choke included
- Optional end bell kits available to shield input and output terminals
- AYP single stage for lower noise environments
- AYT dual stage provides highest performance

Ordering Information

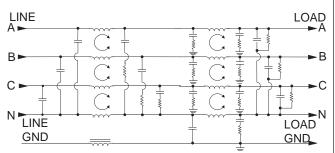

Specifications

Maximum leakage current, each Line t	o Ground:
@ 120 VAC 60 Hz:	1.4 mA
@ 250 VAC 50 Hz:	3.4 mA
Hipot rating (one minute):	
Line to Ground:	1500 VAC
Neutral to Ground:	1500 VAC
Line to Neutral:	1450 VDC
Rated Voltage (max):	
Phase to Phase:	440 VAC
Phase to Neutral / Ground:	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	20 to 60A
Operating Ambient Temperature Rang	je
(at rated current Ir):	-10°C to +40°C
In an ambient temperature (T _a) hig	her than +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematics

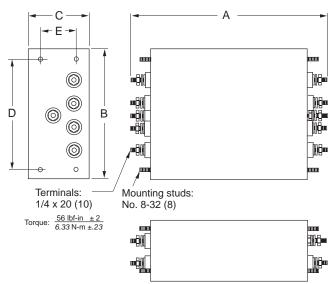
AYP6C Models



High Performance 3-phase RFI Filters for WYE Applications (continued)

A Series

Electrical Schematics (continued)


AYT6C Models

Available Part Numbers

20AYT6C
30AYT6C
45AYT6C
60AYT6C

Case Style

Accessories

Mounting bracket kit with captive nuts:

AA400: 20A & 30A versions

AA405: 45A & 60A versions

Protective cover for use with mounting bracket: (For Europe only. Limited availability in other regions) AA406A: 20A & 30A versions

AA407A: 45A & 60A versions

End bell kit (bracket and cover) with captive nuts:

AA406: 20A & 30A versions

AA407: 45A & 60A versions

AA401: 10 nuts

AA406 / AA407 Kits includes both bracket and cover

Case Dimensions

Part No.	A *	В	С	D	Е
Part NO.	(max.)	(max.)	(max.)	<u>±.030</u> ±.76	<u>±.015</u> ±.38
	8.82	5.57	2.56	4.616	1.50
20AYP6C	224.0	141.5	65.0	117.2	38.1
70 4)/DCC	8.82	5.57	2.56	4.616	1.50
30AYP6C	224.0	141.5	65.0	117.2	38.1
	9.43	6.92	4.82	5.95	3.75
45AYP6C	239.5	175.8	122.4	151.1	95.3
	9.43	6.92	4.82	5.95	3.75
60AYP6C	239.5	175.8	122.4	151.1	95.3
	13.82	5.57	2.56	4.616	1.50
20AYT6C	351.0	141.5	65.0	117.2	38.1
	13.82	5.57	2.56	4.616	1.50
30AYT6C	351.0	141.5	65.0	117.2	38.1
	13.83	6.92	4.82	5.95	3.75
45AYT6C	351.3	175.8	122.4	151.1	95.3
	13.83	6.92	4.82	5.95	3.75
60AYT6C	351.3	175.8	122.4	151.1	95.3

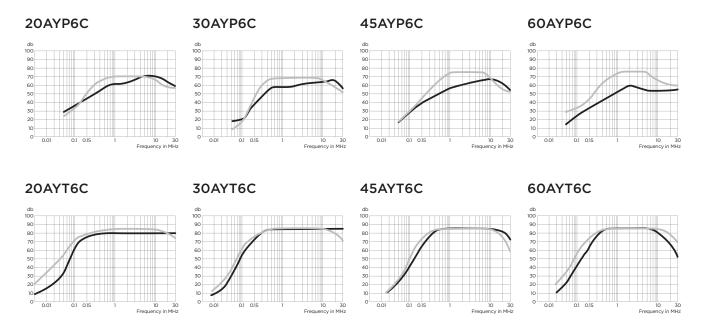
*For end bell covering terminals and connections, add:

20 & 30A: 5.57 [141.48]

45 & 60A: 6.45 [163.83]

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com


High Performance 3-phase RFI Filters for WYE Applications (continued)

A Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

AYP6C

Common Mode / Asymmetrical (Line to Ground)

Current	Frequency –MHz											
Rating	.05	.1	.15	.5	1	5	10	30				
20A	22	32	39	55	56	65	65	54				
30A	15	24	30	55	55	61	63	50				
45A	8	19	25	49	49	56	58	45				
60A	5	16	22	50	50	54	54	47				

Differential Mode / Symmetrical (Line to Line)

Differential Mode / Symmetrical (Line to Line)

	/					-							
Current		Frequency –MHz											
Rating	.05	.1	.15	.5	1	5	10	30					
20A	20	38	50	65	65	65	60	52					
30A	18	28	43	65	65	65	59	48					
45A	8	20	27	60	65	65	56	43					
60A	20	24	27	60	65	65	56	50					

AYT6C

Common Mode / Asymmetrical (Line to Ground)

Current			Fre	quen	icy –N	ЛНz		
Rating	.05	.1	.15	.5	1	5	10	30
20A	45	63	70	75	75	75	75	65
30A	29	53	61	75	75	75	75	60
45A	15	36	43	75	75	75	75	50
60A	12	37	46	75	75	75	70	45

Current			Fre	quen	icy –N	/Hz		
Rating	.05	.1	.15	.5	1	5	10	30
20A	27	56	65	70	70	70	70	70
30A	17	46	55	75	75	75	75	70
45A	14	41	50	75	75	75	75	65
60A	26	50	58	75	75	75	75	60

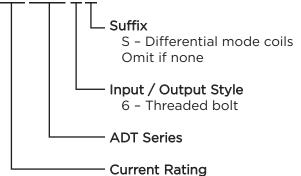
100

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

High Performance High Current 3-phase Delta RFI Filters

ADT Series



ADT Series

- Designed for very high insertion loss for Delta three phase, three wire applications
- Available with common or differential mode coils

Ordering Information

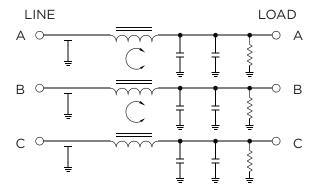
100 ADT 6 S

63, 100, 160 or 200A

Available Part Numbers

63ADT6	63ADT6S
100ADT6	100ADT6S
160ADT6	160ADT6S
200ADT6	200ADT6S

Specifications

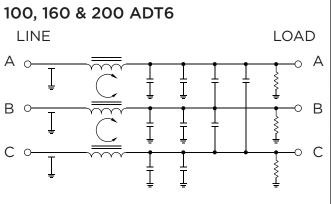

Maximum leakage current at 277 VA each Line to Ground: ADT6: 63ADT6S: 100, 160, 200ADT6S	C 60 Hz, 1.3 A 2.6 A 4.6 A
Hipot rating (one minute): Line to Ground: Line to Line:	2210 VDC 2158 VDC
Rated Voltage (max): Phase to Phase: Phase to Ground:	480 VAC 277 VAC
Operating Frequency:	50/60 Hz
Rated Current:	63 to 200A
Operating Ambient Temperature Ra (at rated current Ir):	nge -10°C to +40°C

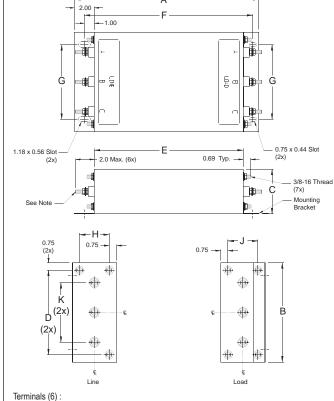
at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Electrical Schematics

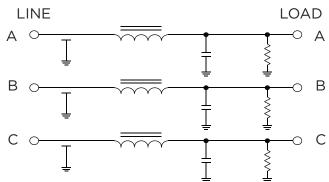
63ADT6

Downloaded From Oneyac.com




High Performance High Current 3-phase Delta RFI Filters (continued)

Case Style


ADT Series

Electrical Schematics (continued)

ADT6S

63ADT6, 63ADT6S, 100ADT6S: 3/8-16, Torque (max.) 70 lbf-in [7.91 N-m] 100ADT6, 160 & 200 ADT6/S: 7/16-20, Torque (max.) 125 lbf-in [14.12 N-m]

Case Dimensions

Devil Mar	А	В	С	D	Е	F	G	Н	J	K
Part No.	(max.)	(max.)	(max.)	<u>±.030</u> ±.76	(max.)	<u>±.030</u> ±.76	<u>±.030</u> ±.76	<u>±.030</u> ±.76	<u>±.030</u> ±.76	(max.)
	14.00	10.00	3.5	8.5	10.00	11.97	7.5	1.75	2.00	6.00
63ADT6	355.6	254.0	89.0	216.0	254.0	304.0	190.35	44.4	50.8	152.4
63ADT6S	19.00	10.00	4.5	8.5	15.00	16.97	7.5	3.00	3.00	6.00
	482.6	254.0	114.3	216.0	381.0	431.0	190.5	76.2	76.2	152.4
	19.00	10.00	4.5	8.5	15.00	16.97	7.5	3.00	3.00	6.00
100ADT6	482.6	254.0	114.3	216.0	381.0	431.0	190.5	76.2	76.2	152.4
	19.00	11.00	4.5	8.5	15.00	16.97	8.5	3.00	3.00	6.00
100ADT6S	482.6	279.4	114.3	216.0	381.0	431.0	215.9	76.2	76.2	152.4
	19.00	10.00	4.5	8.5	15.00	16.97	7.5	3.00	3.00	6.00
160/200ADT6	482.6	254.0	114.3	216.0	381.0	431.0	190.5	76.2	76.2	152.4
	22.00	13.00	4.5	11.5	18.00	19.97	10.5	2.75	3.00	7.00
160/200ADT6S	558.8	330.2	114.3	292.2	457.2	507.2	266.7	69.8	76.2	177.8

102

High Performance High Current 3-phase Delta RFI Filters (continued)

ADT Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G)
 Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

_				Frequ	lency	-MHz	2	
	Part No.	.01	.1	1	10	30	100	300
	63ADT6	45	85	95	100	100	100	100
	100ADT6	45	85	90	100	100	100	100
	160ADT6	45	80	90	100	100	100	100
	200ADT6	45	77	88	100	100	100	100
	63ADT6S	28	45	90	90	90	90	90
	100ADT6S	38	60	95	100	100	100	100
	160ADT6S	37	58	85	100	100	100	100
	200ADT6S	35	54	80	100	100	100	100

Common Mode / Asymmetrical (Line to Ground) Dif

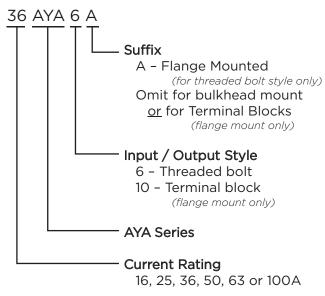
Differential Mode / Symmetrical (Line to Line)

			Frequ	iency	–MHz	:	
Part No.	.01	.1	1	10	30	100	300
63ADT6	35	100	100	100	100	100	100
100ADT6	43	100	100	100	100	100	100
160ADT6	44	100	100	100	100	100	100
200ADT6	43	100	100	100	100	100	100
63ADT6S	35	100	100	100	100	100	100
100ADT6S	43	100	100	100	100	100	100
160ADT6S	44	100	100	100	100	100	100
200ADT6S	43	100	100	100	100	100	100

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

3-phase WYE RFI Power Line Filters

AYA Series



AYA Series

- For 3-phase, four wire, WYE applications
- Cost-effective, universal 3-phase filters
- Good attenuation over the complete frequency range of 10kHz to 30MHz
- Two different mounting styles available

Ordering Information

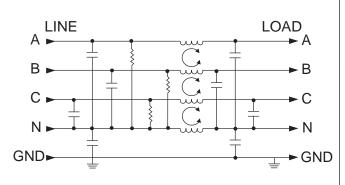
Specifications

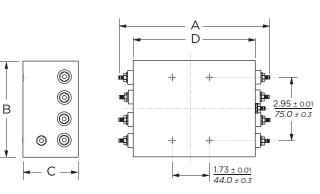
Maximum leakage current each Line @ 120 VAC 60 Hz:	1.62 mA
@ 250 VAC 50 Hz:	2.82 mA
Hipot rating (one minute): Line to Ground: Line to Line:	1500 VAC 1450 VDC
Rated Voltage (max): Phase to Phase: Phase to Ground:	440 VAC 250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	16 to 100A*
Operating Ambient Temperature Rar	nge
(at rated current I _r):	-10°C to +40°C
In an ambient temperature (T_{a}) hi	gher than +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Available Part Numbers

Flange Mount	Bulkhead Mount
16AYA6A	16AYA6
16AYA10	25AYA6
25AYA6A	36AYA6
36AYA6A	50AYA6
36AYA10	
50AYA6A	
63AYA6A	
63AYA10	
100AYA6A	


*UL Approvals for all models except: 16AYA10, 36AYA10, 63AYA10, 63AYA6, 63AYA6A and 100AYA6A


3-phase WYE RFI Power Line Filters (continued)

AYA Series

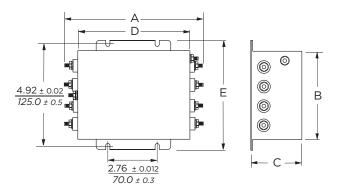
Electrical Schematic

AYA6 (Bulkhead mount with screw terminals)

Typical Dimensions:

 Threaded mounting holes(4):
 M5 x 8

 16 & 25A Terminals(8):
 8-32, To

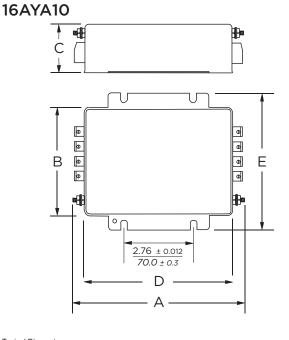

 36A Terminals(8):
 10-32, T

 50A Terminals(8):
 1/4-20,

M5 x 8
 8-32, Torque (max.) 26 lbf-in [2.94 N-m]
 10-32, Torque (max.) 27 lbf-in [3.05 N-m]
 1/4-20, Torque (max.) 56 lbf-in [6.33 N-m]

Case Style

AYA6A (Flange mount with screw terminals)


Typical Dimensions:

 Mounting slots (4):
 .425 x .254 [10.8 x 6.6]

 16 & 25A Terminals(8):
 8-32, Torque (max.) 26 lbf-in [2.94 N-m]

 36A Terminals(8):
 10-32, Torque (max.) 27 lbf-in [3.05 N-m]

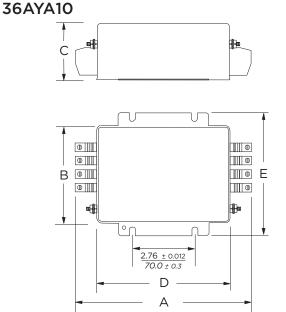
 50, 63 & 100A Terminals(8):
 1/4-20, Torque (max.) 56 lbf-in [6.33 N-m]

Typical Dimensions: Mounting slots (4): Terminal blocks(8):

 Terminal blocks(8):
 4 mm² Torque (max.)

 Ground terminal(1):
 M5, Torque (max.) 26

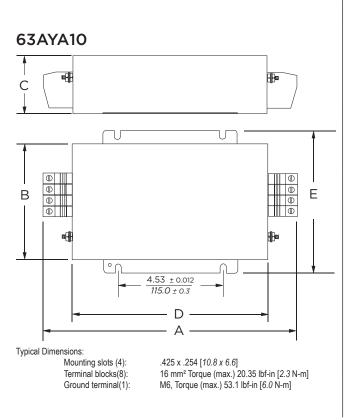
.425 x .254 [10.8 x 6.6] 4 mm² Torque (max.) 7.08 lbf-in [0.8 N-m] M5, Torque (max.) 26.58 lbf-in [3.0 N-m]


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

3-phase WYE RFI Power Line Filters (continued)

AYA Series

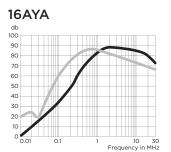

Typical Dimensions: Mounting slots (4):

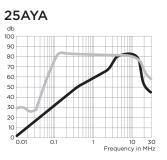
Terminal blocks(8): Ground terminal(1): .425 x .254 [*10.8* x 6.6] 10 mm² Torque (max.) 15.93 lbf-in [*1.8* N-m] M5, Torque (max.) 26.58 lbf-in [*3.0* N-m]

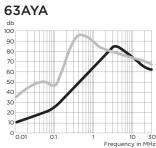
Case Dimensions

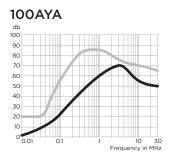
Part No.	Α	В	С	D	E*
Part NO.	(max.)	(max.)	(max.)	(max.)	(max.)
16AYA6 /A	7.91	4.37	1.97	5.94	5.51
25AYA6 /A	201.0	111.0	50.0	151.0	140.0
36AYA6 /A	7.91	4.37	2.56	5.94	5.51
50AYA6 /A	201.0	111.0	65.0	151.0	140.0
63AYA6 /A	7.91	4.37	2.56	5.94	5.51
100AYA6A	201.0	111.0	65.0	151.0	140.0
10 4)/4 10	6.97	4.37	1.97	5.94	5.51
16AYA10	177.0	111.0	50.0	151.0	140.0
7.0.43/4.10	7.88	4.37	2.56	5.94	5.51
36AYA10	200.0	111.0	65.0	151.0	140.0
	10.98	5.08	2.95	8.43	6.26
63AYA10	279.0	129.0	75.0	214.0	159.0

*Does not apply for bulkhead models

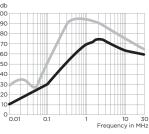

3-phase WYE RFI Power Line Filters (continued)


AYA Series


Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system



Common Mode / Asymmetrical (L-G)
 Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system Common Mode / Asymmetrical (Line to Ground)

	/								2	• /
Current			Fre	quen	icy –ľ	٨Hz			Current	
Rating	.01	.05	.1	.5	1	5	10	30	Rating .	01
16A	2	11	19	52	53	70	61	30	16A ·	14
25A	2	12	19	46	49	64	54	27	25A 2	20
36A	1	10	18	49	54	63	57	32	36A 2	20
50A	1	8	14	43	47	63	53	29	50A 2	20
63A	2	10	22	50	60	75	70	55	63A 3	30
100A	1	15	22	55	60	65	55	50	100A 2	20

Differential Mode / Symmetrical (Line to Line)

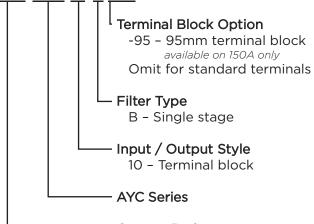
Current		Frequency –MHz									
Rating	.01	.05	.1	.5	1	5	10	30			
16A	14	31	30	82	87	76	77	47			
25A	20	36	38	85	81	68	69	33			
36A	20	39	36	86	78	65	62	35			
50A	20	30	38	85	82	67	66	38			
63A	30	40	45	90	85	70	70	60			
100A	20	35	45	80	80	65	60	55			

Downloaded From Oneyac.com

3-phase WYE RFI Power Line Filters for High Noise Applications

AYC Series

UL Recognized*



AYC Series

- For 3-phase, four wire, WYE applications
- Very high attenuation
- Low leakage current
- Ideal for EMC troubleshooting and refurbishing in the field
- Touch safe terminals provide easy connections and prevent inadvertent contact for safety in the most demanding applications

Ordering Information

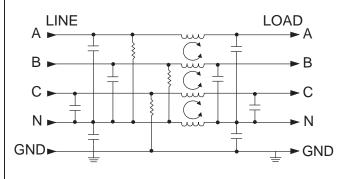
150 AYC 10 B -95

Current Rating 16, 25, 36, 63, 80, 110, 150, 180 or 200A

Available Part Numbers

16AYC10B	110AYC10B	
25AYC10B	150AYC10B	
36AYC10B	150AYC10B-95	
63AYC10B	180AYC10B	
80AYC10B	200AYC10B	

Specifications


Maximum leakage current each Line to Ground:

_	120 VAC 60Hz	277 VAC 50Hz	
16A	62 mA	106 mA	
25 & 36A	68 mA	118 mA	
63A	74 mA	128 mA	
80, 100 & 150A	74 mA	129 mA	
180, 200A	111 mA	192 mA	
Hipot rating (one minut	:e):		
Line to Ground:	·	1850 VDC	
Line to Line:		1850 VDC	
Line to Neutral:		1450 VDC	
Rated Voltage (max):			
Phase to Phase:		480 VAC	
Phase to Ground:		277 VAC	
Operating Frequency:		50/60 Hz	
Rated Current:		16 to 200A	
Operating Ambient Temperature Pange			

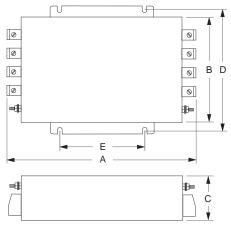
Operating Ambient Temperature Range

(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

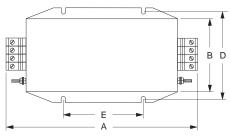
Electrical Schematic

^{*}All except 200AYC10B

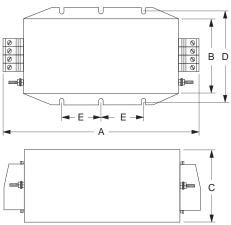
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.



3-phase WYE RFI Filters for High Noise Applications (continued)


AYC Series

Case Styles



80, 110, 150AYC10B / -95

180, 200AYC10B

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Case Dimensions

Davit Nia	Α	В	С	D	Е
Part No.	(max.)	(max.)	(max.)	(max.)	<u>±.078</u> ±.2
16 41/0100	6.69	4.37	2.56	4.92	2.76
16AYC10B	170.0	111.0	65.0	125.0	70.0
	9.96	5.08	2.52	5.71	4.53
25AYC10B	246.0	129.0	64.0	145.0	115.0
7.0.100	10.35	5.08	2.52	5.71	4.53
36AYC10B	263.0	129.0	64.0	145.0	115.0
67.43/0105	10.98	5.08	2.95	5.71	4.53
63AYC10B	279.0	129.0	75.0	145.0	115.0
80, 110 &	12.09	5.55	5.55	6.10	4.53
150AYC10B	307.0	141.0	141.0	155.0	115.0
150 4)(0100 05	12.59	5.55	5.55	6.10	4.53
150AYC10B-95	320.0	141.0	141.0	155.0	115.0
180AYC10B	15.71	5.55	5.55	6.10	3.25
200AYC10B	399.0	141.0	141.0	155.0	82.5
	000.0	171.0	171.0	100.0	02.0

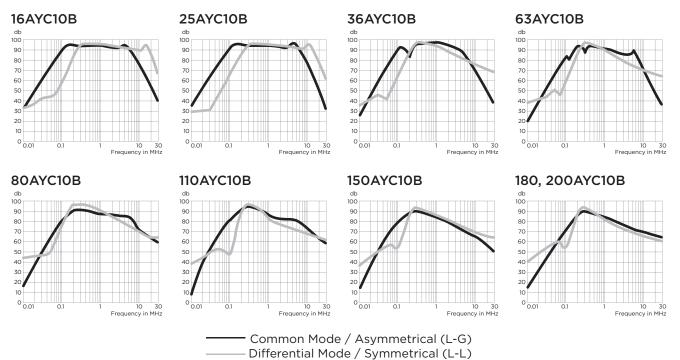
Terminals

Part No.	Terminal	Size	Torque max. lbf-in [N-m]
10 41/0100	Ground	M5	26.58 [<i>3.0</i>]
16AYC10B	Line / Load	4mm ² terminal block	7.08 [<i>0.8</i>]
25 4/(210.0	Ground	M5	26.58 [<i>3.0</i>]
25AYC10B	Line / Load	6mm ² terminal block	15.93 [<i>1.</i> 8]
76 41/0100	Ground	M5	26.58 [<i>3.0</i>]
36AYC10B	Line / Load	10mm ² terminal block	15.93 [<i>1.8</i>]
67 AV(010 D	Ground	M6	53.1 [6.0]
63AYC10B	Line / Load	16mm ² terminal block	20.35 [<i>2.3</i>]
80, 110,	Ground	M10	177.0 [<i>20.0</i>]
150AYC10B	Line / Load	50mm ² terminal block	70.80 [<i>8.0</i>]
150AYC10B-95	Ground	M10	177.0 [20.0]
180AYC10B 200AYC10B	Line / Load	95mm ² terminal block	177.0 [<i>20.0</i>]

2

For email, phone or live chat, please go to te.com/help

corcom.com


3-phase WYE RFI Filters for High Noise Applications (continued)

AYC Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Minimum Insertion Loss

Measured in closed 50 Ohm system

	Frequency –MHz								
Part No.	.01	.05	.1	.5	1	5	10	30	
16AYC10B	23	66	82	88	82	79	55	21	
25AYC10B	26	68	83	93	88	68	45	4	
36AYC10B	18	61	78	96	91	71	49	7	
63AYC10B	11	57	72	90	86	68	44	4	
80AYC10B	10	57	75	84	77	75	62	45	
110AYC10B	10	51	60	88	84	74	50	12	
150AYC10B	-	50	57	82	79	75	51	7	
150AYC10B-95	1	51	55	85	82	84	51	11	
180, 200AYC10B	3	53	55	97	89	81	56	20	

Common Mode / Asymmetrical (Line to Ground)	Differential Mode / Symmetrical (Line to Line)
---	--

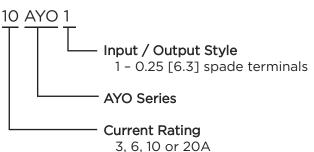
Frequency –MHz Part No. .01 .05 .5 .1 16AYC10B 25AYC10B 36AYC10B 63AYC10B 80AYC10B 110AYC10B 150AYC10B 50AYC10B-95 30, 200AYC10B

Compact Low Current 3-phase WYE RFI Filters

AYO Series

UL Recognized CSA Certified VDE Approved

2

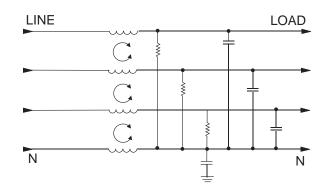

. .

Three Phase Filters

AYO Series

- For 3-phase, four wire, WYE applications
- Filters each of the three lines plus neutral
- Good for attenuation beginning at 100kHz
- Space saving design
- Low leakage current
- Easy to connect terminals

Ordering Information


Specifications

Maximum leakage current each Line to Ground:

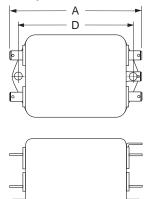
	<u>3, 6, 10A</u>	<u>20A</u>
@ 120 VAC 60 Hz:	2.0 mA	3.5 mA
@ 250 VAC 50 Hz:	3.0 mA	5.5 mA
Hipot rating (one minute):		
Line to Ground:		1500 VAC
Line to Line:		1450 VDC
Detect Valteria (mary)		
Rated Voltage (max):		440.140
Phase to Phase:		440 VAC
Phase to Neutral / Ground:		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		3 to 20A
Operating Ambient Tempera	ture Range	

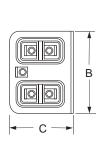
(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematic

Available Part Numbers

3AYO1	6AYO1
10AYO1	20AYO1


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


Compact Low Current 3-phase WYE RFI Filters (continued)

AYO Series

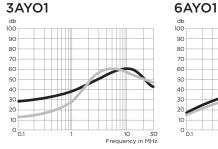
Case Style

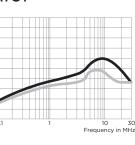
Е

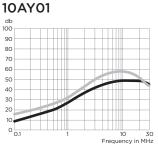
Case Dimensions

Part No.	Α	A B		D	Е
	(max.)	(max.)	(max.)	<u>±.015</u> ±.38	(max.)
	3.37	2.07	1.53	2.938	3.35
AYO Series	85.6	52.5	38.7	74.63	85.1

Typical Dimensions:

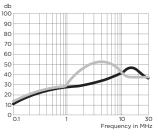

Line/Load Terminals (8): Ground Terminal (1): Mounting Holes (2):


3): .250 [6.3] with .07 [1.8] Dia. hole
 .250 [6.3] with .07 x .16 [1.8 x 3.8] slot
 .188 [4.78] Dia.


Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system



Differential Mode / Symmetrical (Line to Line)

20AYO1

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

	, 		_			.,		,		· · · · · ·		,	
Current		F	requer	су –М	Hz		Current		F	requer	су –М	Hz	
Rating	.15	.5	1	5	10	30	Rating	.15	.5	1	5	10	30
3A	12	23	29	33	38	35	3A	-	12	20	50	35	30
6A	7	23	30	40	50	30	6A	10	18	24	31	28	28
10A	-	-	5	16	28	15	10A	10	18	24	42	28	22
20A	-	7	11	32	23	12	20A	10	18	24	42	38	23

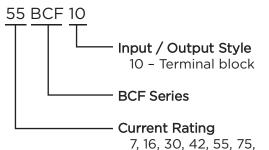
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com



Compact 3-phase Delta RFI Filters for Universal Applications

BCF Series


UL Recognized VDE Approved

BCF Series

- Designed for universal applications
- Compact book-form design
- Low weight
- Insulated, high quality safety terminals for input and output
- Cost-effective design
- Good common and differential mode performance below 100kHz
- Applications include; 3-phase inverters, converters, variable speed motor drives and process automation equipment
- Touch safe terminals provide easy connections and prevent inadvertent contact for safety in the most demanding applications

Ordering Information

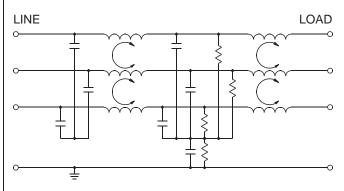
7, 16, 30, 42, 55, 75 100, 130 or 180A

Available Part Numbers

7BCF10	16BCF10
30BCF10	42BCF10
55BCF10	75BCF10
100BCF10	130BCF10
180BCF10	

Specifications

Maximum leakage current each Line to Ground*:


@ 277 VAC 50 Hz: 30 mA
 *If 2 phases are interrupted, this leakage current may rise to a significantly higher level

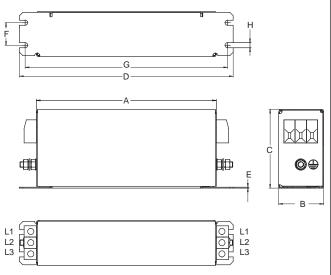
Hipot rating (one minute): Line to Ground: Line to Line:	1850 VAC 1850 VDC
Rated Voltage (max): Phase to Phase: Phase to Ground:	480 VAC 277 VAC
Operating Frequency:	50/60 Hz
Rated Current:	7 to 180A
Operating Ambient Temperature Range	

Operating Ambient Temperature Range

(at rated current I_r): -10°C to +50°C In an ambient temperature (T_a) higher than +50°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/35}$

Electrical Schematic

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


Downloaded From Oneyac.com

Compact 3-phase Delta Filters for Universal Applications (continued)

BCF Series

Case Style

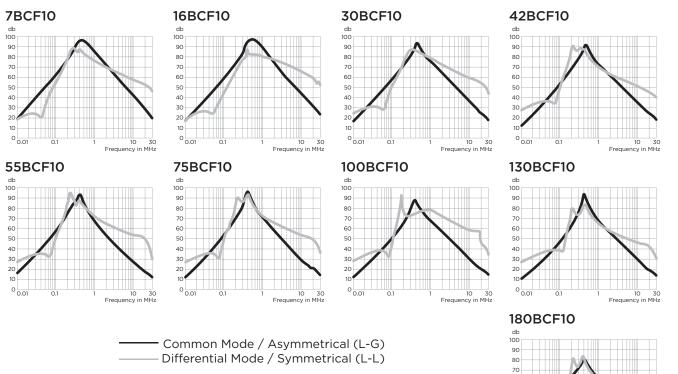
Terminals

Part No.	Ground Terminals	Line/Load Terminals
7BCF10, 16BCF10	M5	4mm ²
30BCF10	M5	10mm²
42BCF10	M6	10mm²
55BCF10	M6	16mm²
75BCF10	M6	25mm²
100BCF10, 130BCF10	M10	50mm ²
180BCF10	M10	95mm ²

Case Dimensions

Part No.	А	В	С	D	Е	F	G	н
	(max.)							
70.0510	6.30	1.57	2.76	7.48	.03	.79	7.09	.18
7BCF10	160.0	40.0	70.0	190.0	.8	20.0	180.0	4.5
	8.66	1.77	2.76	9.84	.03	.98	9.25	.21
16BCF10	220.0	45.0	70.0	250.0	.8	25.0	235.0	5.4
30BCF10	9.45	1.97	3.35	10.63	.03	1.18	10.04	.21
	240.0	50.0	85.0	270.0	.8	30.0	255.0	5.4
42BCF10	11.02	1.97	3.35	12.20	.03	1.18	11.61	.21
	280.0	50.0	85.0	310.0	.8	30.0	295.0	5.4
	8.66	3.35	3.54	9.84	.04	2.36	9.25	.21
55BCF10	220.0	85.0	90.0	250.0	1.0	60.0	235.0	5.4
755 0540	9.45	3.15	5.31	10.63	.04	2.36	10.04	.26
75BCF10	240.0	80.0	135.0	270.0	1.0	60.0	255.0	6.5
10000510	9.45	3.54	5.91	10.63	.04	2.56	10.04	.26
100BCF10	240.0	90.0	150.0	270.0	1.0	65.0	255.0	6.5
17000510	9.45	3.54	5.91	10.63	.04	2.56	10.04	.26
130BCF10	240.0	90.0	150.0	270.0	1.0	65.0	255.0	6.5
	13.78	4.72	6.69	14.96	.04	4.2	14.37	.26
180BCF10	350.0	120.0	170.0	380.0	1.0	102.0	365.0	6.5

¹¹⁴


Compact 3-phase Delta Filters for Universal Applications (continued)

BCF Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Minimum Insertion Loss

Measured in closed 50 Ohm system

Current		Frequency –MHz										
Rating	.01	.03	.05	.1	.15	.3	.5	1	3	5	10	30
7A	18	39	48	62	68	89	96	83	62	53	41	20
16A	17	37	45	58	65	85	96	88	65	56	43	23
30A	16	36	44	58	64	82	90	74	56	48	36	18
42A	12	30	40	52	61	79	90	72	54	47	35	18
55A	16	35	44	58	66	87	87	67	47	38	26	12
75A	12	30	40	53	60	84	90	70	50	42	30	15
100A	12	29	38	50	59	79	80	67	49	40	29	15
130A	11	26	35	48	55	78	83	67	49	40	29	15
180A	11	27	36	49	57	72	77	61	47	40	29	15

Differential Mode / Symmetrical (Line to Line)

-	Current					Frec	quer	ıcy -	-MH	z			
	Rating	.01	.03	.05	.1	.15	.3	.5	1	3	5	10	30
	7A	16	23	28	54	67	89	85	76	67	62	57	46
	16A	18	26	24	48	58	78	82	80	74	71	65	51
	30A	23	31	29	49	62	87	84	78	68	64	59	46
	42A	13	35	36	50	67	88	82	69	59	55	50	40
	55A	27	35	35	51	68	87	83	71	61	58	54	31
	75A	27	35	35	50	66	87	86	72	62	58	53	35
	100A	28	37	38	47	70	73	76	78	68	64	58	34
	130A	27	37	40	38	53	75	80	64	54	50	47	30
	180A	27	37	40	42	50	73	73	60	50	47	42	30

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

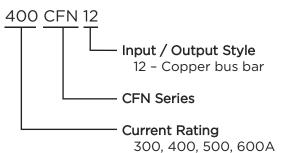
2

115

Frequen cy in MHz

3-phase Delta Power Line Filter for High Voltage Applications

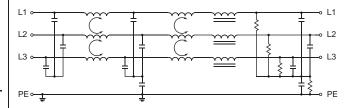
CFN Series


UL Recognized*

CFN Series

- Universal high current filter
- Suitable for industrial applications including; motor drives, inverters, converters, uninterruptible power supplies and mining equipment

Ordering Information



Specifications

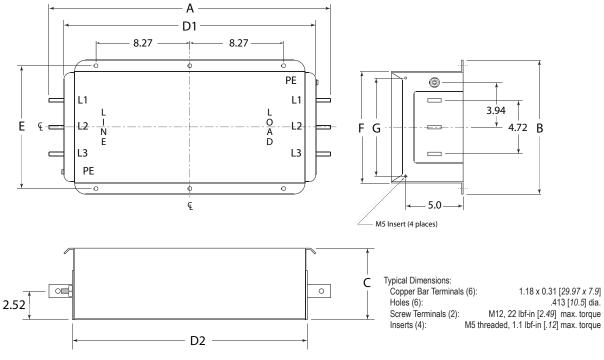
Maximum leakage current at 10% unsymmetrical mains Line to Ground (3 Phase WYE Center tapped)*:					
@ 120 VAC 60 Hz:	5.0 mA				
@ 277 VAC 50 Hz:	9.6 mA				
*If 2 phases are interrupted, this leakage current may rise to a significantly higher level					
Hipot rating (one minute): Line to Ground: Line to Line:	2210 VDC 2158 VDC				
Rated Voltage (max):Phase to Phase:480 VACPhase to Ground:277 VAC					
Operating Frequency:	50/60 Hz				
Rated Current: 300 to 600A					
Operating Ambient Temperature Range					

(at rated current I_r): In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematic

Available Part Numbers

300CFN12	400CFN12
500CFN12	600CFN12

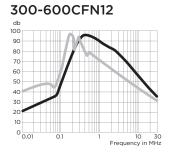

*400CFN12 only

3-phase Delta Power Filter for High Voltage Applications (continued)

CFN Series

Case Style

Case Dimensions


Davit Ma	А	В	С	D1	D2	Е	F	G	н
Part No.	(max.)	(max.)	(max.)	(ref.)	(max.)	<u>±.02</u> ±.50	(max)	<u>±.02</u> ±.50	(max.)
	24.8	11.81	6.30	22.20	20.31	10.83	9.84	8.66	5.0
300-600CFN12	630.0	300.0	160.0	564.0	516.0	275.0	250.0	220.0	127.0

Performance Data

Typical Insertion Loss

Specifications subject to change.

Measured in closed 50 Ohm system

⁻ Common Mode / Asymmetrical (L-G) - Differential Mode / Symmetrical (L-L)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics

are metric equivalents. Dimensions are shown for reference purposes only.

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode	/ Asymmetrical	(Line to Ground)
-------------	----------------	------------------

Current	Frequency –MHz									
Rating	.01	.03	.07	.1	.15	.5	1	5	10	30
300-600A	10	19	26	40	55	82	76	51	37	20

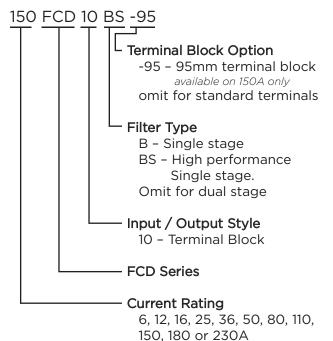
Differential Mode / Symmetrical (Line to Line)

Current				Fre	quen	cy –	MHz			
Rating	.01	.03	.07	.1	.15	.5	1	5	10	30
300-600A	32	40	27	55	70	66	57	40	34	20

Three Phase Filters

3-phase Delta External Power Line Filter for Frequency Converters

FCD Series

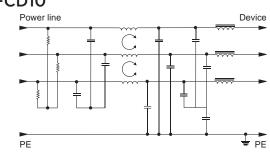


FCD10

FCD Series

- Suitable to meet the latest EMC standards
- Insulated safety terminals
- Suitable for EMC troubleshooting in the field
- Very high attenuation
- High insertion loss
- BS models optimized for very high insertion loss
- BS models suitable for infeed/regenerative (ER) applications
- Touch safe terminals provide easy connections and prevent inadvertent contact for safety in the most demanding applications

Ordering Information


Specifications

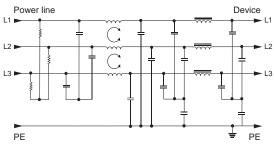
Maximum leakage current voltage drop to virtual N to PE/V: 6FCD10: 12 & 16FCD10:	.26 mA/V .45 mA/V
25, 36 & 50FCD10: 12 & 16FCD10B: 25& 36FCD10B: 50FCD10B: 80 & 110FCD10B: 150FCD10B: 180 & 230FCD10B: FCD10BS:	.52 mA/V .46 mA/V .52 mA/V .57 mA/V .62 mA/V .63 mA/V .92 mA/V 3.25 mA/V
Hipot rating (one minute): Line to Ground: Line to Line:	2250 VDC 1450 VDC
Rated Voltage (max): Phase to Phase: Phase to Neutral / Ground:	480 VAC 277 VAC
Operating Frequency:	50/60 Hz
Rated Current:	6 to 230A

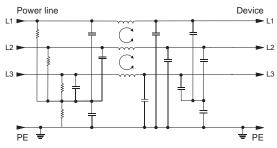
Operating Ambient Temperature Range

(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

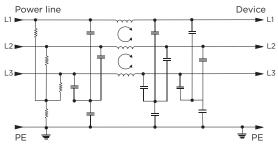
Electrical Schematics 6FCD10

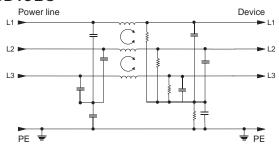
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


For email, phone or live chat, please go to te.com/help corcom.com


FCD Series

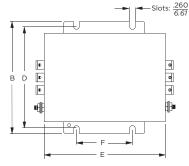
Electrical Schematics (continued)


12 to 50A FCD10


12 to 50A FCD10B

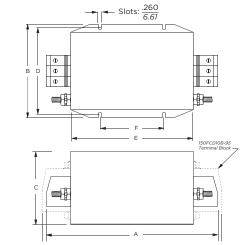
80 to 230A FCD10B

FCD10BS

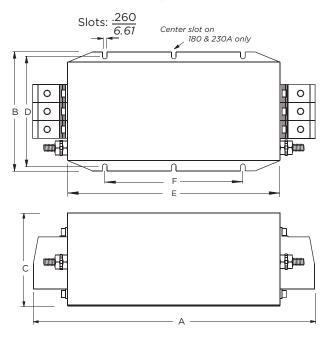

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Available Part Numbers

6FCD10	12FCD10B	50FCD10BS
12FCD10	16FCD10B	80FCD10BS
16FCD10	25FCD10B	110FCD10BS
25FCD10	36FCD10B	150FCD10BS
36FCD10	50FCD10B	150FCD10BS-95
50FCD10	80FCD10B	180FCD10BS
	110FCD10B	230FCD10BS
	150FCD10B	
	150FCD10B-95	
	180FCD10B	
	230FCD10B	


Case Styles

6 to 50A FCD10 & FCD10B

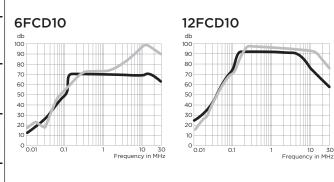

80 to 150A FCD10B 50 to 150A FCD10BS

FCD Series

Case Styles (continued) 180 to 230FCD10B\BS

Terminals

Part No.	Terminal	Size	Torque max. lbf-in [N-m]
	Ground	8-32	20.7 [<i>2.34</i>]
6FCD10	Line/Load	4mm ² terminal block	7.08 [<i>0.8</i>]
12FCD10/10B	Ground	M5	26.58 [<i>3.0</i>]
16FCD10/10B	Line/Load	4mm ² terminal block	7.08 [<i>0.8</i>]
25FCD10/10B	Ground	M5	26.58 [<i>3.0</i>]
36FCD10/10B	Line/Load	6mm ² terminal block	15.93 [<i>1.8</i>]
	Ground	M5	26.58 [<i>3.0</i>]
50FCD10/10B	Line/Load	10mm ² terminal block	15.93 [<i>1.8</i>]
	Ground	M10	88.5 [<i>10.0</i>]
50FCD10BS	Line/Load	16mm ² terminal block	20.36 [<i>2.3</i>]
80 to 150FCD10B	Ground	M10	88.5 [<i>10.0</i>]
80 to 150FCD10BS	Line/Load	50mm ² terminal block	70.80 [<i>8.0</i>]
150FCD10B/BS-95	Ground	M10	88.5 [<i>10.0</i>]
180FCD10B/BS 230FCD10B/BS	Line/Load	95mm ² terminal block	177.0 [<i>20.0</i>]


Case Dimensions

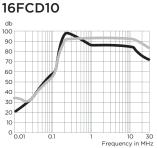
	Α	В	С	D	E	F
Part No.	(max.)	(max.)	(max.)	<u>±.02</u> ±.5	(max.)	<u>±.02</u> ±.5
	6.18	4.33	2.32	3.74	5.16	2.76
6FCD10	157.0	110.0	59.0	95.0	131.0	70.0
12FCD10/10B	6.97	5.51	2.56	4.92	5.94	2.76
16FCD10/10B	177.0	140.0	65.0	125.0	151.0	70.0
25FCD10/10B	9.69	6.26	2.52	5.71	8.43	4.53
36FCD10/10B 50FCD10/10B	246.0	159.0	64.0	145.0	214.0	115.0
505001000	11.41	6.61	3.54	6.10	8.70	4.53
50FCD10BS	290.0	168.0	90.0	155.0	221.0	115.0
80FCD10B/BS	12.09	6.61	5.55	6.10	8.70	4.53
110FCD10B/BS 150FCD10B/BS	307.0	168.0	141.0	155.0	221.0	115.0
150FCD10B-95	12.6	6.61	5.55	6.10	8.70	4.53
150FCD10BS-95	320.0	168.0	141.0	155.0	221.0	115.0
180FCD10B/BS	15.71	6.61	5.55	6.10	11.81	6.50
230FCD10B/BS	399.0	168.0	141.0	155.0	300.0	165.0

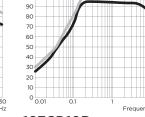
Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

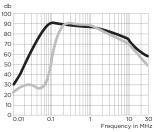

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

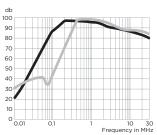


FCD Series

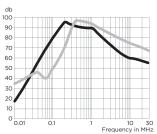
Performance Data (continued)

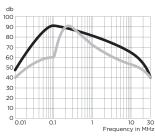
Typical Insertion Loss (continued) Measured in closed 50 Ohm system

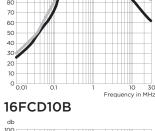


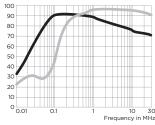

25FCD10

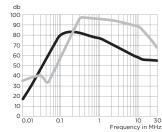
db 100

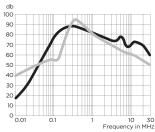

12FCD10B

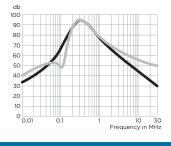

50FCD10B




180FCD10B


180FCD10BS




80FCD10B

230FCD10B

230FCD10BS

36FCD10

25FCD10B

db 100

90

80

70

60

50

30

20

10

db 100

90

80

70

60

50

40

30

20

10

db 100

90

80

70

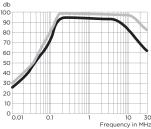
60

50

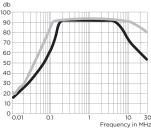
40

30

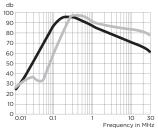
20

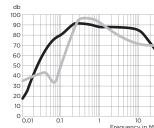

10

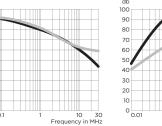
0_0.01


0 0.01

110FCD10B


50/80/110FCD10BS

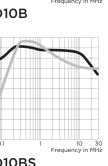

50FCD10

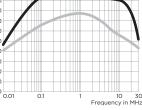

36FCD10B

150FCD10B

10 30 Frequency in MHz 150FCD10BS

10


10


Frequ

30

cy in MH7

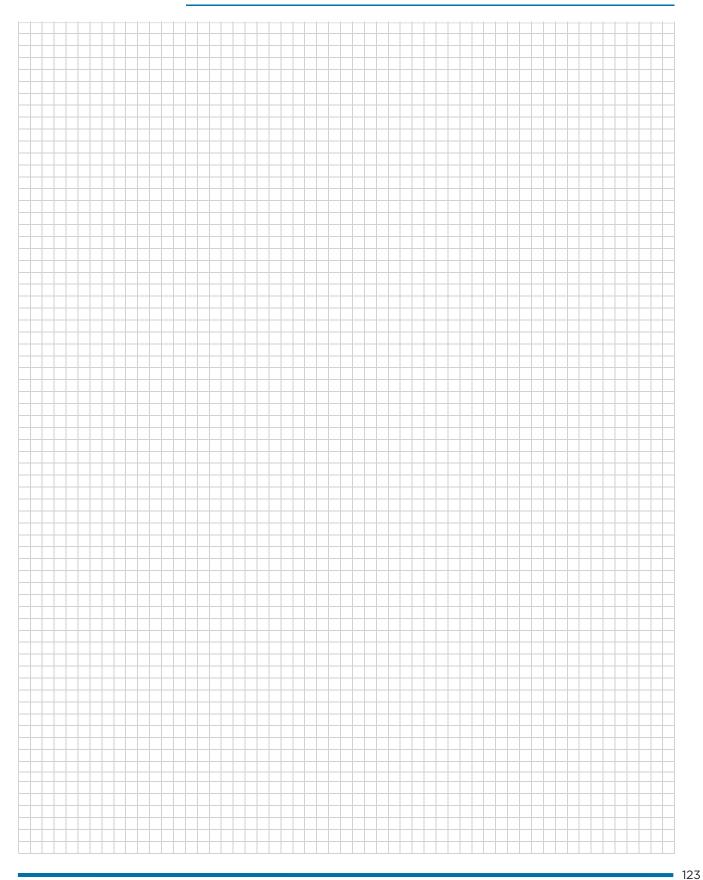
Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Differential Mode / Symmetrical (Line to Line)

FCD Series

Performance Data (continued)

Minimum Insertion Loss


Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

	Frequency –MHz									i i				F	Frequ	iency	/ –Mł	łz		
Part No.	.01	.03	.05	.1	.5	1	5	10	30		Part No.	.01	.03	.05	.1	.5	1	5	10	30
6FCD10	2	14	23	39	56	52	48	45	33		6FCD10	9	8	24	40	62	57	50	48	38
12 & 16FCD10	13	30	36	45	75	75	52	45	35		12 & 16FCD10	9	13	24	55	75	75	75	65	60
25FCD10	13	30	36	45	75	75	52	45	35		25FCD10	9	13	26	55	75	75	75	65	60
36FCD10	9	26	32	40	75	75	52	45	35		36FCD10	9	13	26	46	75	75	75	65	60
50FCD10	9	26	32	40	75	75	52	45	35		50FCD10	9	13	26	46	75	75	75	65	60
12FCD10B	18	45	59	75	73	65	49	47	26		12FCD10B	6	13	9	37	90	86	74	78	34
16FCD10B	18	45	59	75	73	65	49	47	26		16FCD10B	6	13	9	37	60	86	74	78	34
25FCD10B	18	45	60	49	83	75	58	56	28		25FCD10B	10	16	12	41	89	87	69	86	43
36FCD10B	8	38	52	70	77	70	54	50	47		36FCD10B	17	24	24	38	87	81	63	66	24
50FCD10B	3	34	49	67	76	70	59	58	37		50FCD10B	15	24	27	21	88	74	51	69	52
80FCD10B	2	35	49	67	74	67	59	58	27		80FCD10B	17	25	28	23	87	71	50	62	45
110FCD10B	2	35	49	66	72	65	59	58	18		110FCD10B	18	27	30	25	86	69	49	56	39
150FCD10B	1	36	50	66	69	63	59	58	9		150FCD10B	19	28	31	28	85	66	49	49	32
180FCD10B	-	36	50	66	67	60	59	58	-		180FCD10B	21	29	33	30	84	63	48	43	26
230FCD10B	-	25	40	58	73	66	58	52	21		230FCD10B	22	31	35	36	78	60	46	41	26
50FCD10BS	40	66	70	69	65	60	53	51	24		50FCD10BS	25	31	26	59	73	64	50	45	19
80FCD10BS	35	63	67	66	63	58	52	49	23		80FCD10BS	25	31	26	59	73	64	50	45	19
110FCD10BS	30	61	69	69	66	60	53	53	25		110FCD10BS	24	31	24	55	72	65	51	46	26
150FCD10BS	32	61	67	67	62	56	48	46	16		150FCD10BS	25	33	32	51	71	61	47	42	22
180FCD10BS	30	60	65	65	61	55	47	46	16		180FCD10BS	25	33	32	51	71	61	47	42	22
230FCD10BS	27	58	62	63	59	54	46	45	15		230FCD10BS	25	33	32	51	71	61	47	42	22

Engineering Notes

2

Engineering Notes

													_														_	
							-								-			-										
		_																										
							_											_		_								
		_				_	_			_	_	_	_		_			_		_	_			_			_	
		_											_		-			_		_	_			_				
							-					-			-													
		_																										
							_											_		_								
		_					_			_	_	_			_			_		_	_			_	_	_	_	
		_									_	-	_	_	-		 	_		_	_	-		_				
		_					_								-			_			_							
+ +	+		\vdash			++	-		++					\vdash	-			-				-				+		+
			\square			++			++						-			-										$\neg \neg$
																												\square
	+					++	_		\downarrow	\rightarrow					_			_								\rightarrow	\rightarrow	\square
+ +	++		\square	++	+	+	_		++	\rightarrow	$ \rightarrow $				_	$\left \cdot \right $		_	- -							+	\rightarrow	-
+ +	+	_	\vdash	++	++	++	_	$\left \cdot \right $	++	+		_	+	\vdash	-		+	-		_		_	+		++	+	+	+
$\left + \right + $	+		\vdash	++	++	++		$\left \cdot \right $	++	+			+		-	+	++	+-					+		++	+	++	+
	+		\vdash			++	+					-	+	\vdash	-		++	-					+			+		+
		_																										
							_											_		_	_							
							_			_	_	_	_		_			_				_		_				
		_									_	-	_	_	-		 	_		_	_	-		_				
																				-	_			_				
															_													
	_					_				_	_	_	_		_			_						_		_	_	
			\vdash			++	_	$\left \cdot \right $	++			_			_		 +	-				_	+					-
$\left + \right $	+		\vdash			++	-		+					\vdash	-			-	$\left \cdot \right $							+		+
			\vdash			++	-		++					\vdash	-		+	-								+		+
			\square												-		$\uparrow \uparrow$	-										
													\square															\square
			\square			++	_		++						_			_				_	+			_		
+ +	++		\square	++	+	+	_		+	\rightarrow	$ \rightarrow $				_	$\left \cdot \right $		_	- -							+	\rightarrow	-
	++		\vdash			++		$\left \cdot \right $	++								+	-					+		++	+		-
$\left + \right + $	+		\vdash	++	++	++		$\left \cdot \right $	++	+			+		-	+	++	+-					+		++	+	++	+
	+		\vdash		++	++	-		++			-			-		+	-				-	+					
			\square			++									-			-										
	\square					1			1	\square	\square								\square								\square	\square
+ +	+		\vdash			++		$\left \cdot \right $	++	+					-		+	-					+			+		-
	++		\vdash	++	++-	++	-	$\left \right $	++	++					-	+	+	-					+		++	+	++	-
			\square												-		$\uparrow \uparrow$	-										

3. Power Inlet Filters & Power Entry Modules - Table of Contents

Introduction	
Selector Chart	
Power Entry Module Selector Guide	
C Series	
CU Series	134
EBF Series	138
EC Series	141
ED Series	
EEA & EEB Series	148
EAS & EBS Models	148
EAH & EBH Models	
EEJ Series	153
EJH & EJHS Models	153
EJM & EJMS Models	153
EJS Models	153
EF Series	160
EJT Series	163
GG & HG Series	166
H Series	
J Series	172
L Series	175
LA Series	180
M Series	
P Series	
SR Series	201
SRB Series	203

Introduction

Corcom EJS Series IEC Inlet RFI Filter

Power Inlet Filters feature power sockets integrated with EMI filters enclosed in RFI jackets. The AC power socket complies with IEC an standard to assure worldwide power cord compatibility. These filters are available in a wide variety of filtering, shielding, mounting and termination styles that provide the most compact and cost-effective inlet filtering available. For DC power inlet filters, see the DC section.

Corcom P Series CHAMELEON Power Entry Module

Power Entry Modules incorporate power sockets with filtering, fuses, switching and voltage selection in a variety of configurations to reduce cost, space and labor. The power sockets comply with IEC standards to assure worldwide AC power cord compatibility. For DC power entry modules, see the DC section.

Equipment marketed worldwide, must operate with

- Multiple different wall plugs and sockets
- Different fuse standards in America and Europe
- Different voltages in different regions
- On/Off switching options
- Different EMI requirements in different regions

The combinations are endless. Your equipment needs a single solution.

TE Connectivity's power entry modules can provide ONE mechanical solution for a variety of power entry needs. Each series supports several different configurations to suit the market requirements. Each starts with an international standard power cord connector, and includes options for fusing, voltage selection, switching, and filtering. Selecting one power entry module series simplifies the mechanical design, and each version within the series replaces the cost and labor of up to including up to five individual parts in the equipment bill of materials. With hundreds of different combinations of power entry functions, the modules in this catalog offer a cost-effective solution to the power entry needs of many systems. It is easy to select the module that best serves your needs.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Introduction (continued)

The selector guides on the next two pages help you configure the best power entry module for your application. Just select options from this menu of five categories.

IEC60320-1 Socket – Common to all modules, the 60320-1 universal socket allows your equipment to be used in every country. Simply select a power cord with a mating IEC 60320-1 plug on one end, and a regionally appropriate plug on the other.

Fusing Options – North American ($\frac{1}{4}$ " x $\frac{1}{4}$ " 3AG) or Metric (5mm x 20mm) or both? One fuse or two?

Voltage Selection Options – 4-voltage, 2-voltage, or 1-voltage? Multitap? Center-tap? Dual primary?

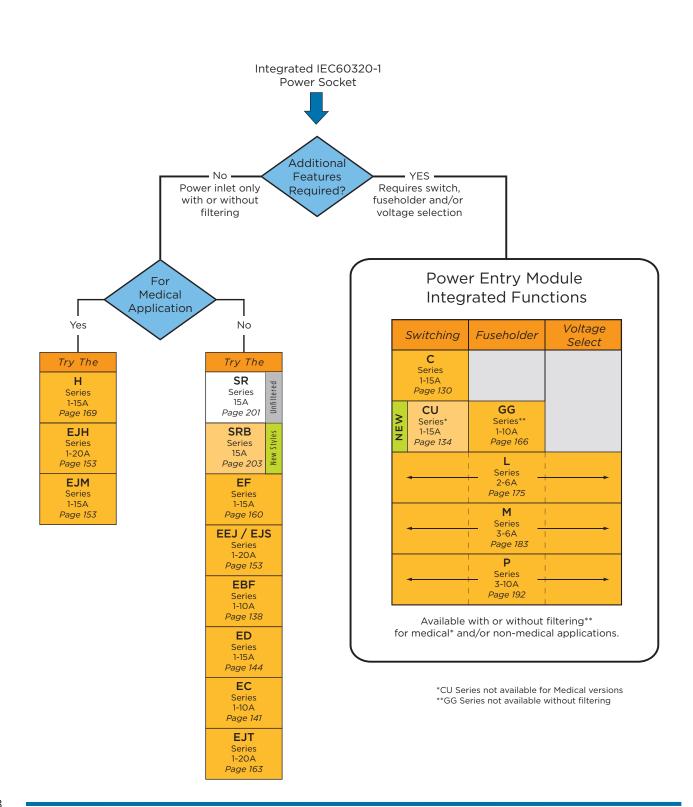
Power Switch - Yes or no? Double pole (DPST) or single (SPST)? These power entry module switches feature international on - off markings, current ratings up to 15A and high inrush current.

Shielding – reduce radiated emissions through the panel cut-out by selecting a module with a shield (optional on the C, CU, M and P).

Filtering options – Choice of six filter circuits (all with low leakage current to meet international standards) to fit specific filtering objectives:

- General purpose (C, CU, GG, J, LA, M and P) most cost-effective, for susceptibility and for high-frequency "clean-up" when used with a boardlevel filter
- Medical (in C, GG, L, M, and P series) for medical equipment
- Emissions/Linear (in L and P series) capable of bringing most digital equipment with linear power supplies into FCC compliance
- Emissions/SMPS-FCC (in P, LA and M series) capable of bringing most digital equipment with switch-mode power supplies into FCC Class B compliance
- Emissions/SMPS-VDE (in P, LA and M series) capable of bringing most digital equipment with switch-mode power supplies into VDE level B (as well as FCC Class B) compliance

Want more filtering options? Select a general purpose or an unfiltered module (C, CU, J, L, M, P, or SR series) and wire it up connect it to the load through one of the many Corcom chassis-mounted filter of your choice from the choices found in this comprehensive catalog. TE's Corcom product engineers can also design a custom filter for your specific application.


Available accessories expand your options even further. A Corcom product sales engineer can assist you with selecting the right filter for your application.

Having arrived at the best possible combination of power entry elements, TE's worldwide agency approvals will help ease your product through the necessary safety agencies. File numbers and Safety Agency information is listed in Section 7.

127

Selector Chart

Power Entry Module Selector Guide

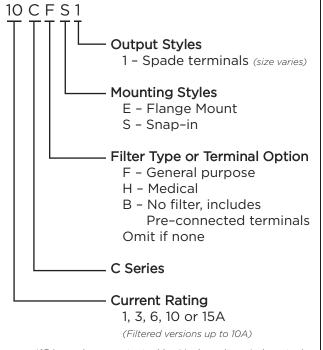
Corios	Unfil	tered		Filtered	k	0	ptior	าร
Series	Product Photo	Max. Current Rating	Product Photo	Max. Current Rating	Filter Type	On/Off Switch	Voltage Selections	Fuse Holder
С	A.	15A NEW		10A	Medical & General Purpose	Yes DPST	N/A	N/A
	15A			15A	General Purpose	Yes SPST	N/A	N/A
GG	Filtered Only		B	10A	Medical & General Purpose	N/A	Metric	
L		6A		6A	Medical & General Purpose	Optional DPST	Single or 4	North American or Metric
Μ		6A		6A	Medical, General Purpose & Switch Mode Power Supply	Optional DPST	Single, 2 or 4	North American or Metric
Р	New High Pa	10A erformance v	ersions in PE	10A and PM Mou	Medical, General Purpose & Switch Mode Power Supply nting Styles	Optional DPST	Single or 2	North American or Metric

N/A = Not Available

3

Power Entry Module with Switch

C Series



UL Recognized CSA Certified VDE Approved*

C Series

- Two function power entry module combining a DPST switch and an IEC 60320-1 inlet
- Snap-in or flange mounting
- Available with or without a shielded general purpose or medical grade filter
- Two element circuit provides enhanced EMI attenuation
- Reduce OEM wiring time with optional pre-connected line and switch terminals

Ordering Information

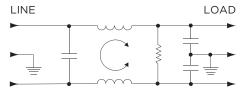
*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC

Specifications

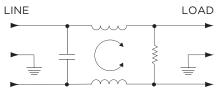
Maximum leakage current each Line to Ground:							
	F Models	H & Unfiltered					
@ 120 VAC 60 Hz:	.25 mA	2 µA					
@250 VAC 50 Hz:	.40 mA	5 µA					
Hipot rating (one minute):							
Line to Ground:		2250 VDC					
Line to Line:		1450 VDC					
Rated Voltage:		250 VAC					
Operating Frequency:		50/60 Hz					
Rated Current:		1 to 15A*					
Switch:		DPST					
10,000 op	perations at 51	A max. inrush					
.250 Terminal Push-on For	r ce: 18 lb.	/ 80N (max.)					
.188 Terminal Push-on For	ce: 15 lb.	. / 67N (max.)					

Available Part Numbers

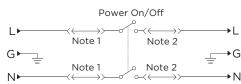
Filtered	Versions
1CHE1	1CFE1
3CHE1	3CFE1
6CHE1	6CFE1
10CHE1	10CFE1
1CHS1	1CFS1
3CHS1	3CFS1
6CHS1	6CFS1
10CHS1	10CFS1
Non-filtere	ed Versions
Standard Terminals	Pre-connected Terminals
10CS1	10CBS1
10CE1	10CBE1
15CS1	15CBS1
15CE1	15CBE1



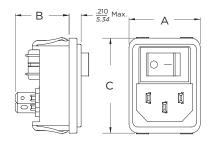
Power Entry Module with Switch (continued)


C Series

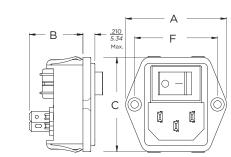
Electrical Schematics


F Models

H Models

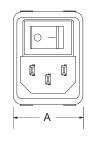

B Models

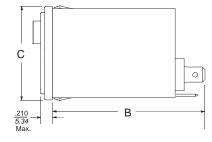
Note 1: Jumpers provided on CBS and CBE versions only Note 2: Location of optional filter


Case Styles

CS, CBS

Typical Dimensions: Line Inlet (1): Terminals (6): Ground Terminal (1):

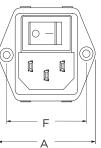


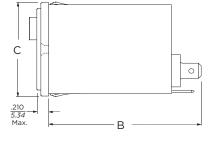

Typical Dimensions: Mounting holes (2):

CE, CBE

Line Inlet (1): Terminals (6): Ground Terminal (1): .13 [3.3] Dia. with .23 [5.9] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .187 [4.8] with .055 [1.4] Dia. hole .187 [4.8] with .112 x .06 [2.8 x 1.5] slot

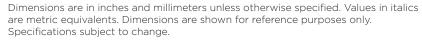
CFS, CHS





Typical Dimensions: Line Inlet (1): Terminals (3):

IEC 60320-1 C14 .25 [6.35] with .07 [1.8] Dia. hole

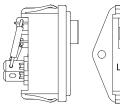

CFE, CHE

Typical Dimensions: Mounting holes (2): Line Inlet (1): Terminals (3):

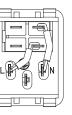
.13 [3.3] Dia. with .23 [5.9] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .25 [6.35] with .07 [*1.8*] Dia. hole 3

For email, phone or live chat, please go to te.com/help corcom.com

Downloaded From Oneyac.com



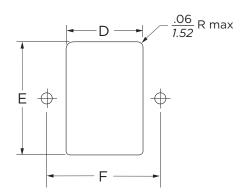
Power Entry Module with Switch (continued)


C Series

Case Styles (continued)

CBS, CBE Pre-Connected Terminals

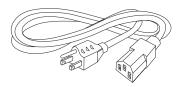
CBS, CBE Side View


CBE Rear View CBS Rear View

Case Dimensions

Part No.	A (max.)	B (max.)	C (max.)	D <u>±.01</u> ±.254	E <u>± .01</u> ± .254	F <u>± .006</u> ± .152
CS, CBS	1.22	.93	1.62	1.06	1.54 *	-
C3, CD3	31.0	23.6	41.2	26.92	39.12*	
CE, CBE	1.74	.93	1.62	1.06	1.56	1.417
CE, CDE	44.2	23.6	41.2	26.92	39.62	36.0
CFS, CHS	1.22	2.53	1.62	1.12	1.54 *	_
сгз, спз	31.0	64.3	41.2	28.5	39.12*	
CFE, CHE	1.74	2.53	1.62	1.12	1.56	1.417
CFE, CHE	44.2	64.3	41.2	28.5	39.62	36.0

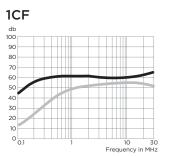
*+ .000 [.000] / - .008 [.20]

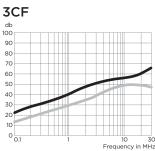

Recommended Panel Cutout

Panel Thickness: .031 - .098 [0.8 - 2.5] Not recommended for plastic panels. Snap–in models suitable for front mounting only. For Snap–in applications, the D sides of the cutout must have a .02 [.508] radius on the installation side.

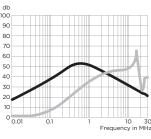
Accessories

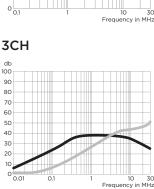
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

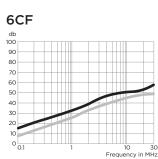

Power Entry Module with Switch (continued)

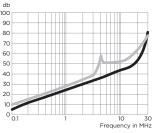

C Series

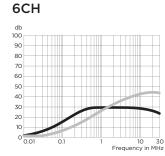
Performance Data

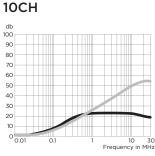

Typical Insertion Loss


Measured in closed 50 Ohm system









10CF

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

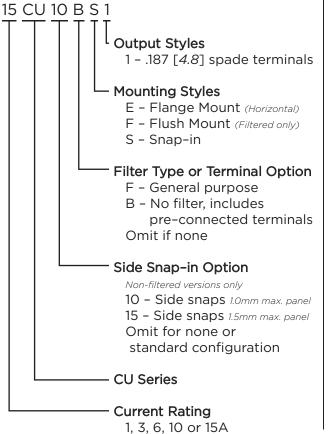
Common Mode /	Asymmetrical (Line to Ground)
---------------	-------------------------------

Common Mo	de / Asy	mme	trical	(Line	to Gr	ound)	Differential Mod	de / S	ymme	etrical	(Line	e to Li	ne)		
Current			Frequ	iency	– MH:	z		Current			Frequ	iency	– MHz	lz		
Rating	.05	.15	.5	1	5	10	30	Rating	.05	.15	.5	1	5	10	30	
F Models								F Models								
1A	10	26	46	48	46	47	46	1A	1	3	13	28	62	67	42	
3A	8	16	32	36	43	48	50	3A	2	6	14	23	65	65	67	
6A	4	11	22	27	36	41	50	6A	2	6	14	27	46	48	58	
10A	1	4	14	18	27	33	42	10A	1	7	14	23	42	44	62	
H Models								H Models								
1A	16	21	37	44	26	21	10	1A	1	6	13	29	38	42	26	
3A	9	14	31	32	26	24	14	3A	1	5	10	22	36	34	36	
6A	4	10	22	23	19	18	13	6A	1	5	14	20	31	33	37	
10A	2	6	10	15	11	11	9	10A	1	4	11	19	32	37	38	

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Compact 1U Height Switched Power Entry Module

CU Series



UL Recognized CSA Certified VDE Approved*

CU Series

- Designed for popular 1U (1 ³/₄") height rack mounted equipment
- Two function power entry module combining a SPST switch and an IEC 60320-1 inlet
- Snap-in, flange and flush mounting
- Reduce OEM wiring time with optional pre-connected line and switch terminals

Ordering Information

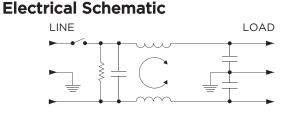
Specifications

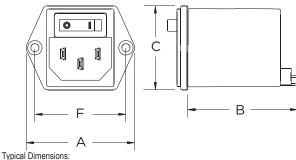
Maximum leakage current e	each Line to	Ground:
@ 120 VAC 60 Hz:	<u>Filtered</u> .25 mA	Unfiltered 2 µA
@250 VAC 50 Hz:	.40 mA	2 μA 5 μA
Hipot rating (one minute):		
Line to Ground: Line to Line:		2250 VDC 1450 VDC
Operating Voltage:		120/250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 15A*
Switch:	50A inrush	capable SPST
Terminal Push-on Force:	15 lb	o. / 67N (max.)

Available Part Numbers

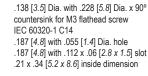
	Filtered Version	S					
1CUFE1	1CUFF1	1CUFS1					
3CUFE1	3CUFF1	3CUFS1					
6CUFE1	6CUFF1	6CUFS1					
10CUFE1	10CUFF1	10CUFS1					
15CUFE1 15CUFF1 15CUFS1							
No	on-filtered Versi	ons					

Standard Terminals	Pre-connected Terminals					
15CUE1	15CUBE1					
15CUS1	15CUBS1					
15CU10S1	15CU10BS1					
15CU15S1	15CU15BS1					

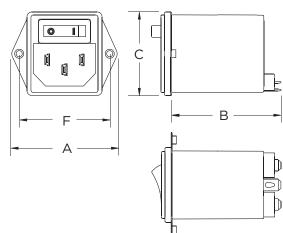

*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC


Compact 1U Height Switched Power Entry Module (continued)

CU Series


Case Styles

CUFE1

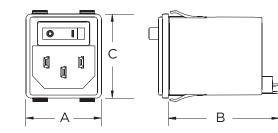


Mounting holes (2):

Line Inlet (1): Terminals (2): Ground Terminal (1): Output Shroud:

CUFF1

For rear mounted applications only. Maximum panel thickness: .157 [4.0]

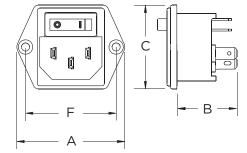

Typical Dimensions:

Mounting Holes(2): Line Inlet (1): Terminals (2): Ground Terminal (1): Output Shroud:

M3 x 0.5 Threaded flange IEC 60320-1 C14 .187 [4.8] with .055 [1.4] Dia. hole .187 [4.8] with .112 x .06 [2.8 x 1.5] slot .21 x .34 [5.2 x 8.6] inside dimension

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

CUFS1

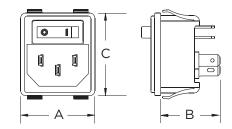


Typical Dimensions:

Line Inlet (1): Terminals (2): Ground Terminal (1): Output Shroud:

IEC 60320-1 C14 .187 [4.8] with .055 [1.4] Dia. hole .187 [4.8] with .112 x .06 [2.8 x 1.5] slot .21 x .34 [5.2 x 8.6] inside dimension

CUE1



Note: Switch output terminal configuration may vary Typical Dimensions:

Mounting holes (2): Line Inlet (1): Terminals (4): Ground Terminal (1):

.138 [3.5] Dia. with .228 [5.8] Dia. x 90° countersink for M3 flathead screw IEC 60320-1 C14 .187 [4.8] with .055 [1.4] Dia. hole .187 [4.8] with .112 x .06 [2.8 x 1.5] slot

CUS1

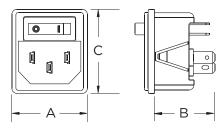
Note: Switch output terminal configuration may vary Typical Dimensions:

> Line Inlet (1): Terminals (4): Ground Terminal (1):

IEC 60320-1 C14 .187 [4.8] with .055 [1.4] Dia. hole .187 [4.8] with .112 x .06 [2.8 x 1.5] slot

135

For email, phone or live chat, please go to te.com/help corcom.com

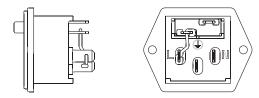


Compact 1U Height Switched Power Entry Module (continued)

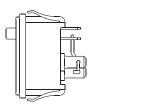
CU Series

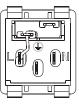
Case Styles (continued)

CU10S1 & CU15S1

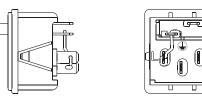

Available for panel thickness .07 - 1.0mm (CU10S1) or 1.2 - 1.5mm CU15S1 Note: Switch output terminal configuration may vary Typical Dimensions:

ensions: Line Inlet (1): Terminals (4):

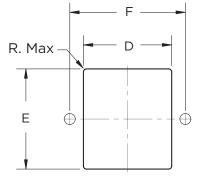

Ground Terminal (1):


IEC 60320-1 C14 .187 [4.8] with .055 [1.4] Dia. hole .187 [4.8] with .112 x .06 [2.8 x 1.5] slot

CUBE1 Pre-Connected Terminals



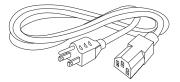
CUBS1 Pre-Connected Terminals


CU10BS1 & CU15BS1 Pre-Connected Terminals

Case Dimensions

Part No.	A (max.)	B (max.)	C (max.)	D <u>± .004</u> ± .100	E <u>± .004</u> ± .100	F <u>± .004</u> ± .100
CUFE1	1.73	1.75	1.34	1.11	1.26	1.45
CUFEI	43.9	44.5	34.1	28.1	31.9	36.8
CUFF1	1.7	1.8	1.34	1.21	1.35	1.45
CUFFI	43.1	45.0	34.1	30.8	34.3	36.8
	1.20	1.8	1.34	1.11	1.26	
CUFS1	30.6	45.0	34.1	28.1	32.0	•
CUE1,	1.73	.96	1.34	1.06	1.09	1.45
CUBE1	43.9	24.6	34.1	26.9	27.6	36.8
CUS1,	1.20	0.97	1.34	1.04	1.26	
CUBS1	30.6	24.6	34.1	26.4	32.0	-
10CUS1,	1.20	0.97	1.34	1.05	1.24	
10CUBS1	30.6	24.6	34.1	26.7	31.6	-
15CUS1,	1.20	0.97	1.34	1.05	1.24	
15CUBS1	30.6	24.6	34.1	26.7	31.6	-

Recommended Panel Cutout


Model	Panel Thickness	R Dim.
CUFF1	.157 [<i>4.0</i>] max.	1.8 [45.72]
CUFS1, CUS1	.025082 [0.63 - 2.1]	1.0 [25.4]
CU10S1	.028 – .039 [0.7 – 1.0]	1.0 [25.4]
CU15S1	.047 – .059 [1.2 – 1.5]	1.0 [25.4]

Note 1: CUFF1 allows for back mounting only

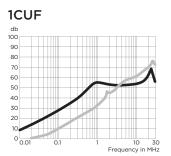
Note 2: All other models allow for front mounting only

Accessories

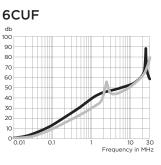
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

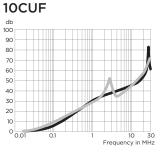
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

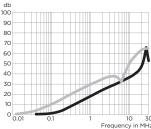

Compact 1U Height Switched Power Entry Module (continued)

CU Series


Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system



Common Mode / Asymmetrical (L-G) —— Differential Mode / Symmetrical (L-L)

15CUF

Frequency in MHz

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode	e / Asy	mme	trical	(Line	to Gr	ound)
Current			Frequ	ency	– MHz	Z	
Rating	.05	.15	.05	1	5	10	30
1A	19	30	44	49	47	44	45
3A	13	23	37	43	47	44	49
6A	5	14	28	34	43	43	48
10A	1	7	19	25	35	36	52
15A	-	1	10	13	25	27	42

Differential Mode / Symmetrical (Line to Line)

Current		Frequency – MHz						
Rating	.05	.15	.05	1	5	10	30	
1A	1	10	21	26	48	51	60	
3A	1	10	20	26	42	45	65	
6A	1	10	20	23	38	41	65	
10A	1	10	20	23	29	34	56	
15A	1	10	20	23	28	39	54	

Power Inlet Filters & Power Entry Modules

3

Accessory Outlet Filter

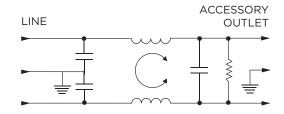
EBF Series

UL Recognized CSA Certified VDE Approved

EBF Series

- Accessory IEC 60320-1 C13 filtered outlet
- Allows connection of accessories while filtering noise between a system and the accessory
- Enhanced performance across the frequency range
- Grounded connection
- Suitable for international usage

Ordering Information


- Current Rating 1, 3, 6, or 10A

Specifications

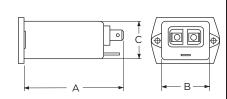
Maximum leakage current each Line to Ground:					
@ 120 VAC 60 Hz:	.25 mA				
@250 VAC 50 Hz:	.50 mA				
Hipot rating (one minute):					
Line to Ground:	2250 VDC				
Line to Line:	1450 VDC				
Rated Voltage (max.):	250 VAC				
Operating Frequency:	50/60 Hz				
Rated Current:	1 to 10A				
Operating Ambient Temperature Rang	ge				
(at rated current I _r):	-10°C to +40°C				
T	where there 14000				

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Electrical Schematic

Available Part Numbers

1EBF1	1EBF4
3EBF1	3EBF4
6EBF1	6EBF4
10EBF1	10EBF4

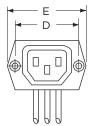


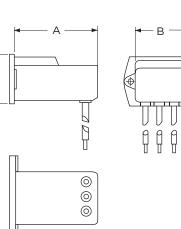
EBF Series

Case Styles

EBF1

.132 [3.35] Dia. with .236 [5.99] Dia. x 90°


Typical Dimensions: Mounting holes (2):

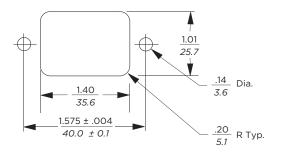

> Load Outlet (1): Line Terminals (2): Ground Terminal (1):

> > С

countersink for #4 flathead screw IEC 60320-1 C13 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

EBF4

Typical Dimensions:


Mounting holes (2):

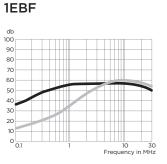
Load Outlet (1): Wire Leads (3): .132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C13 10.0 [254.0] min., 18AWG, UL1015

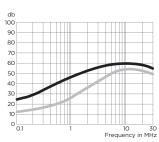
Case Dimensions

Part No.	A	В	C	D ± .01	E
	(max.)	(max.)	(max.)	<u>± .01</u> ± .25	(max.)
EBF1	2.57	1.33	1.00	1.575	1.99
	65.3	33.8	25.4	40.01	50.5
EBF4	2.09	1.39	1.16	1.575	1.99
	53.01	35.31	29.46	40.01	50.5

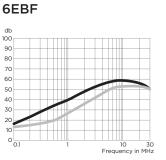
Recommended Panel Cutout

Front Mount Only Tolerance + .008 [.203] / - .000 [.000] 3

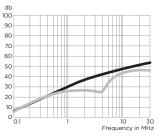

Accessory Outlet Filter (continued)


EBF Series

Performance Data


Typical Insertion Loss

Measured in closed 50 Ohm system



3EBF

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

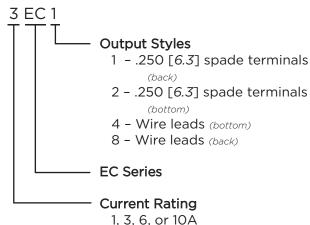
Current			Frequ	ency	– MHz	,		Current		Frequency – MHz					
Rating	05	.15	.5	1	5	10	30	Rating	.05	.15	.5	1	5	10	30
Rating	.05	.15	.5	_	5	10	30	Rating	.05	.15	.5	_	5	10	30
1A	23	32	41	47	47	47	40	1A	3	14	23	41	47	50	44
3A	10	19	30	36	48	50	47	3A	2	11	14	25	38	44	40
6A	1	10	22	28	42	48	47	6A	2	10	14	20	33	42	40
10A	1	5	14	20	32	38	47	10A	2	10	16	19	19	39	40

Differential Mode / Symmetrical (Line to Line)

140

High Performance EMI Power Inlet Filter

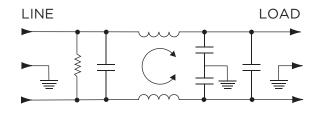
EC Series


UL Recognized CSA Certified VDE Approved

EC Series

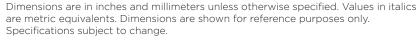
- Three element differential mode circuit provides the highest attenuation of any available standard inlet filter
- High common mode inductance
- High differential mode capacitance
- Effective attenuation of Line to Ground and Line to Line noise across the frequency range
- Performance and application similar to the ED series but with higher differential mode performance
- Includes several termination options

Ordering Information



Specifications

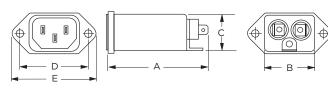
Maximum leakage current each Line to Ground:					
@ 120 VAC 60 Hz:	.25 mA				
@250 VAC 50 Hz:	.50 mA				
Hipot rating (one minute):					
Line to Ground:	2250 VDC				
Line to Line:	1450 VDC				
Rated Voltage (max.):	250 VAC				
Operating Frequency:	50/60 Hz				
Rated Current:	1 to 10A				
Operating Ambient Temperature Range					
(at rated current I _r):	-10°C to +40°C				
In an ambient temperature (T_{a}) higher than +40°C					


In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematic

Available Part Numbers

1EC1	1EC2	1EC4	1EC8
3EC1	3EC2	3EC4	3EC8
6EC1	6EC2	6EC4	6EC8
10EC1			



High Performance EMI Power Inlet Filter (continued)

EC Series

Case Styles

EC1

EC2

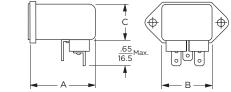
Typical Dimensions:

۵

0

D

Е


EC4

Ð

Line Inlet (1): IEC 60320-1 C14

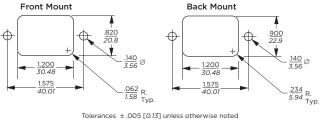
Load Terminals (2):

Ground Terminal (1):

.250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

ċ

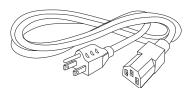
(+


 \oplus

F

Case Dimensions

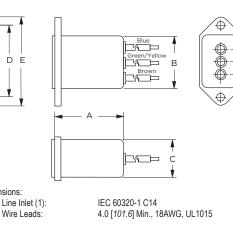
Part	Α	В	С	D	Е	F
No.	(max.)	(max.)	(max.)	<u>±.015</u> ±.38	(max.)	(ref.)
EC1	2.62	1.19	0.81	1.575	1.98	_
ECI	66.5	30.2	20.6	40.01	50.3	
EC2	1.97	1.19	0.85	1.575	1.98	_
	50.0	30.2	21.6	40.01	50.3	
	1.97	1.19	0.85	1.575	1.98	.295
EC4	50.0	30.2	21.6	40.01	50.3	7.5
EC8	1.98	1.19	0.81	1.575	1.98	.298
	50.0	30.2	20.6	40.01	50.3	7.5


Recommended Panel Cutouts

EC1 and EC8 allow for front or back mounting Note 1: Note 2: EC2 and EC4 allow for back mounting only

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord


FA601: Insulating Shroud

.413 Dia. 271 Dia .118 3.0 1.39 1.17

EC8 Æ D F

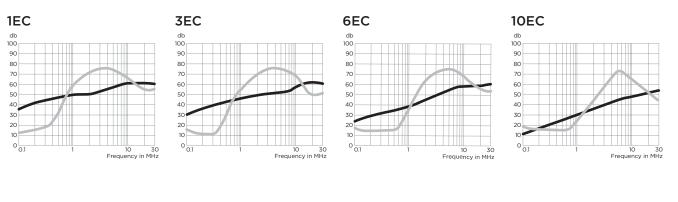
¢

Typical Dimensions:

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

.767 19.5


High Performance EMI Power Inlet Filter (continued)

EC Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)						
Current	Frequency – MHz					
Rating	.15	.5	1	5	10	30
1A	25	35	40	50	50	50
3A	20	30	37	47	48	50
6A	15	22	25	40	45	50
10A	7	14	20	35	39	48

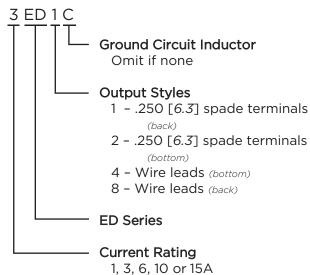
Differential Mode /	Symmetrical	(Line to Line)
Differential Mode /	Symmetrical	(Line to Line)

Current	Frequency – MHz						
Rating	.15	.5	1	5	10	20	30
EC1, EC2 & EC	8						
1A	5	35	50	60	60	40	40
3A	5	25	45	60	55	34	34
6A	10	10	40	65	60	40	40
10A	10	10	27	65	56	38	38
EC4							
1A	5	35	50	60	60	33	33
3A	5	30	45	60	55	34	34
6A	10	10	40	65	60	33	33

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Medium Performance Compact EMI Power Inlet Filter

ED Series


UL Recognized CSA Certified **VDE** Approved*

ED Series

- Two element circuit provides medium attenuation
- Available with an internal ground-circuit inductor (C versions) to isolate equipment chassis from power line ground at radio frequencies
- Versions up to 15A*
- Similar to EEJ Series with alternative termination options
- See the EC Series for better differential mode performance

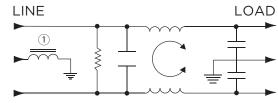
Ordering Information

*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC Note 1: C versions only

Specifications

Maximum leakage current each Line to Ground:					
@ 120 VAC 60 Hz:	.22 mA				
@250 VAC 50 Hz:	.38 mA				
Hipot rating (one minute):					
Line to Ground:	2250 VDC				
Line to Line:	1450 VDC				
Rated Voltage (max.):	250 VAC				
Operating Frequency:	50/60 Hz				
Rated Current:	1 to 15A*				
Operating Ambient Temperature Range					
(at rated current I _r):	-10°C to +40°C				
T					

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_0) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

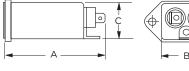

Available Part Numbers

1ED1	1ED2	1ED4	1ED8
3ED1	3ED2	3ED4	3ED8
6ED1	6ED2	6ED4	6ED8
10ED1			
15ED1			15ED8

Ground Circuit Inductor Versions

6ED1C	6ED4C	6ED8C
10ED1C		

Electrical Schematic


Medium Performance Compact EMI Power Inlet Filter (continued)

ED Series

Case Styles

ED1 & ED1C

Typical Dimensions: Mounting holes (2):

> Line Inlet (1): Load Terminals (2): Ground Terminal (1):

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

¢ (∉

<u>.65</u>_{Max.} 16.5

4

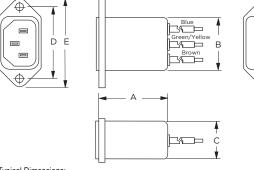
.132 [3.35] Dia. with .236 [5.99] Dia. x 90°

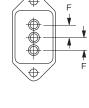
countersink for #4 flathead screw

.250 [6.3] with .07 [1.8] Dia. hole

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

IEC 60320-1 C14

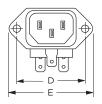

ED8 & ED8C


 \oplus

Ð

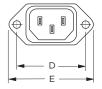
اقار

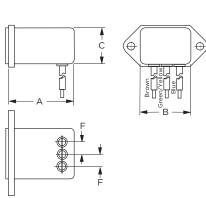
R



Typical Dimensions: Mounting holes (2):

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 4.0 [101.6] Min., 18AWG, UL1015


ED2



Typical Dimensions: Mounting holes (2):

Line Inlet (1): Load Terminals (2): Ground Terminal (1):

ED4 & ED4C

Typical Dimensions:

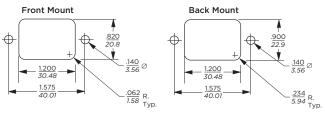
Mounting holes (2): Line Inlet (1): Wire Leads: .132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 4.0 [*101.6*] Min., 18AWG, UL1015

Case Dimensions

Line Inlet (1):

Wire Leads:

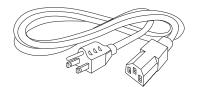
Part No.	Α	В	С	D	Е	F
Fart NO.	(max.)	(max.)	(max.)	<u>± .015</u> ± .38	(max.)	(ref.)
1ED1, 3ED1,	2.21	1.19	0.81	1.575	1.98	_
6ED1	56.0	30.2	20.6	40.01	50.3	
1ED2, 3ED2,	1.55	1.19	0.85	1.575	1.98	_
6ED2	39.4	30.2	21.6	40.01	50.3	-
1ED4, 3ED4,	1.55	1.19	0.85	1.575	1.98	.295
6ED4	39.4	30.2	21.6	40.01	50.3	7.5
1ED8, 3ED8,	1.55	1.19	0.81	1.575	1.98	.295
6ED8	39.4	30.2	20.06	40.01	50.3	7.5
	2.62	1.19	0.81	1.575	1.98	_
6ED1C	66.5	30.2	20.6	40.01	50.3	
6ED4C	1.98	1.19	0.85	1.575	1.98	.295
0ED4C	50.3	30.2	21.6	40.01	50.3	7.5
6ED8C	1.98	1.19	0.81	1.575	1.98	.295
DEDOC	50.3	30.2	20.06	40.01	50.3	7.5
10ED1 /1C,	2.62	1.19	0.81	1.575	1.98	_
15ED1	66.5	30.2	20.6	40.01	50.3	-
	1.98	1.19	0.81	1.575	1.98	_
15ED8	1.98	1.19	0.81	1.575	1.98	-



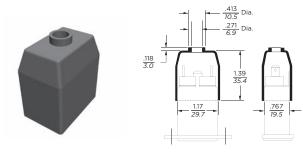
Medium Performance Compact EMI Power Inlet Filter (continued)

ED Series

Recommended Panel Cutouts

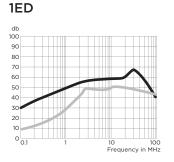


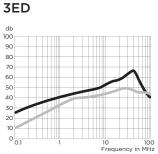
Tolerances ± .005 [0.13] unless otherwise noted


Note 1: ED1 and ED8 allow for front or back mounting Note 2: ED2 and ED4 allow for back mounting only

Accessories

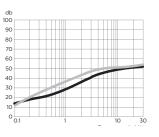
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

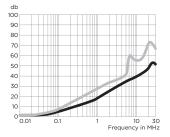

FA601: Insulating Shroud

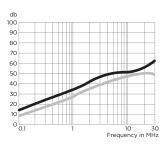


Performance Data

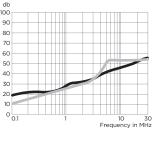
Typical Insertion Loss


Measured in closed 50 Ohm system





10ED1 & 10ED1C



6ED

6ED1C

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Medium Performance Compact EMI Power Inlet Filter (continued)

ED Series

Performance Data (continued)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode /	/ Asymi	metric	al (Lir	ne to G	Ground))	Differential Mode	e / Sym	metri	cal (Li	ne to l	_ine)	
Current		Fr	equen	cy – M	Hz		Current		Fr	requen	cy – M	Hz	
Rating	.15	.5	1	5	10	30	Rating	.15	.5	1	5	10	30
ED1, ED2, ED4 &	ED8						ED1, ED2, ED4 &	ED8					
1A	24	35	42	49	52	54	1A	3	15	20	37	37	36
ЗA	20	29	36	45	50	54	3A	3	15	20	37	37	36
6A	14	23	30	41	45	50	6A	3	15	20	31	35	34
10A	8	14	20	35	39	45	10A	6	15	20	23	44	47
15A	4	9	12	28	34	40	15A	6	18	23	33	44	47
ED1C							ED1C						
6A	14	20	25	37	42	50	6A	7	17	23	36	42	42
10A	8	14	20	35	39	45	10A	6	15	20	23	44	47
ED4C & ED8C							ED4C & ED8C						
6A	14	20	25	37	42	50	6A	7	17	23	29	38	42

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

Cost-effective EMI Power Inlet Filter

EEA & EEB Series

Including the EAS/EBS and EAH/EBH Models

UL Recognized CSA Certified VDE Approved

EEA Series

- Compact single stage EMI filter with IEC 60320-1 C14 inlet
- Two element circuit provides basic attenuation
- Same performance as the EF Series
- Available in three terminal configurations
- Supersedes EF Series

EEB Series

- Compact EMI filter with IEC 60320-1 C14 inlet
- Two element circuit provides extended attenuation
- Extended differential mode performance
- Available in three terminal configurations

EAS & EBS Models

- Same performance as EEA and EEB Series
- Snap-in mounting
- Spade terminals

EAH & EBH Models

- Same size as EEA and EEB
- Minimal leakage current suitable for medical applications
- Flange mounted
- Spade terminals

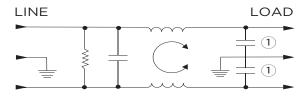
EEA2 / EEB2

EEAP / EEBP

Specifications

1

I

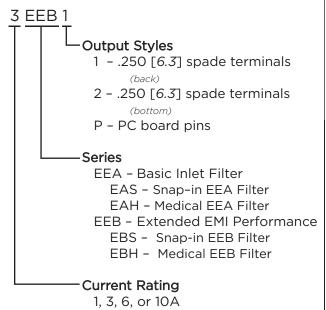

1

Maximum leakage current each Line to Ground:

@ 120 VAC 60 Hz: @ 250 VAC 50 Hz:	EEA/EEB EAS/EBS .22 mA .38 mA	<u>ΕΑΗ/ΕΒΗ</u> 2 μΑ 5 μΑ
Hipot rating (one minute): Line to Ground: Line to Line:		2250 VDC 1450 VDC
Rated Voltage (max.):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 10A
Operating Ambient Tempe (at rated current I_):	rature Rang	ge -10°C to +40°C

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_0) is calculated as follows: $\tilde{l_0} = l_r \sqrt{(85-Ta)/45}$

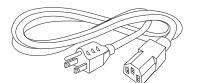
Electrical Schematic



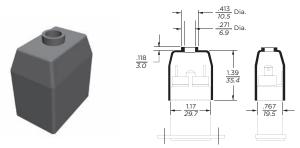
Note 1: Not present in EAH / EBH versions

EEA & EEB Series

Ordering Information



Available Part Numbers

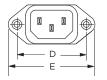

EEA Models	EEB Models
1EEA1	1EEB1
1EEA2	1EEB2
1EEAP	1EEBP
3EEA1	3EEB1
3EEA2	3EEB2
3EEAP	3EEBP
6EEA1	6EEB1
6EEA2	6EEB2
6EEAP	6EEBP
10EEA1	10EEB1
10EEA2	10EEB2
10EEAP	10EEBP
EAS Models	EBS Models
1EAS1	1EBS1
3EAS1	3EBS1
6EAS1	6EBS1
10EAS1	10EBS1
EAH Models	EBH Models
1EAH1	1EBH1
3EAH1	3EBH1
6EAH1	6EBH1
10EAH1	10EBH1
IUEAHI	IVEBHI

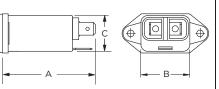
Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

FA601: Insulating Shroud

Power Inlet Filters & Power Entry Modules


Downloaded From Oneyac.com



EEA & EEB Series

Case Styles

EEA1, EEB1, EAH1 & EBH1

Typical Dimensions: Mounting holes (2):

> Line Inlet (1): Load Terminals (2): Ground Terminal (1):

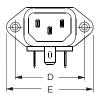
.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

ċ (⊕

.50

.132 [3.35] Dia. with .236 [5.99] Dia. x 90°

countersink for #4 flathead screw

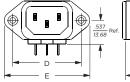

.250 [6.3] with .07 [1.8] Dia. hole

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

IEC 60320-1 C14

0

EEA2 & EEB2



Typical Dimensions:

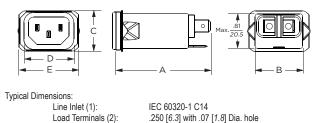
Mounting holes (2):

Line Inlet (1): Load Terminals (2): Ground Terminal (1):

EEAP & EEBP

Typical Dimensions:

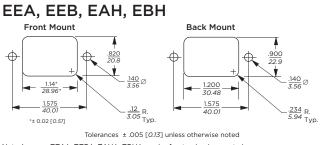
Mounting holes (2):

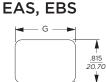

Line Inlet (1): PC board pins (3):

Ground Terminal (1):

C 0.551 1.3995 A .132 [3.35] Dia. with .236 [5.99] Dia. x 90°

countersink for #4 flathead screw IEC 60320-1 C14 .031 [.07] square, ± .003 [.07]

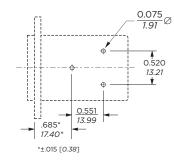

EAS1 & EBS1


Α В С D Ε Part No. <u>±.010</u> ±.25 (max.) (max.) (max.) (max.) EEA1, EEB1, 2.15 1.12 0.81 1.575 1.98 EAH1, EBH1 54.6 28.4 20.6 40.01 50.3 1.54 1.12 0.81 1.575 1.98 EEA2, EEB2 39.1 28.4 20.6 40.01 50.3 1.54 1.12 0.81 1.575 1.98 EEAP, EEBP 39.1 28.4 50.3 20.640.01 1.41 2.20 1.15 .96 1.185 EAS1, EBS1 55.88 29.2 24.38 30.10 35.81

Recommended Panel Cutouts

Case Dimensions

Note 1: EEA1, EEB1, EAH1, EBH1 can be front or back mounted Note 2: EEA2, EEB2, EEAP and EEBP can be back mounted only



Front Mount only

- R 0.188 [*4.78*] (4X)

PC Board Layout

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

6A

db 100

90

80

70

60

50

40

30

20

10 0 0.

6A

db 100

90

80

70

60

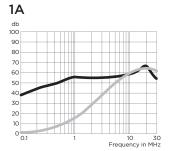
50

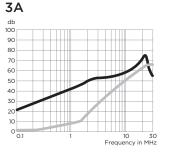
40

30

20

10 30 Frequency in MHz


EEA & EEB Series


Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

EEA, EAS Models

3A

db 100

90

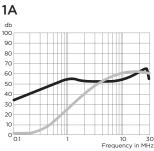
80

70

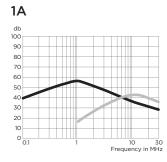
60

50

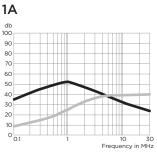
40

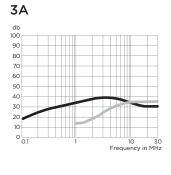

30

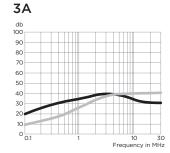
20

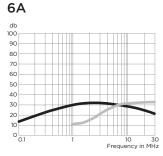

10

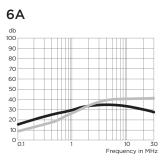
0<u>₽</u>

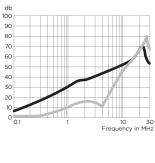

EEB, EBS Models



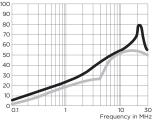




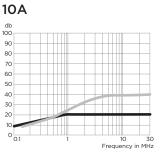

EBH Models



Common Mode / Asymmetrical (L-G)


Differential Mode / Symmetrical (L-L)

10A


10A

10A

10 30 Frequency in MHz

db 90 80 70 50 40 30 00 0,1 1 10 30 Frequency in MHz

3

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

EEA & EEB Series

Performance Data (continued)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mc	ode /	Asyr	nme	trica	l (Lir	ne to	Grou	und)		Differential Mo	ode /	Sym	metr	ical (l	_ine t	o Lin	ne)	
Current			F	requ	ency	′ – MI	Hz			Current		F	requ	ency	– MH	z		
Rating	.01	.05	.1	.15	.5	1	5	10	30	Rating		.5	1	1.5	3	5	10	30
EEA / EAS M	odels	5								EEA / EAS Mo	dels							
1A	12	23	29	32	41	47	47	47	40	1A		1	9	19	32	42	45	40
ЗA	-	10	15	19	30	36	48	50	47	3A		2	4	6	20	35	45	40
6A	-	1	4	10	22	28	42	48	47	6A		2	4	6	6	24	40	40
10A	-	1	3	5	14	20	32	38	47	10A		1	4	5	5	5	30	40
													Fre	quen	cy – I	MHz		
											.01	.15	.5	1	3	5	10	30
EEB / EBS M	lodels	5								EEB / EBS Mo	dels							
1A	12	23	29	32	41	47	47	47	40	1A	1	3	14	23	41	47	50	44
ЗA	-	10	14	18	30	36	48	50	47	3A	1	2	11	14	25	38	44	40
6A	-	1	4	10	22	28	42	48	47	6A	1	2	10	14	20	33	42	40
10A	-	1	3	5	14	20	32	38	47	10A	1	2	10	16	19	19	39	40
														F	requ	ency	– MH	z
														1	1.5	5	10	30
EAH Models										EAH Models								
1A	8	21	29	32	42	45	32	30	19		1A			5	13	28	32	25
ЗA	-	5	10	15	25	27	30	27	22	3	3A			4	6	20	27	28
6A	-	-	5	6	19	21	24	20	15	e	6A			2	5	19	25	27
10A	-	-	1	5	9	12	12	12	12	1	0A			1	5	15	22	27
														Fre	quen	cy – I	MHz	
													.15	.5	1	10	10	30
EBH Models										EBH Models								
1A	8	21	29	32	42	45	32	25	19	1A			1	10	18	30	31	31
ЗA	-	5	10	15	25	27	30	27	22	3A			1	10	18	30	31	31
6A	-	-	5	8	17	20	24	23	18	6A			1	10	18	30	31	31
10A	-	-	-	3	8	12	12	12	12	10A			1	10	18	30	31	31

Cost-effective Medium Performance Power Inlet Filter

EEJ Series

Including the EJH/EJHS, EJM/EJMS and EJS Models

UL Recognized CSA Certified VDE Approved*

EEJ Series

- Compact EMI filter with IEC 60320-1 C14 Inlet
- Enhanced two element circuit provides medium attenuation to 30MHz
- Compact and cost-effective design
- Supersedes most ED Series versions
- Includes 20A version with standard IEC 60320-1 C20 inlet
- Several termination styles
- Flanged mounting

EJS Models

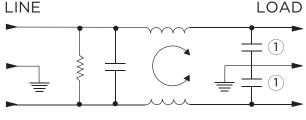
- Same performance as the EEJ Series
- Snap-in mounting
- Several termination styles
- Includes 20A version with standard IEC 60320-1 C20 inlet

EJH & EJHS Models

- Minimal leakage current suitable for patientcontact medical applications
- Flanged mounting the same as the EEJ Series
- Also available in snap-in versions (EJHS)
- Two element circuit provides modest EMI attenuation above 1MHz
- Capacitive input (refer to the H Series for capacitive output)
- EJHS models feature snap-in mounting

EJM & EJMS Models

- Low leakage current, suitable for most medical applications
- Improved EMI attenuation up to 200MHz
- Mechanically the same as the EEJ Series with flange or snap-in mounting
- EJMS models feature snap-in mounting


Specifications

Maximum leakage current each Line to Ground:

5	EEJ/EJS	EJH	EJM
@ 120 VAC 60 Hz:	.22 mA	2 µA	.01 mA
@250 VAC 50 Hz:	.38 mA	5 µA	.017 mA
Hipot rating (one minute	e):		
Line to Ground:		2	250 VDC
Line to Line:		1	450 VDC
Rated Voltage (max.):			250 VAC
Operating Frequency:		ļ	50/60 Hz
Rated Current:			1 to 20A*
Operating Ambient Tem	perature Ra	nge	
(at rated current I _r):		-10°C	to +40°C
In an ambient temper	rature (T ₋) h	iaher th	an +40°C

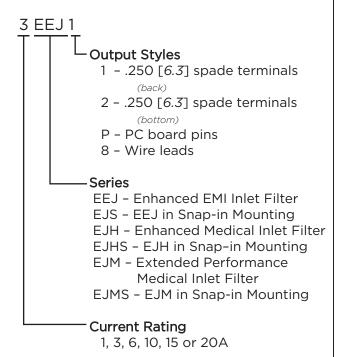
In an ambient temperature (T_a) higher than +40°C the maximum operating current (I_o) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Electrical Schematic

Note 1: Not present in EJH versions

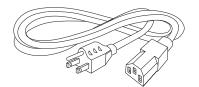
*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC 20A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 16A, 250VAC

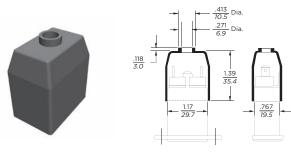
153



Available Part Numbers

EEJ Series Including the EJH/EJHS, EJM/EJMS and EJS Models

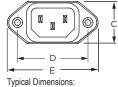

Ordering Information

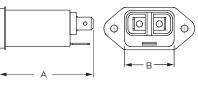

EEJ Models	EJH Models
1EEJ1	1EJH1
1EEJ2	1EJH2
1EEJP	1EJHP
1EEJ8	1EJH8
3EEJ1	3EJH1
3EEJ2	3EJH2
3EEJP	3EJHP
3EEJ8	3EJH8
6EEJ1	6EJH1
6EEJ2	6EJH2
6EEJP	6EJHP
6EEJ8	6EJH8
10EEJ1	10EJH1
10EEJ2	10EJH2
10EEJP	10EJHP
10EEJ8	10EJH8
15EEJ1	15EJH1
15EEJ2	15EJH2
15EEJP	15EJHP
15EEJ8	15EJH8
20EEJ1	20EJH1
20EEJ8	20EJH8
EJS Models	EJHS Models
1EJS1	1EJHS1
1EJS8	1EJHS8
3EJS1	3EJHS1
3EJS8	3EJHS8
6EJS1	6EJHS1
6EJS8	6EJHS8
10EJS1	10EJHS1
10EJS8	10EJHS8
15EJS1	15EJHS1
15EJS8	15EJHS8
20EJS1	
20EJS8	
EJM Models	EJMS Models
1EJM1	1EJMS1
1EJM8	1EJMS8
3EJM1	3EJMS1
3EJM8	3EJMS8
6EJM1	6EJMS1
6EJM8	6EJMS8
10EJM1	10EJMS1
10EJM8	10EJMS8
15EJM1	15EJMS1
15EJM8	15EJMS8

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

FA601: Insulating Shroud


Dimensions are in inches and millimeters unless otherwise specified. Values in italics
are metric equivalents. Dimensions are shown for reference purposes only.
Specifications subject to change.



EEJ Series Including the EJH/EJHS, EJM/EJMS and EJS Models

Case Styles

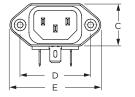
EEJ1, EJH1 & EJM1 (1-15A)

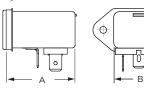
.132 [3.35] Dia. with .236 [5.99] Dia. x 90°

countersink for #4 flathead screw

.250 [6.3] with .07 [1.8] Dia. hole

.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

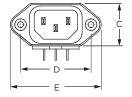

 \cap


IEC 60320-1 C14

Nounting holes (2):

Line Inlet (1): Load Terminals (2): Ground Terminal (1):

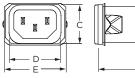
EEJ2 & EJH2 (1-15A)



Typical Dimensions: Mounting holes (2):

> Line Inlet (1): Load Terminals (2): Ground Terminal (1):

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

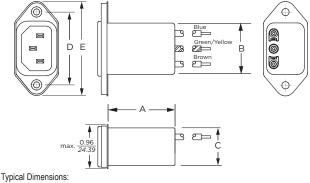

EEJP & EJHP (1-15A)

Typical Dimensions: Mounting holes (2): Line Inlet (1):

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .031 [.07] square, ± .003 [.07]

EJS1, EJHS1 & EJMS1 (1-15A)

PC board pins (3):

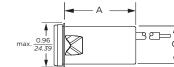


0

Typical Dimensions: Line Inlet (1): Load Terminals (2): Ground Terminal (1):

IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

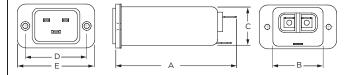
EEJ8, EJH8 & EJM8 (1-15A)



Mounting holes (2): Line Inlet (1): Wire Leads:

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 4.0 [*101.6*] Min., 18AWG, UL1015

EJS8, EJHS8 & EJMS8 (1-15A)



Ţ<u>↓</u> Typical Dimensions: Line Inlet (1): Wire Leads:

IEC 60320-1 C14 4.0 [*101.6*] Min., 18AWG, UL1015

20EEJ1 & 20EJH1

Typical Dimensions: Mounting holes (2):

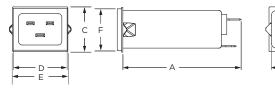
> Line Inlet (1): Load Terminals (2): Ground Terminal (1):

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C20 .250 [6.3] with .07 [*1.8*] Dia. hole .250 [6.3] with .07 x .16 [*1.8 x 3.8*] slot

Dimensions are in inches and millimeters unless otherwise specified. Values in italics For email, ph

3

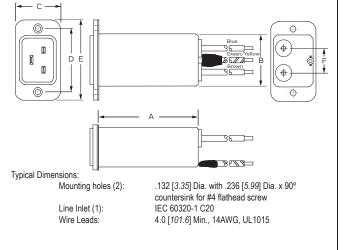
For email, phone or live chat, please go to te.com/help corcom.com

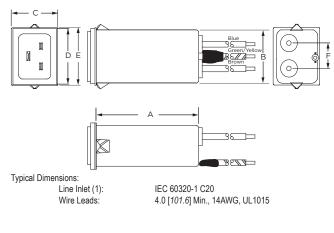


Cost-effective Medium Performance Power Inlet Filter (continued)

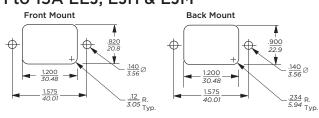
EEJ Series Including the EJH/EJHS, EJM/EJMS and EJS Models

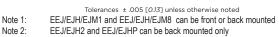
Case Styles (continued)


20EJS1

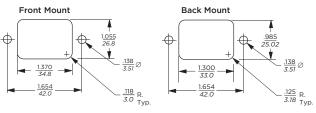


Line Inlet (1): Load Terminals (2): Ground Terminal (1): IEC 60320-1 C20 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

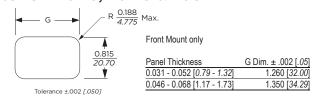

20EEJ8 & 20EJH8



20EJS8

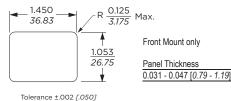


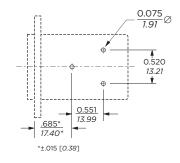
Recommended Panel Cutouts 1 to 15A EEJ, EJH & EJM



20A EEJ & EJH

Tolerances ± .005 [0.13] unless otherwise noted 20EEJ/EJH1 and 20EEJ/EJH8 can be front or back mounted


1 to 15A EJHS, EJMS & EJS


Alternate snap configurations to fit other cut-out sizes also available. Contact TE's Corcom product engineering group for more details.

20A EJS

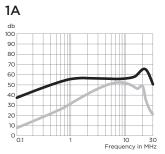
Note 1:

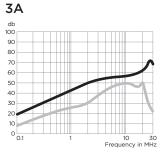
PC Board Layout

EEJ Series Including the EJH/EJHS, EJM/EJMS and EJS Models

Case Dimensions

	А	В	С	D	Е	F
Part No.	(max.)	(max.)	(max.)	<u>+ .015</u> + .38	(max.)	(ref.)
	2.15	1.13	0.96	1.580	2.04	
EEJ1, EJH1	54.61	28.70	24.38	40.00		
	2.02	1.13	0.96	1.58	2.04	-
EJM1	51.3	28.7	24.4	40.00	51.8	
1-10A	1.54	1.13	0.96	1.580	2.04	
EEJ2, EJH2		28.70			51.76	-
15A	1.79	1.13	0.96	1.580	2.04	
EEJ2, EJH2	45.47	28.70	24.38	40.00	51.76	-
1-10A	1.54	1.13	0.96	1.580	2.04	
EEJP, EJHP	39.12	28.70	24.38	40.00	51.76	_
15A	1.79	1.13	0.96	1.580	2.04	
EEJP, EJHP	45.47	28.70	24.38	40.00	51.76	_
	2.20	1.13	0.96	1.19	1.41	
EJS1, EJHS1	55.88	28.70	24.38	30.10	35.81	
	2.02	1.13	0.96		1.41	_
EJMS1	51.3	28.7	24.4	-	35.8	
	1.54	1.13	0.81	1.58	2.04	
EEJ8, EJH8	39.12	28.70	20.70	40.00	51.76	
EJM8	1.50	1.13	0.81	1.58	2.04	_
EJMO	38.1	28.7	20.7	40.00	51.8	
EJS8,	1.54	1.13	0.81	1.19	1.41	
EJHS8	39.12	28.70	20.70	30.10	35.81	
EJMS8	1.50	1.13	0.96	_	1.41	_
EJM58	38.1	28.7	24.4		35.8	
20EEJ1,	3.13	1.37	1.18	1.65	2.09	_
20EJH1	79.38	34.79	29.99	42.01	53.00	
20EJS1	3.13	1.35	1.18	1.42	1.46	_
20EJ31	79.38	34.29	29.99	36.07	37.08	
20EEJ8,	2.65	1.35	1.18	1.65	2.09	.62
20EJH8	67.31	34.29	29.99	42.01	53.00	15.75
	2.63	1.35	1.18	1.46	1.42	.62
20EJS8	66.80	34.29	29.97	37.08	36.08	15.75


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

EEJ & EJS Models

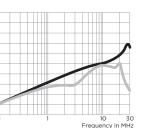
db 100

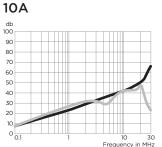
90

80 70

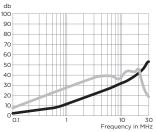
60

50

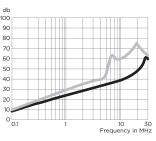

40


30

20


10

0



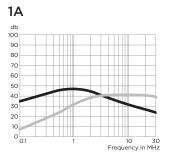
20A db 100

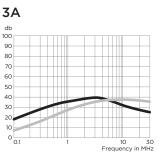
Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

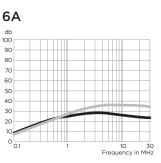
3

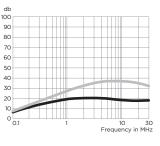
For email, phone or live chat, please go to te.com/help corcom.com

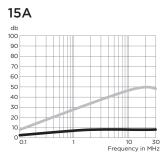
Downloaded From Oneyac.com

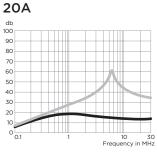

EEJ Series Including the EJH/EJHS, EJM/EJMS and EJS Models

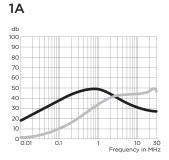

Performance Data (continued)

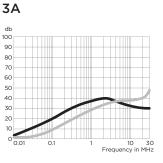

Typical Insertion Loss

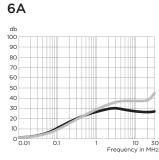

Measured in closed 50 Ohm system


EJH & EJHS Models

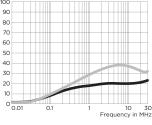


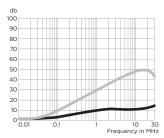






EJM & EJMS Models





10A

15A

158

EEJ Series Including the EJH/EJHS, EJM/EJMS and EJS Models

Minimum Insertion Loss

Measured in closed 50 Ohm system

		-							
Current			F	reque	ency	– Mł	lz		
Rating	.01	.05	.1	.15	.5	1	5	10	30
EEJ / EJS Mo	dels								
1A	15	27	29	32	41	47	47	47	40
3A	-	10	15	20	30	39	48	50	60
6A	-	1	5	9	21	28	41	44	54
10A	-	1	4	7	14	18	31	36	51
15A	-	-	-	2	5	8	21	26	42
20A	-	-	3	5	14	21	30	33	42
EJH Models									
1A	13	26	33	36	41	41	31	26	18
3A	-	9	15	19	27	31	30	26	20
6A	-	2	6	9	20	22	31	20	18
10A	-	1	4	7	12	17	19	18	18
15A	-	-	1	2	3	3	4	2	2
20A	-	-	3	5	14	16	12	11	11

Common Mode / Asymmetrical (Line to Ground)

Differential Mode / Symmetrical (Line to Line)

				-							
Current				Freq	uen	су –	MHz				
Rating	.01	.05	.1	.15	.5	.5 1		10	30		
EEJ / EJS M	odel	5							<u>EEJ</u>	EJS	
1A	-	-	5	8	19	27	45	43	40	9	
3A	-	-	5	8	17	20	39	42	40	11	
6A	-	-	5	8	17	21	32	40	40	16	
10A	-	-	5	8	17	21	23	36	38	16	
15A	-	-	5	8	17	23	33	30	38	11	
20A	-	-	5	2	17	25	38	48	48	48	
EJH Models											
1A	13	26	33	36	41	41	31	26	1	8	
3A	-	9	15	19	27	31	30	26	2	0	
6A	-	2	6	9	20	22	31	20	1	8	
10A	-	1	4	7	12	17	19	18	1	8	
15A	-	-	1	2	3	3	4	2	4	2	
20A	-	-	3	5	14	16	12	11	1	1	

EJM & EJMS Models

Current			F	requ	ency	– Mł	Ιz			Current Frequency – MHz									
Rating	.05	.5	1	10	20	30	80	150	200	Rating	.05	.5	1	10	20	30	80	150	200
1A	25	41	37	18	15	13	15	14	7	1A	1.5	21	28	34	36	29	27	34	28
3A	6	27	30	21	19	19	23	13	7	ЗA	1.5	17	23	29	31	37	33	32	28
6A	2	17	20	17	17	14	23	13	7	6A	1.5	16	22	28	29	34	37	37	32
10A	1.5	11	12	9	8	9	20	19	12	10A	2	16	22	28	24	18	27	32	30
15A	0.5	2	3	4	2	10	12	17	11	15A	1.5	17	23	35	34	29	27	29	25

EMI Power Inlet Filter

EF Series

UL Recognized CSA Certified VDE Approved*

EF Series

- Compact single stage EMI filter with IEC 60320-1 C14 inlet
- Two element circuit provides basic attenuation
- Available with an internal ground-circuit inductor (C suffix versions) to isolate equipment chassis from power line ground at radio frequencies
- Superseded by the EEA Series

Ordering Information

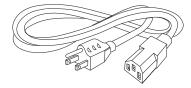
1, 3, 6, 10 or 15A

Available Part Numbers

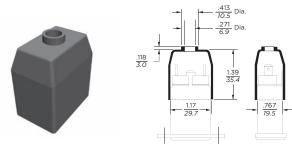
1EF1F	1EF2F	1EF4	1EF8				
3EF1F	3EF2F	3EF4	3EF8				
6EF1F	6EF2F	6EF4	6EF8				
10EF1F							
15EF1F							
Ground Circuit Inductor Versions							

Ground Circuit Inductor Versions

10EF1FC


Specifications

Maximum leakage current each Line to	o Ground:
@ 120 VAC 60 Hz:	.21 mA
@250 VAC 50 Hz:	.36 mA
Hipot rating (one minute):	
Line to Ground:	2250 VDC
Line to Line:	1450 VDC
Line to Line.	1430 000
Rated Voltage (max.):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	1 to 15A*
Operating Ambient Temperature Rang	je
(at rated current I _r):	-10°C to +40°C
In an ambient temperature (T_{a}) hig	her than +40°C

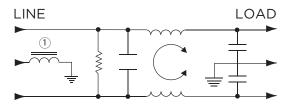

In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

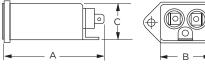
FA601: Insulating Shroud

*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

EMI Power Inlet Filter (continued)

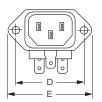
EF Series

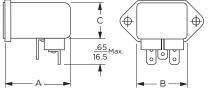


Note 1: C Suffix (ground choke) versions only

Case Styles

EF1F & EF1FC





Line Inlet (1): Load Terminals (2): Ground Terminal (1): IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

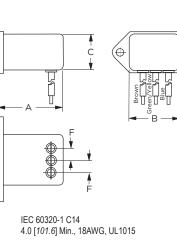
EF2F

IEC 60320-1 C14

.250 [6.3] with .07 [1.8] Dia. hole

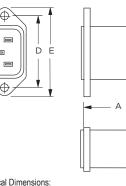
.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

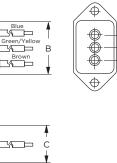
Typical Dimensions: Line Inlet (1): Load Terminals (2): Ground Terminal (1):



Typical Dimensions:

Line Inlet (1):

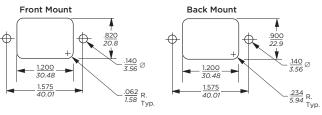

Wire Leads:



Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

EF8

Ð



IEC 60320-1 C14 4.0 [101.6] Min., 18AWG, UL1015

Case Dimensions

		_	-	_	_	_
Part No.	Α	В	С	D	E	F
Fart NO.	(max.)	(max.)	(max.)	<u>± .015</u> ± .38	(max.)	(ref.)
1EF1F, 3EF1F,	2.21	1.19	0.81	1.575	1.98	_
6EF1F	56.0	30.2	20.6	40.01	50.3	
1EF2F, 3EF2F,	1.55	1.19	0.85	1.575	1.98	-
6EF2F	39.4	30.2	21.6	40.01	50.3	
1EF4, 3EF4,	1.55	1.19	0.85	1.575	1.98	.295
6EF4	39.4	30.2	21.6	40.01	50.3	7.5
1EF8, 3EF8,	1.55	1.19	0.81	1.575	1.98	.295
6EF8	39.4	30.2	20.06	40.01	50.3	7.5
10EF1F,	2.62	1.19	0.81	1.575	1.98	_
10EF1FC	66.5	30.2	20.6	40.01	50.3	
15EF1F	2.62	1.19	0.81	1.575	1.98	
IJELIL	66.5	30.2	20.6	40.01	50.3	-

Recommended Panel Cutouts

Tolerances ± .005 [0.13] unless otherwise noted

 Note 1:
 EF1F, EF1FC and EF8 allow for front or back mounting

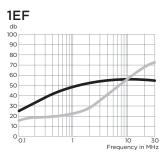
 Note 2:
 EF2F and EF4 allow for back mounting only

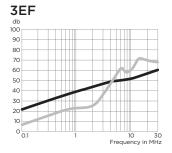
3

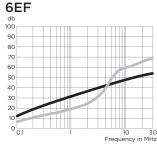
For email, phone or live chat, please go to te.com/help corcom.com

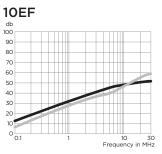
 \oplus

Typical Dimensions: Line Inlet (1): Wire Leads:


EMI Power Inlet Filter (continued)


EF Series


Performance Data

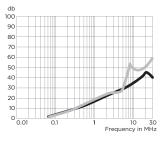

Typical Insertion Loss

Measured in closed 50 Ohm system

db 100

90

80


70

60

50

40

15EF

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Current	Frequency – MHz					
Rating	.15	.5	1	5	10	30
EF1F, EF2F						
1A	22	35	40	46	50	49
3A	15	25	30	45	50	54
6A	9	20	25	41	45	50
10A	8	15	20	34	39	44
15A	-	6	12	20	25	25
EF4, EF8						
1A	22	35	40	46	50	49
3A	15	25	30	45	50	54
6A	9	20	25	41	45	47
EF1FC						
10A	8	15	20	34	39	44

Common Mode / Asymmetrical (Line to Ground)

High Performance Power Inlet Filter

EJT Series

EJT Series

6 EJT 1

UL Recognized CSA Certified **VDE** Approved*

• Superior EMI filter with IEC 60320-1 inlet

• Up to 15A with IEC 60320-1 C14 inlet 20A rating with IEC 60320-1 C20 inlet

attenuates noise up to 1GHz

Spade terminals or wire leads

Ordering Information

Available Part Numbers

1EJT1

3EJT1

6EJT1

10EJT1

15EJT1

20EJT1

• Double three element differential mode circuit

Output Styles

EJT Series

Current Rating

1, 3, 6, 10, 15 or 20A

8 - Wire leads

1 - .250 [6.3] spade terminals

1EJT8

3EJT8

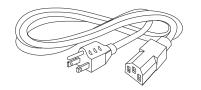
6EJT8

10EJT8

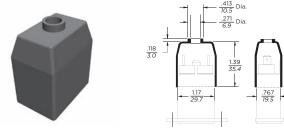
15EJT8

20EJT8

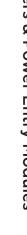
Specifications


Maximum leakage current each Line to Ground:

	<u>1-15A</u>	<u>20A</u>
@ 120 VAC 60 Hz:	.25 mA	.22 mA
@250 VAC 50 Hz:	.43 mA	.40 mA
-		
Hipot rating (one minute):		
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max.):		250 VAC
Operating Frequency:		50/60 Hz
Rated Current:		1 to 20A*
Operating Ambient Temper	ature Range	
(at rated current Ir):	-1	0°C to +40°C
In an ambient temperatu		
	a via vingin	


the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

Accessories


GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

FA601: Insulating Shroud (fits 1-15A only)

118 130 130 135

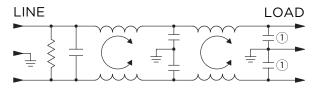
163

to US and Canadian requirements and are VDE approved at 10A, 250VAC. 20A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 16A, 250VAC.

*15A versions are tested by Underwriters Laboratories

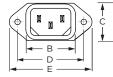
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

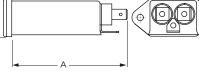
Downloaded From Oneyac.com


For email, phone or live chat, please go to te.com/help corcom.com

High Performance Power Inlet Filter (continued)

EJT Series

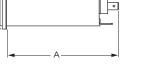

Electrical Schematics



Note 1: 20A versions only

Case Styles

EJT1

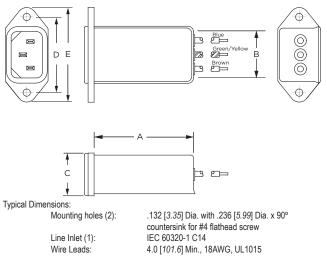

Typical Dimensions:

Mounting holes (2): .132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw Line Inlet (1): IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole

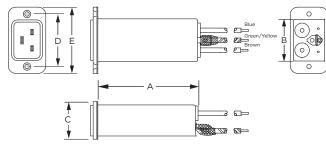
Load Terminals (2): Ground Terminal (1): .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

20EJT1

Typical Dimensions: Mounting holes (2):


> Line Inlet (1): Load Terminals (2): Ground Terminal (1):

С


countersink for #4 flathead screw IEC 60320-1 C20 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

.126 [3.20] Dia. with .236 [5.99] Dia. x 90°

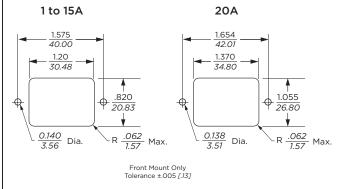
EJT8

20EJT8

Typical Dimensions: Mounting holes (2):

Φ

.126 [3.20] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C20 4.0 [101.6] Min., 14AWG, UL1015

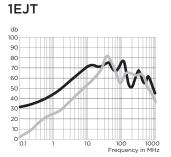

Case Dimensions

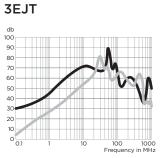
Line Inlet (1):

Wire Leads:

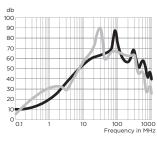
Part No.	Α	В	С	D	Е
Part NO.	(max.)	(max.)	(max.)	(max.)	(max.)
EJT1	2.74	1.19	0.875	1.575	1.98
EJII	69.6	30.2	22.2	40.0	50.3
EJT8	2.1	1.19	0.875	1.575	1.98
EJIO	53.3	30.2	22.2	40.0	50.3
20EJT1	3.8	1.350	1.18	1.654	2.087
ZUEJII	96.52	34.29	29.99	42.01	53.00
	3.2	1.350	1.18	1.654	2.087
20EJT8	81.28	34.29	29.99	42.01	53.00

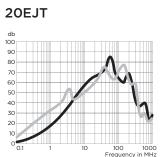
Recommended Panel Cutouts

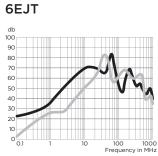

High Performance Power Inlet Filter (continued)

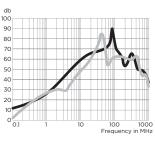

EJT Series

Performance Data


Typical Insertion Loss


Measured in closed 50 Ohm system





Common Mode / Asymmetrical (L-G)
 Differential Mode / Symmetrical (L-L)

10EJT

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode /	Asymmetrical (Line to	Ground)

Current	Frequency – MHz							
Rating	.15	.5	1	5	10	30	100	1000
1A	27	33	40	59	65	65	61	14
3A	22	30	34	57	63	69	61	10
6A	13	21	27	51	60	65	59	14
10A	7	14	21	43	52	61	61	14
15A	4	10	15	38	48	63	63	14
20A	-	8	15	42	50	60	58	14

Differential Mode / Symmetrical (Line to Line)

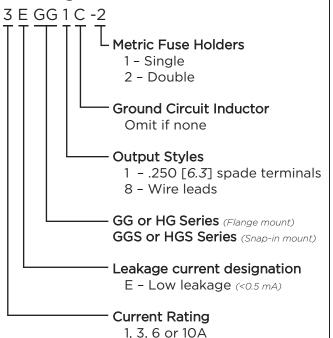
Current	Frequency – MHz							
Rating	.15	.5	1	5	10	30	100	1000
1A	10	20	23	43	52	65	45	14
3A	10	20	24	41	51	59	52	17
6A	10	21	24	37	48	65	55	20
10A	10	21	25	28	44	63	53	18
15A	10	20	26	25	36	56	45	23
20A	9	20	26	40	35	48	50	10

165

Smallest Power Entry Module with Metric Fuse Holders

GG & HG Series

UL Recognized CSA Certified VDE Approved


GG Series

- Power entry module with enhanced EMI filter
- Single or dual fusing
- Two element circuit provides basic attenuation
- Available with an internal ground-circuit inductor (C versions) to isolate equipment chassis from power line ground at radio frequencies
- Multiple termination and mounting styles

HG Series

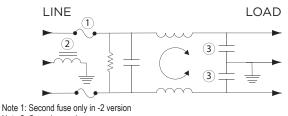
- Medical version of our GG Series
- Mechanically identical to GG Series
- Available only with dual fusing

Ordering Information

Specifications

Maximum leakage current each Line to Ground:						
	HG Models	<u>GG Models</u>				
@ 120 VAC 60 Hz:	2 µA	.25 mA				
@250 VAC 50 Hz:	5 µA	.42 mA				
Hipot rating (one minute)):					
Line to Ground:		2250 VDC				
Line to Line:		1450 VDC				
Rated Voltage (max.):		250 VAC				
Operating Frequency:		50/60 Hz				
Rated Current:		1 to 10A				
Required Fuse(s):		5 x 20mm				
		(not included)				

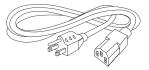
Available Part Numbers


Filtered modules							
3EGG1-1	6EGG1-1	10EGG1-1					
3EGG1-2	6EGG1-2	10EGG1-2					
3EGG8-1	6EGG8-1	10EGG8-1					
3EGG8-2	6EGG8-2	10EGG8-2					
3EGS1-1	6EGS1-1	10EGS1-1					
3EGS1-2	6EGS1-2	10EGS1-2					
Filtered modules with ground circuit inductor							
3EGG1C-1	6EGG1C-1						
3EGG1C-2	6EGG1C-2						
3EGG8C-1	6EGG8C-1						
3EGG8C-2	6EGG8C-2						
Medical filter modules							
3EHG1-2	6EHG1-2	10EHG1-2					
3EHG8-2	6EHG8-2	10EHG8-2					
3EHGS1-2	6EHGS1-2	10EHGS1-2					
	3EGG1-1 3EGG1-2 3EGG8-1 3EGG8-2 3EGS1-1 3EGS1-2 odules with 3EGG1C-1 3EGG1C-2 3EGG8C-1 3EGG8C-2 Medical filt 3EHG1-2 3EHG8-2	3EGG1-1 6EGG1-1 3EGG1-2 6EGG1-2 3EGG8-1 6EGG8-1 3EGG8-2 6EGG8-2 3EGS1-1 6EGS1-1 3EGS1-2 6EGS1-2 odules with ground circu 3EGG1C-1 6EGG1C-1 3EGG1C-2 6EGG1C-2 3EGG8C-1 6EGG8C-1 3EGG8C-2 6EGG8C-2 Medical filter modules 3EHG1-2 3EHG1-2 6EHG1-2 3EHG8-2 6EHG8-2					

Smallest Power Entry Module with Metric Fuse Holders (continued)

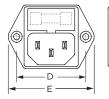
GG & HG Series

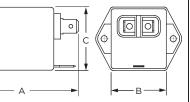
Electrical Schematic



Note 2: C versions only Note 3: Not present in HG versions

Warning: Do not attempt to operate a single-fused model without the fuse door in place.

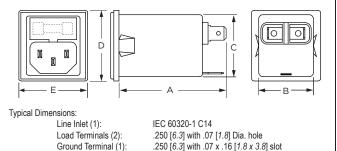

Accessories


GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

Case Styles

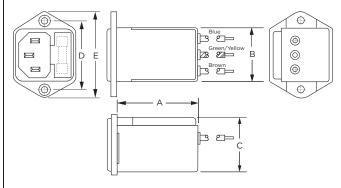
GG1, GG1C & HG1

Typical Dimensions: Mounting holes (2):


Line Inlet (1):

Load Terminals (2):

Ground Terminal (1):


.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

GS1 & HGS1

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

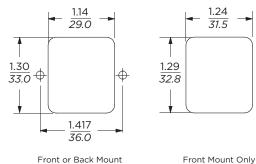
GG8 & HG8

Typical Dimensions:

Mounting holes (2): Line Inlet (1): Wire Leads

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 5.0 [127.0] Min., 18AWG, UL1015

Case Dimensions


Part No.	A (max.)	B (max.)	C (max.)	D <u>± .015</u> ± .38	E (max.)
GG1 & HG1	2.13	1.13	1.29	1.417	1.76
GGI & HGI	54.5	28.7	32.8	36.0	44.7
GG1C	2.45	1.13	1.28	1.417	1.76
GGIC	62.23	28.7	32.5	36.0	44.7
	2.13	1.13	1.28	1.46*	1.42
GS1, HGS1	54.0	28.7	32.5	36.0*	36.1
	2.02	1.13	1.29	1.417	1.76
GG8, HG8	51.1	28.7	32.8	36.0	44.7

*max. dimension

Power Inlet Filters & Power Entry Modules

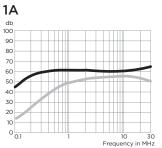
Recommended Panel Cutouts GG / HG

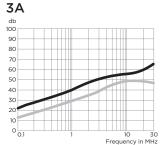
GS / HGS

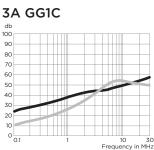
Front Mount Only

GS / HGS panel thickness: 0.032 - 0.080 [0.81 - 2.03] Corner radius: 0.138 [0.35]

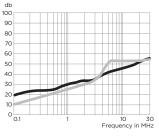
Typical Dimensions:

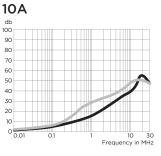



GG & HG Series

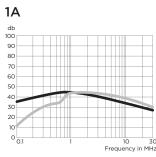

Performance Data

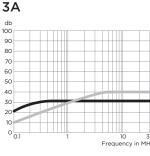
Typical Insertion Loss Measured in closed 50 Ohm system

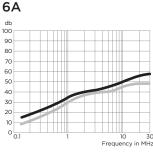

GG & GS Models



6A GG1C





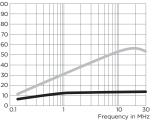


HG Models

80

70

60


50

40

30

20

10

Minimum Insertion Loss Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

Differential Mode / Symmetrical (Line to Line)

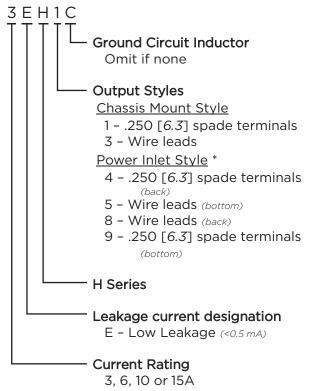
Common M	Jue / I	Asyn	inner	.iiCai		e 10	0100	inu)		Differential Mode / Symmetrical (Liffe to Liffe)	
Current			F	requ	ency	– Mł	Ιz			Current Frequency – MHz	
Rating	.01	.05	.10	.15	.5	1	5	10	30	Rating .10 .15 .5 1 3 5 10	30
GG & GS Mo	odels									GG & GS Models	
1A	12	23	29	32	41	47	50	50	55	1A 1 3 14 23 41 47 50	44
3A	-	10	15	19	30	36	48	50	53	3A 1 2 11 14 25 38 44	40
6A	-	1	4	10	16	22	36	40	50	6A 1 2 10 13 23 33 39	42
10A	-	1	2	4	6	8	26	33	28	10A 4 7 17 23 - 22 43	38
HG Models										HG Models	
1A	12	23	29	32	40	40	28	22	18	1A 2 6 19 26 30 35 35	20
3A	-	10	15	19	25	26	22	21	21	3A 1 7 16 23 30 30 30	30
6A	-	4	10	14	18	18	14	14	14	6A 4 7 16 23 30 30 30	30
10A	1	-	-	3	5	6	8	9	10	10A - 8 16 22 - 37 43	28

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

Power Inlet Line Filter for Medical Equipment

H Series



UL Recognized CSA Certified VDE Approved*

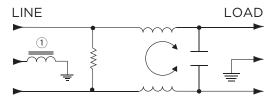
H Series

- Minimal leakage current suitable for medical equipment
- Two element circuit provides basic EMI attenuation above 1 MHz
- Available with an internal ground circuit inductor (C suffix versions) to isolate equipment chassis from power line ground at radio frequencies
- Flanged mounting the same as the EC, ED and EF Series
- Capacitive output (see EAH, EBH and EJH Series for capacitive input)

Ordering Information

*IEC 60320-1 C14 inlet mates with C13 connector

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.



Specifications

Maximum leakage current each Line to Ground:						
@ 120 VAC 60 Hz:	2 µA					
@250 VAC 50 Hz:	5 μΑ					
Hipot rating (one minute):						
Line to Ground:	2250 VDC					
Line to Line:	1450 VDC					
Rated Voltage (max.):	250 VAC					
Operating Frequency:	50/60 Hz					
Rated Current:	3 to 15A*					
Operating Ambient Temperature Range	<u>;</u>					
(at rated current I _r): -	10°C to +40°C					
In an ambient temperature (T _a) high	er than +40°C					

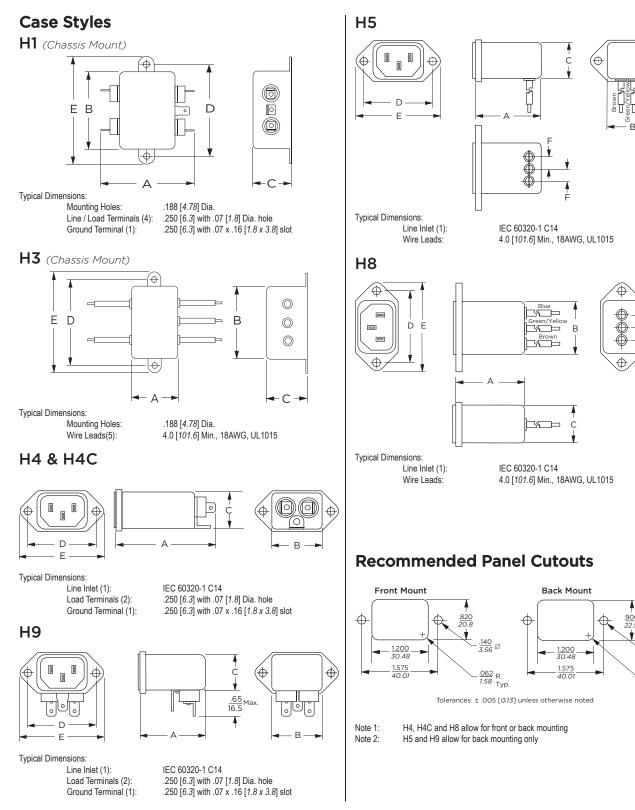
In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

Electrical Schematic

Available Part Numbers

3EH1	6EH8				
3EH3	6EH9				
6EH1	10EH1				
6EH3	10EH3				
6EH4	10EH4				
6EH5	15EH4				
Ground Circuit Inductor Versions					
10EH4C					

*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC


For email, phone or live chat, please go to te.com/help corcom.com

 \oplus

Power Inlet Line Filter for Medical Equipment (continued)

H Series

170

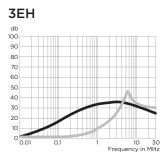
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

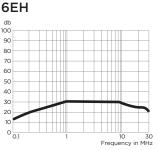
.<u>140</u> ∅ 3.56 ∅

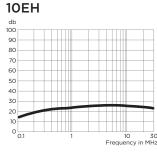
.<u>234</u> R. 5.94 Typ

Power Inlet Line Filter for Medical Equipment (continued)

H Series


Case Dimensions


Part No.	A (max.)	B (max.)	C (max.)	D <u>± .015</u> ± .38	E (max.)	F (ref.)
H1	2.25	1.82	0.66	2.125	2.53	
	57.2	46.1	16.7	53.98	64.2	-
H3	.96	1.82	0.66	2.125	2.53	-
ПЭ	24.40	46.1	16.7	53.98	64.2	
6EH4	2.20	1.19	0.81	1.575	1.98	-
0204	55.9	30.2	20.6	40.01	50.3	
10EH4,	2.62	1.19	0.81	1.575	1.98	_
10EH4C	66.5	30.2	20.6	40.01	50.3	
15EH4	2.62	1.19	0.81	1.575	1.98	_
13614	66.5	30.2	20.6	40.01	50.3	
H5	1.55	1.19	0.85	1.575	1.98	.295
ПЭ	39.4	30.2	21.6	40.01	50.3	7.5
H8	1.56	1.19	0.81	1.575	1.98	.295
ПО	39.7	30.2	20.6	40.01	50.3	7.5
Н9	1.55	1.19	0.85	1.575	1.98	_
	39.4	30.2	21.6	40.01	50.3	


Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Minimum Insertion Loss

Current

Rating

3A

6A

10A

15A

Downloaded From Oneyac.com

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

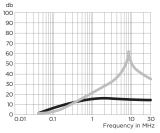
.5

27

16

13

9


.15

18

9

7

5

— Common Mode / Asymmetrical (L-G) — Differential Mode / Symmetrical (L-L)

Frequency – MHz

5

30

26

17

12

10

27

23

16

11

30

18

18

14

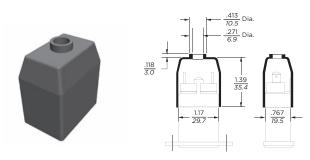
1

30

20

15

11

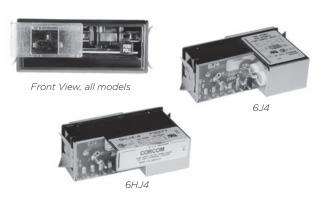

15EH

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

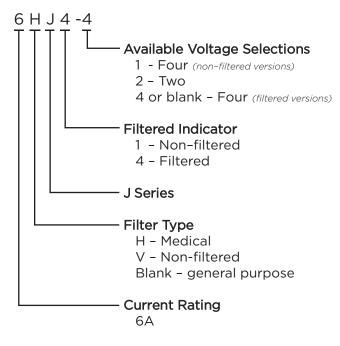
FA601: Insulating Shroud

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.



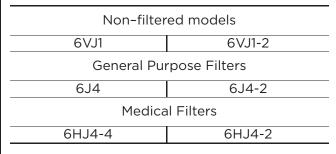
Power Entry Module with Voltage Selection and Fusing

J Series


UL Recognized CSA Certified

J Series

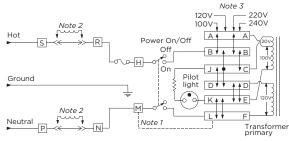
- Power entry module with North American style 3AG fuse holder
- 2 or 4 voltage selection
- Compact snap-in design
- Two element circuit provides basic EMI attenuation
- Available with minimal leakage current suitable for medical applications (HJ models)
- Also available without filter (VJ models)

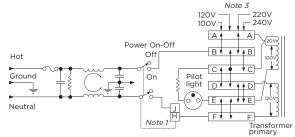

Ordering Information

Specifications

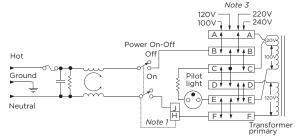
Maximum leakage current each Line to Ground:					
		6HJ4 or			
	6J4 Models	<u>non-filtered</u>			
@250 VAC 50 Hz:	500 µA	5 µA			
Hipot rating (one minut	e):				
Line to Ground:		1550 VAC			
Line to Line:		1450 VDC			
Operating Voltage:					
suffix - 1 or - 4 models	: 100, 120, 2	220 or 240VAC			
suffix - 2 models:		115 or 230 VAC			
Operating Frequency:		50/60 Hz			
Rated Current:		6A			
Required Fuse:		.25 x 1.25			
-		(not included)			

Available Part Numbers

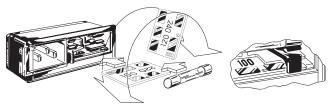



Power Entry Module with Voltage Selection and Fusing (continued)

J Series


Electrical Schematics 6VJ1 & 6VJ1-2

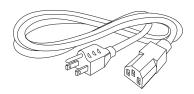
6J4 & 6J4-2



6HJ4-4 & 6J4-2

- Note 1: Jumper required if only SPST power switch is used
- Note 2: Jumpers required if no input filtering is used
- Note 3: Use only 120V and 240V positions for 2 volt selection units

Voltage Selection


Open cover door and slide fuse-pull lever to left. Select operating voltage by orienting voltage selection card with the desired voltage on top left side. Push card firmly into module slot. Slide fuse-pull lever to right into normal position and re-insert fuse into holders.

Use caution in selecting correct fuse value.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

- JA302: 2 Voltage Select Card Comes standard with 6VJ1-2, 6J4-2 and 6HJ4-2
- JA304: 4 Voltage Select Card Comes standard with 6VJ1, 6J4 and 6HJ4-4
- JA403: Mounting clips for .105 .125" panels

JA410-419: Equipment Rating Labels

Self-adhesive, available in multiples of 40 Specify part number

↓		2.330	
	Line V. + 5 - 10% 3-440 - 50 VA Max.	Fuse 100/120V (115V) 2 500mA	220/240V (230V) 250mA
1	À	B	C
	А	В	С
	VA	Fuse	Fuse
Part No.	max.	100/120 (115)	220/240 (230)
JA410	25	250 mA	125 mA
JA411	50	500 mA	250 mA
JA412	100	1A	500 mA
JA413	200	2A	1A
JA414	250	2.5A	1.25A
JA415	300	3A	1.5A

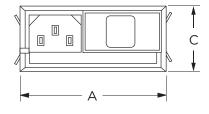
JA416	400	4 A	2A
JA417	500	5A	2.5A
JA418	600	6A	3A
JA419	Assortment		
		-	

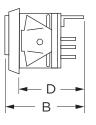
JA410-JA418: 40 labels of one part number JA419: 5 each of JA410 - JA418 (45 labels)

JA500: Voltage Selector Card Extractor Tool

173

For email, phone or live chat, please go to te.com/help corcom.com


Power Entry Module with Voltage Selection and Fusing (continued)

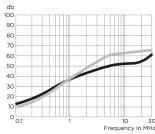

Case Dimensions

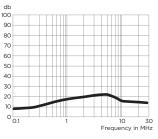
J Series

Case Styles

Non-filtered Models

Part No.	A (max.)	B (max.)	(max.)	D (max.)
6VJ1, 6VJ1-2	2.68	1.52	1.17	1.23
0031, 0031-2	68.1	38.6	29.7	31.2
6J4, 6J4-2,	2.75	1.87	1.17	1.58
6HJ4-4, 6HJ4-2	69.9	47.5	29.7	40.1


Performance Data


Typical Insertion Loss

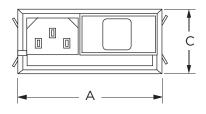
Measured in closed 50 Ohm system

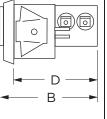
6HJ4

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

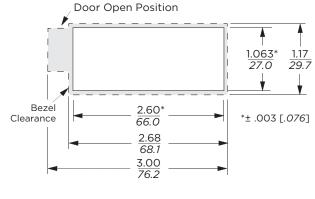

Common Mode / Asymmetrical (Line to Ground)


	Frequency – MHz						
Model No.	.15	.5	1	5	10	20	30
6J4	9	20	25	41	45	45	48
6HJ4	9	11	15	19	13	12	10

Filtered Models

Line Inlet (1): Load Terminals (2):

Typical Dimensions:


Typical Dimensions: Line Inlet (1): Load Terminals (2):

IEC 60320-1 C14

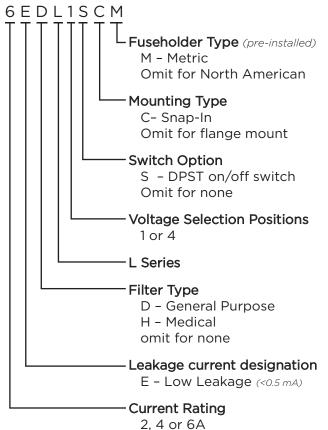
.110 [2.79]

Recommended Panel Cutouts

Standard units mount in panel thickness of .060 - .090 [1.52 -2.29] JA403 Mounting clips for .105 - .125" panels available separately Fuse cover door shown in open position

Dual Configuration Power Entry Module

L Series



UL Recognized CSA Certified VDE Approved

- Power entry module with switch or fuse
- For 10A capability and high performance filtering see the P Series on page 192
- Two element circuit provides extended EMI attenuation similar to EAB inlet filter
- North American or metric fuse holders
- Available with minimal leakage current for medical applications (HL models)

Ordering Information

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

EDL4C / EHL4C

EDL1S / EHL1S

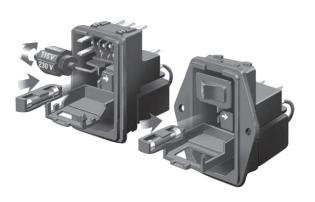
Specifications

Maximum leakage current @ 120 VAC 60 Hz:		u nd: <u>HL Models</u> 2 μΑ		
@ 250 VAC 50 Hz:	.50 mA	5 µA		
Hipot rating (one minute): Line to Ground: Line to Line:		2250 VDC 1450 VDC		
Operating Voltage: 1S & 1SC models (fixed): 4 & 4C Suffix:	250 100, 120, 220 or	VAC max. 240 VAC.		
Operating Frequency:		50/60 Hz		
Rated Current:	2 to 6A			
Required Fuse(s): North American: Metric:	one .25 x 1.25"(r two 5 x 20mm (r			
Switch: 10,000 op	erations at 51A m	DPST nax. inrush		

For email, phone or live chat, please go to

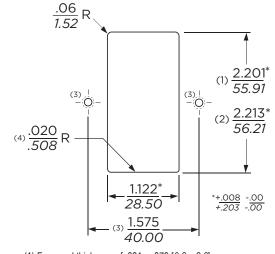
te.com/help

corcom.com



Dual Configuration Power Entry Module (continued)

L Series


Available Part Numbers		North Ame	erican Fusing	Metric Fusing		
		Flange Mount	Snap-In	Flange Mount	Snap-In	
Non-Filtered	Single Voltage, Switched	6EL1S	6EL1SC	6EL1SM	6EL1SCM	
Non-Filtered	4 Voltage Select, No Switch	6EL4	6EL4C	6EL4M	6EL4CM	
		2EDL1S	2EDL1SC	2EDL1SM	2EDL1SCM	
	Single Voltage, Switched	4EDL1S	4EDL1SC	4EDL1SM	4EDL1SCM	
General		6EDL1S	6EDL1SC	6EDL1SM	6EDL1SCM	
Purpose Filter		2EDL4	2EDL4C	2EDL4M	2EDL4CM	
	4 Voltage Select, No Switch	4EDL4	4EDL4C	4EDL4M	4EDL4CM	
		6EDL4	6EDL4C	6EDL4M	6EDL4CM	
Medical Filter	Single Voltage, Switched	6EHL1S	6EHL1SC	6EHL1SM	6EHL1SCM	
	4 Voltage Select, No Switch	6EHL4	6EHL4C	6EHL4M	6EHL4CM	

Voltage Selection

To change selected voltage: disconnect the power cord; open cover using a small blade screwdriver or similar tool; insert the tool into the voltage selection slot and remove wheel from unit; select desired voltage; replace wheel into unit and close cover, making sure the selected voltage appears in connector window.

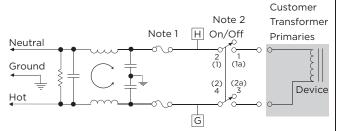
Recommended Panel Cutouts

(1) For panel thickness of .031 – .079 [0.8 – 2.0]

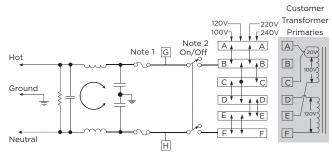
- (2) For panel thickness of .083 .126 [2.1 3.2]
 - (3) Mounting Holes .126 [3.20] Dia. for flange mounted versions only
 (4) For Snap-In applications, the 1.12 [28.5] sides of the cutout must have a .02 [.508] radius on the installation side. Not required for flange mount versions.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

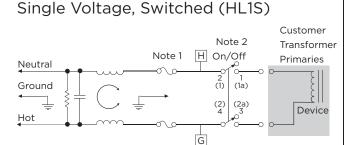
Notes:

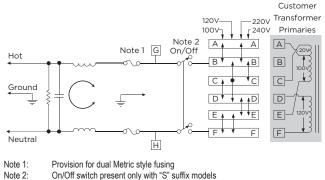

Dual Configuration Power Entry Module (continued)

L Series

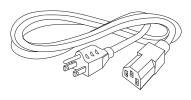

Electrical Schematics

DL Models


Single Voltage, Switched (DL1S)


4 Voltage Select, No-Switch (DL4)

HL Models


4 Voltage Select, No-Switch (HL4)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

LA303: Voltage Select Wheel, 3 position

Selection drum for use with L4 models. Marked with 110V, 220V and 240V

LA304: Voltage Select Wheel, 4 position

Selection drum for use with L4 models. Marked with 100V, 110V, 220V and 240V. One LA304 comes standard with each L4 model.

LA400: Blank insert

Blank to replace switch in single voltage models

LA601: Insulating Boot

Plastic shroud to cover back of module to prevent inadvertent access

Replacement Fuse Holders

LA200: North American Fuseholder Accommodates one .25 x 1.25" fuse

LA201: Metric Fuseholder

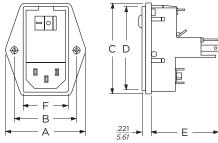
Accommodates one 5 x 20mm metric fuse

For email, phone or live chat, please go to te.com/help corcom.com

G qD H qD

զի զի

-6

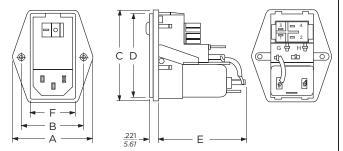


Dual Configuration Power Entry Module (continued)

L Series

Case Styles

Flange Models, Non-filtered

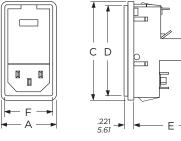


Switched model shown, for non-switched detail refer to snap-in models

Typical Dimensions:

Line Inlet (1): Backplate Terminals: Switch Terminals: IEC 60320-1 C14 .110 [2.79] .187 [4.765] with .07 x .16 [*1.8 x 3.8*] slot

Flange Models, Filtered

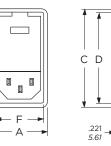

Switched model shown, for non-switched detail refer to snap-in models Metric fuse models have an additional jumper from filter to module

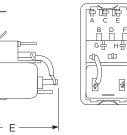
Typical Dimensions:

Line Inlet (1):	
Backplate Terminals:	
Switch Terminals:	

IEC 60320-1 C14 .110 [2.79] .187 [4.765] with .07 x .16 [1.8 x 3.8] slot

Snap-in Models, Non-filtered




Non-switched model shown, for switched detail refer to flange models

Typical Dimensions:

Line Inlet (1): Backplate Terminals: Switch Terminals: IEC 60320-1 C14 .110 [2.79] .187 [4.765] with .07 x .16 [1.8 x 3.8] slot

Snap-in Models, Filtered

Non-switched model shown, for switched detail refer to flange models Metric fuse models have an additional jumper from filter to module

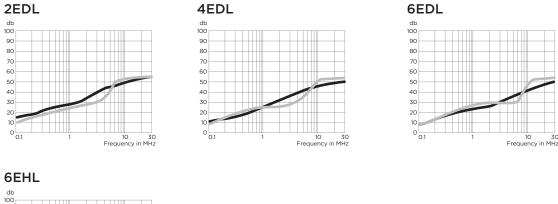
П

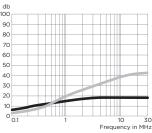
Typical Dimensions:

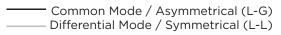
Line Inlet (1): Backplate Terminals: Switch Terminals: IEC 60320-1 C14 .110 [2.79] .187 [4.765] with .07 x .16 [1.8 x 3.8] slot

Case Dimensions

	Α	в	С	D	Е	F
Model No.	(max.)	<u>±.015</u> ±.38	(max.)	(max.)	(max.)	(ref.)
Flange	1.98	1.575	2.3	2.14	1.66	1.11
Unfiltered	50.29	40.0	58.42	54.36	42.16	28.19
Snap-in	1.28	_	2.3	2.14	1.66	1.11
Unfiltered	32.51		58.42	54.36	42.16	28.19
Flange	1.98	1.575	2.3	2.14	2.01	1.11
Filtered	50.29	40.0	58.42	54.36	51.05	28.19
Snap-in	1.28	_	2.3	2.14	2.01	1.11
Filtered	32.51		58.42	54.36	51.05	28.19


Dual Configuration Power Entry Module (continued)


L Series


Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Minimum Insertion Loss

Measured in closed 50 Ohm system

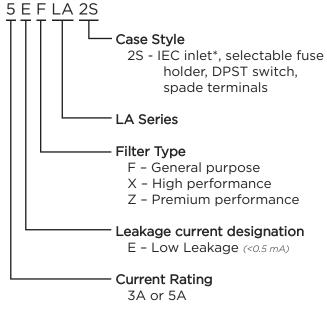
Common Mode / Asymmetrical (Line to Ground)						
Current	Frequency – MHz					
Rating	.05	.15	1	5	10	30
EDL Models						
1A	6	14	24	40	45	50
3A	2	8	18	32	38	45
6A	1	6	17	31	37	45
EHL Models						
6A	3	8	15	18	18	18

Differential Mode / Symmetrical (Line to Line)

		, 				,	
Current	Frequency – MHz						
Rating	.05	.15.5	1	3	5	10	30
EDL Models							
1A	7	16	21	23	37	47	50
3A	6	14	18	23	26	45	47
6A	6	15	20	25	24	45	50
EHL Models							
6A	4	14	20	28	32		

Power Entry Module with Enhanced EMI Filtering

LA Series


UL Recognized CSA Certified

LA Series

- Power entry module with extended and enhanced low frequency filters
- North American or dual metric fuse holder options
- DPST on/off switch
- 120/240V voltage selection
- The F version provides basic performance two element circuit filter
- The X version provides a three element differential mode circuit with extended EMI attenuation, suitable for meeting FCC Part 15J, Class B conducted emissions limits
- The Z version provides a three element differential mode circuit with enhanced EMI low frequency attenuation, suitable for meeting EN55022 Level B as well as FCC Part 15J limits

Ordering Information

*IEC 60320-1 C14 inlet mates with C13 connector

Specifications

Maximum leakage current each Line to Ground:

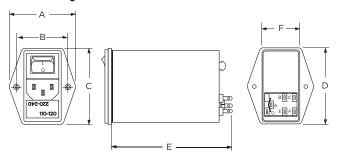
			XLA or
		<u>FLA Model</u>	<u>ZLA Model</u>
@120 VAC 60) Hz:	.25 mA	.30 mA
@250 VAC 50) Hz:	.50 mA	.50 mA
Hipot rating (or	ne minut	e):	
Line to Grour	nd:		2250 VDC
Line to Line:			1450 VDC
Rated Voltage	(max.):		250 VAC
Operating Freq	uency:		50/60 Hz
Rated Current:			3 to 5A
Required Fuse('s)'	one .25 x 1.25	"(not included)
itequired i uset	.571	or two 5 x 20mm	
Switch:			DPST
	10,000	operations at 51A	- • • •

Available Part Numbers

5EFLA2S	
3EXLA2S	
3EZLA2S	

Power Entry Module with Enhanced EMI Filtering (continued)

Case Styles

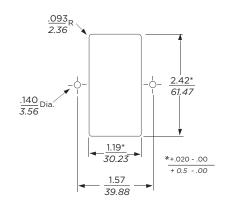

LA Series

Voltage Selection

To change selected voltage: remove the fuse cartridge using a small blade screwdriver or similar tool; select the desired voltage by matching the arrow on the fuse cartridge to the arrow located on the front of the unit (lower right corner); replace the fuse cartridge making sure the voltage selection arrow aligns with the arrow located on the front of the unit.

Changing Fuses

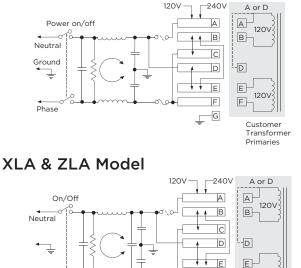
Remove the fuse cartridge using a small blade screwdriver or similar tool; for Metric fusing pull out the sliding fuse covers located at the top of each fuse compartment; insert desired fuses; push the sliding fuse covers back in place and insert the fuse cartridge back into the unit making sure the voltage selection arrow aligns with the arrow located on the front of the unit. (Note: Single North American or Metric fuse placement is always on the side of the desired voltage selection arrow behind the fuse symbol; the other compartment may be used as a spare or be left blank. Dual Metric fusing capability is available for 220/240 volts only.)


Typical Dimensions: Line Inlet (1): Mounting Holes (2): Backplate Terminals(5): Ground:

IEC 60320-1 C14 .142 [3.6] Dia. .110 [2.79] with .059 [1.5] holes .solder lug tab with wire wrap

Case Dimensions

	Α	В	С	D	Е	F
Part No.	(max.)	<u>±.015</u> ±.38	(max.)	(max.)	(max.)	(ref.)
5EFLA2S	1.99	1.57	2.59	2.41	3.16	1.18
	50.5	39.9	65.79	61.21	68.07	29.97
3EXLA2S	1.99	1.57	2.59	2.41	4.16	1.18
JEALAZS	50.5	39.9	65.79	61.21	105.7	29.97
3E7LA2S	1.99	1.57	2.59	2.41	4.16	1.18
JEZLAZS	50.5	39.9	65.79	61.21	105.7	29.97


Recommended Panel Cutout

Electrical Schematics

FLA Model

Hot

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

F

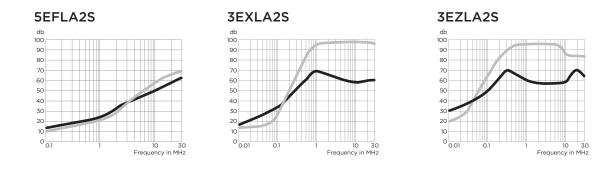
G

120V

Customer Transformer Primaries

F

Downloaded From Oneyac.com


Power Entry Module with Enhanced EMI Filtering (continued)

LA Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode	/ Asymmetrical	(Line to	Ground)
-------------	----------------	----------	---------

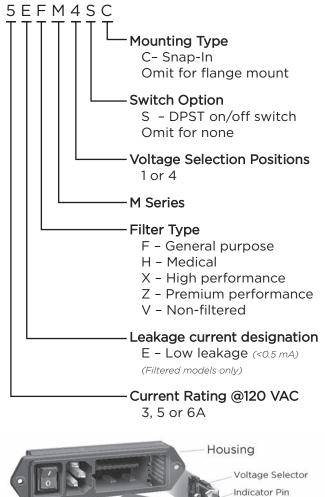
			Fre	quen	cy – I	MHz		
Part No.	.01	.05	.15	.5	1	5	10	30
5EFLA2S	-	-	14	21	26	40	46	50
3EXLA2S	2	12	21	35	46	44	44	40
3EZLA2S	14	28	38	42	40	40	40	40

Differential Mode / Symmetrical (Line to Line)

	Frequency – MHz									
Part No.	.02	.03	.05	.07	.15	.5	1	5	10	30
5EFLA2S	-	-	-	-	-	-	-	-	-	-
3EXLA2S	-	-	-	5	33	60	65	60	50	50
3EZLA2S	3	14	29	38	57	72	72	65	55	50

Slim Power Entry Module Family with Multiple Options

M Series



UL Recognized CSA Certified VDE Approved

Ordering Information

Fuse Holder

Cover

M Series

- Family of slim power entry modules that consume minimal depth behind panel
- Four compact modules each provide a different option combination
- Available non-filtered or with one of four filter circuits designed to meet a wide variety of applications
- Optional voltage selector configured for either 2 or 4 voltage selection
- Optional DPST on/off switch
- Included fuseholder accepts either single 3AG fuse or dual metric fuses
- Snap-in or flange mounting styles

Filter Types

H Models provide a basic performance dual element circuit EMI filter with minimal leakage current, suitable for medical applications, with attenuation similar to the EAH Series power inlet filter.

F Models provide a basic performance dual element circuit EMI filter, with attenuation similar to the EEA Series Power Inlet Filter.

X Models provide a high performance three element differential circuit filter, with extended EMI attenuation similar to the X Series chassis filter, suitable for bringing most digital equipment (including switching power supplies) into compliance with FCC Part 15J, Class B conducted emissions limits.

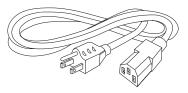
Z Models provide a premium performance three element differential circuit filter, with enhanced EMI low frequency attenuation similar to the P Series Z models, suitable for bringing most digital equipment (including switching power supplies) into compliance with EN55022 Level B as well as FCC Part 15J. For minimum panel footprint, see the P series on page 192.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

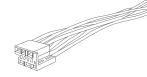
Power Inlet Filters & Power Entry Modules

M Series

Specifications


Maximum leakage curr @ 120 VAC 60 Hz: @250 VAC 50 Hz:	ent each Line to Ground: <u>ΗΜ ΕΜ ΧΜ/2</u> 2 μΑ .25 mA .30 r 5 μΑ .50 mA .50 r	nA					
Hipot rating (one minu Line to Ground: Line to Line: Line to Load (switch	2250 VI 1450 VI	DC					
Rated Voltage (max.): 250VAG							
Operating Frequency: 50/60 H							
Rated Current @ 120 VAC:3 to 6ARated Current @ 250 VAC:							
3A models: 5A models: 6A Switched models: 6A non-switched mo		2A 4A 5A 6A					
Required Fuse(s):	Reversible fuseholder accer one .25 x 1.25" (not include r two 5 x 20mm (not include	ed)					
Switch: 100,000	DP operations at 70A max. inru						

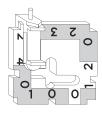
Available Part Numbers


Non-Filtered Models							
Flange	Mount	Sna	p-In				
6VM1	6VM1S	6VM1C	6VM1SC				
6VM2	6VM2S						
6VM4	6VM4S	6VM4C	6VM4SC				
Gene	eral Purpos	e Filters	·				
5EFM1	5EFM1S	5EFM1C	5EFM1SC				
5EFM4	5EFM4S	5EFM4C	5EFM4SC				
Medical Filters							
5EHM1	5EHM1S						
5EHM4	5EHM4S						
High P	erformanc	e - FCC-B					
	3EXM1S						
3EXM4	3EXM4S						
Premium P	erformanc	e - EN5502	22-B				
	3EZM1S						
3EZM4	3EZM4S						
	Flange 6VM1 6VM2 6VM4 Gene 5EFM1 5EFM4 5EHM1 5EHM4 High P 3EXM4 Premium P	Flange Mount6VM16VM1S6VM26VM2S6VM46VM4S6VM46VM4SGeneral Purpos5EFM15EFM1S5EFM45EFM4SMedical Fil5EHM15EHM1S5EHM45EHM4SHigh Performance3EXM43EXM1S3EXM43EXM4SPremium Performance3EZM1S	6VM16VM1S6VM1C6VM26VM2S6VM4C6VM46VM4S6VM4CGeneral Purpose Filters5EFM15EFM15EFM1S5EFM1C5EFM45EFM4S5EFM4CWedical Filters5EHM15EHM1S5EHM15EHM1S5EHM4SHigh Performance - FCC-B3EXM1S3EXM43EXM4SPremium Performance - EN55023EZM1S3EZM1S				

Accessories

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

MA100: Power interconnect assembly For voltage select models. 8.5" wire leads


MA101: Plug onlyMA102: Strip of 100 pins for use with MA101MA104: Individual pins for use with MA101

MA302: Two Voltage Selection Card

Marked 120V/240V. One card comes standard with every 2 voltage M series module

MA304: Four Voltage Selection Card

Marked 100V/120V/230V/240V. One card comes standard with every 4 voltage M series module

MA400: Medical safety bracket assembly Prevents inadvertent removal of fuse(s)

MA401: Bracket only MA402: Standoff only

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

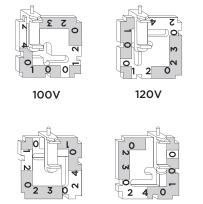


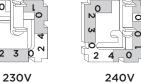
M Series

Accessories (continued)

MA601 - 604: Insulating Boot

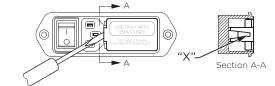
Plastic shroud for back of M series to prevent inadvertent access to connections

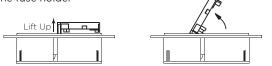




MA601: Fits M4S versions MA602: Fits M1S versions MA603: Fits M4 versions MA604: First M1 versions

Voltage Selection

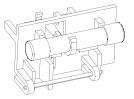

- 1. Open cover, using small blade screwdriver or similar tool (see illustration on right)
- 2. Set aside cover/fuse block assembly
- 3. Pull voltage selector card straight out of housing, using indicator pin
- 4. Orient selector card so that desired voltage is readable at the bottom
- 5. Orient indicator pin to point up when desired voltage is readable at bottom (note that when indicator pin is fixed, successive voltages are selected by rotating the card 90° clockwise)
- 6. Insert voltage selector card into housing, printed side of card facing forward toward IEC connector and edge containing the desired voltage first
- 7. Replace cover, and verify that indicator pin shows the desired voltage

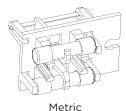


Fuse Installation Instructions

- 1. Remove power cord
- 2. Insert a pocket screwdriver at point "X" as shown

Gently lift the entire door UP approximately 1/4" (minimum) 3. Once lifted, the door will pivot on it's hinges to expose the fuse holder


When the fuse holder is installed in the single fuse position, 4. apply the screwdriver as shown and gently lift up Use screwdriver as shown, do not use fingers



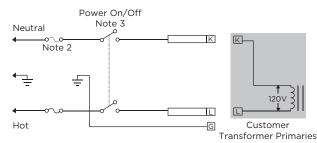
When the fuse holder is installed in the dual fuse position, it will normally release as soon as the door is opened

- 5. Install one (1) AG fuse or two (2) metric fuses (see below)
- 6. Replace fuse holder into housing
- 7. Swing and push to snap door back in place

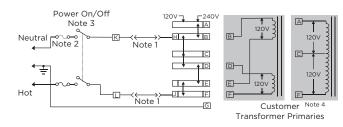
Fuse Options

dual fuse installation

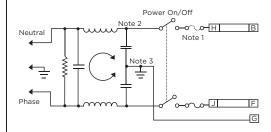
North American single fuse installation


Install fuses on one side only, do not install both AG and metric fuses at the same time

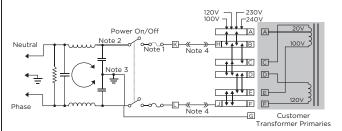
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

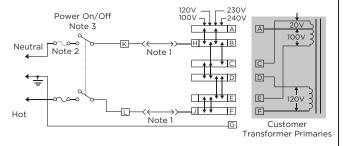

M Series

Electrical Schematics Non-Filtered Models VM1



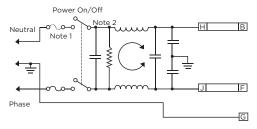
VM2

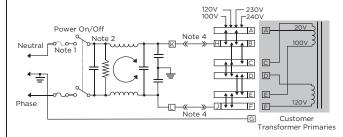

VM4



Filtered Models FM1 & HM1

FM4 & HM4




Note 1: Jumper required if no input filter is used

- Note 2: Provision for dual Metric style fusing
- Note 3: On/off switch present only in "S" suffix models
- Note 4: When using a center-tapped transformer, the C-F winding should be the low voltage (high current) winding and must be capable of handling the full primary current in the 120V position

XM1 & ZM1

XM4 & ZM4

Note 1: Provision for dual Metric style fusing

- Note 2: On/off switch present only in "S" suffix models
- Note 3: Line to ground capacitor not present on HM models
- Note 4: Models HM4, FM4, XM4 and ZM4 have added terminals K and L. External switch or jumper must be placed from K to H and L to J

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

5

Е

Slim Power Entry Module Family with Multiple Options (continued)

6VM2 & 6VM4

D

R

Line Inlet (1):

Backplate Terminals:

D

Mounting holes (2):

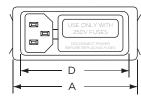
Typical Dimensions:

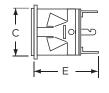
6VM4C

M Series

Case Styles - Non-filtered Models

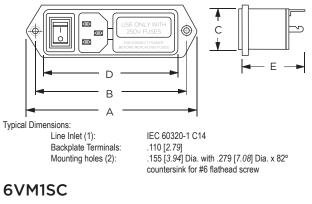
6VM1

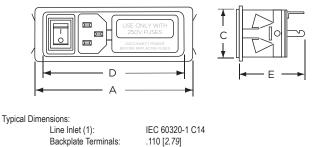



Typical Dimensions:

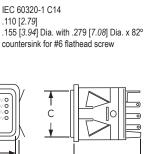
Line Inlet (1): Backplate Terminals: Mounting holes (2):

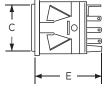
IEC 60320-1 C14 .110 [2.79] .155 3.94 Dia. with .279 7.08 Dia. x 82° countersink for #6 flathead screw


6VM1C



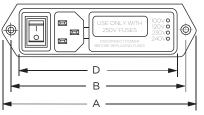
Typical Dimensions: Line Inlet (1): IEC 60320-1 C14 Backplate Terminals: .110 [2.79]

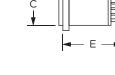

6VM1S



Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

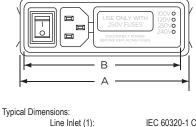



Typical Dimensions: Line Inlet (1): Backplate Terminals:

IEC 60320-1 C14 .110 [2.79]

6

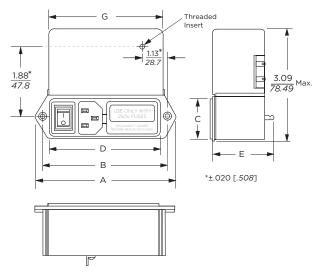
6VM2S & 6VM4S



Typical Dimensions: Line Inlet (1): Backplate Terminals: Mounting holes (2):

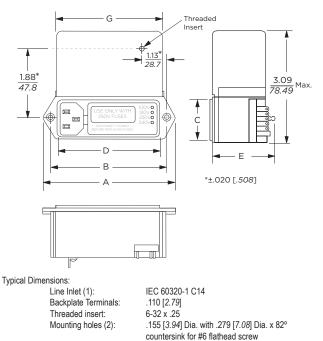
IEC 60320-1 C14 .110 [2.79] .155 [3.94] Dia. with .279 [7.08] Dia. x 82° countersink for #6 flathead screw

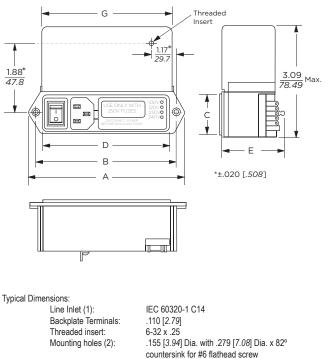
6VM4SC


IEC 60320-1 C14 Backplate Terminals: .110 [2.79]

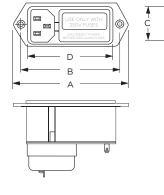
M Series

Case Styles - Filtered Models


3EXM1S & 3EZM1S


Typical Dimensions:

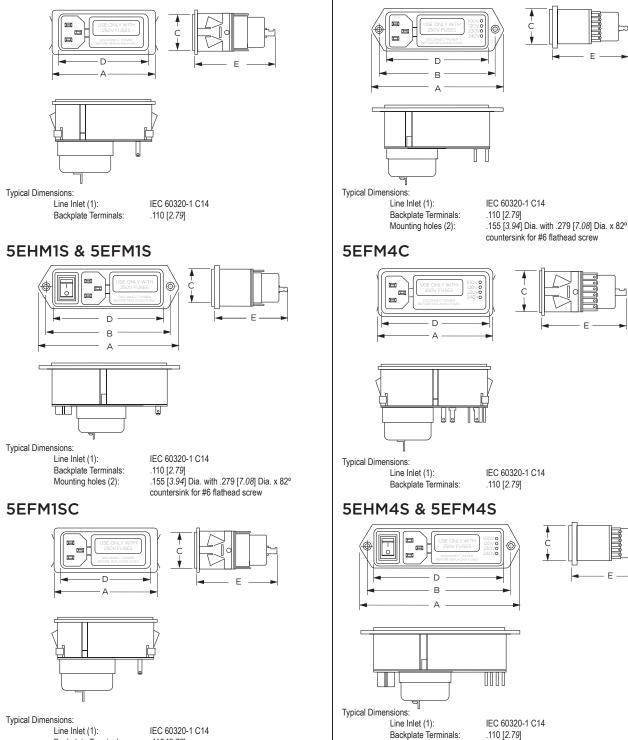
Line Inlet (1): Backplate Terminals: Threaded insert: Mounting holes (2): IEC 60320-1 C14 .110 [2.79] 6-32 x .25 .155 [3.94] Dia. with .279 [7.08] Dia. x 82° countersink for #6 flathead screw


3EXM4 & 3EZM4

3EXM4S & 3EZM4S

5EHM1 & 5EFM1

Typical Dimensions:


Line Inlet (1): Backplate Terminals: Mounting holes (2): IEC 60320-1 C14 .110 [2.79] .155 [3.94] Dia. with .279 [7.08] Dia. x 82° countersink for #6 flathead screw

5EHM4 & 5EFM4

M Series

Case Styles - Filtered Models (continued) 5EFM1C

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

.110 [2.79]

Backplate Terminals:

For email, phone or live chat, please go to te.com/help

.155 [3.94] Dia. with .279 [7.08] Dia. x 82°

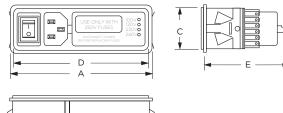
countersink for #6 flathead screw

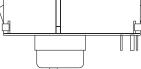
3

189

Downloaded From Oneyac.com

Mounting holes (2):

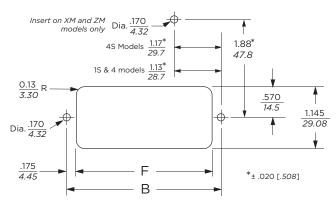

te.com/help corcom.com



Case Dimensions

M Series

Case Styles - Filtered Models (continued) 5EFM4SC



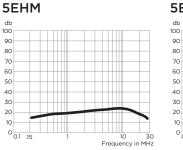
Typical Dimensions: Line Inlet (1): Backplate Terminals:

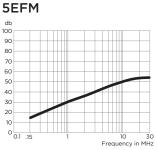
IEC 60320-1 C14 .110 [2.79]

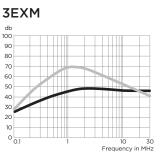
Recommended Panel Cutouts

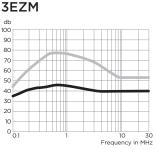
Note: XM and ZM models allow back mount only FM and HM models allow front or back mounting Mounting holes on flange mount models only Snap-In models allow front mounting only Snap-In models panel thickness: .06 - .09 [1.53 - 2.29]

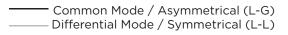
	ICIIJI	0115					
Part No.	Α	В	С	D	Е	F	G
	(max.)	(max.)	(max.)	<u>±.015</u> ±.38	(max.)	(ref.)	(ref.)
6VM1	3.39	2.84	1.14	2.44	1.45	2.5	_
0 0 1 1 1	86.1	72.1	29.0	62.0	36.8	63.5	
6VM1C	2.56	_	1.14	2.44	1.45	2.5	_
6VMIC	86.1	-	29.0	62.0	36.8	63.2	-
CV/M1C	4.17	3.62	1.14	3.22	1.45	3.28	_
6VM1S	105.9	91.9	29.0	81.8	36.8	83.3	
6VM1SC	3.34	-	1.14	3.27	1.45	3.27	-
000000	84.8		29.0	83.1	36.8	83.1	
6VM2	3.88	3.32	1.14	2.92	1.45	2.98	-
6VM4	98.6	84.3	29.0	74.2	36.8	75.7	
6VM4C	3.04	-	1.14	2.92	1.45	2.97	-
0 V M4C	98.6		29.0	74.2	36.8	75.4	
6VM2S	4.65	4.1	1.14	3.72	1.45	3.76	
6VM4S	118.1	104.1	29.0	94.5	36.8	95.5	-
C) () 4 4 C C	3.82		1.14	3.7	1.45	3.75	
6VM4SC	97.0	-	29.0	94.0	36.8	95.3	-
3EXM1S	4.17	3.62	1.14	3.22	1.72	3.28	3.3
3EZM1S	105.9	91.9	29.0	81.8	43.7	83.8	83.8
3EXM4	3.88	3.32	1.14	2.92	1.72	2.98	2.99
3EZM4	98.6	84.3	29.0	74.2	43.7	75.7	75.9
3EXM4S	4.65	4.1	1.14	3.72	1.72	3.76	3.8
3EZM4S	118.1	104.1	29.0	94.5	43.7	95.5	96.5
5EHM1	3.39	2.84	1.14	2.44	2.19	2.5	
5EFM1	86.1	72.1	29.0	62.0	55.6	63.5	-
EEEM1C	2.56		1.14	2.44	2.19	2.49	
5EFM1C	65.0	-	29.0	62.0	55.6	63.2	-
5EHM1S	4.17	3.62	1.14	3.22	2.19	3.28	
5EFM1S	105.9	91.9	29.0	81.8	55.6	83.3	-
	3.34		1.14	3.27	2.19	3.27	
5EFM1SC	84.8	-	29.0	83.1	55.6	83.1	-
5EHM4	3.88	3.32	1.14	2.92	2.19	2.98	
5EFM4	98.6	84.3	29.0	74.2	55.6	75.7	-
	3.04	01.0	1.14	2.92	2.19	2.97	
5EFM4C	77.2	-	29.0	74.2	55.6	74.4	-
5EHM4S	4.65	4.1	1.14	3.7	2.19	3.76	
5EFM4S	4.05 118.1	4.1 104.1	29.0	94 .0		3.70 95.5	-
		104.1			55.6 2 10		
5EFM4SC	3.82	-	1.14	3.7	2.19	3.75	-
	97.0		29.0	94.0	55.6	95.3	


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


M Series


Performance Data


Typical Insertion Loss


Measured in closed 50 Ohm system

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)	Common Mode /	Asymmetrical (Line to Ground)
---	---------------	-------------------------------

	Frequency – MHz							
Part No.	.01	.05	.15	.5	1	5	10	30
5EHM Models	-	-	14	18	19	22	22	17
5EFM Models	-	-	14	21	26	40	45	40
3EXM Models	2	13	23	40	46	44	44	44
3EZM Models	15	29	39	46	43	40	40	40

Differential Mode / Symmetrical (Line to Line)

	Frequency – MHz									
Part No.	.02	.03	.05	.07	.15	.5	1	5	10	30
3EXM Models	-	-	-	5	34	62	68	60	50	40
3EZM Models	5	13	28	37	55	75	75	62	54	44

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Versatile Power Entry Module with Small Footprint

P Series

UL Recognized CSA Certified VDE Approved

PS non-filtered

PS filtered

P Series

The P series CHAMELEON power entry module offers the most popular features in a small footprint design

As the first 10A module to provide all five power entry functions in one compact design, the chameleon module readily adapts to its environment and the needs of international markets.

- Snap-in or flange mounting
- Standard IEC 60321-1 C14 power inlet
- Both North American and metric fusing capabilities
- Two voltage selection options (for 4-voltage selection, see the M, L or LA Series)
- Optional DPST on/off switch
- Filter options for general purpose, medical and high-performance EMI filtering

The CHAMELEON module's compact design and modular construction allows selection of the required power entry feature — without altering the panel cutout. And the CHAMELEON module, with its optional adapters, will fit several common panel cutouts.

Filter Types

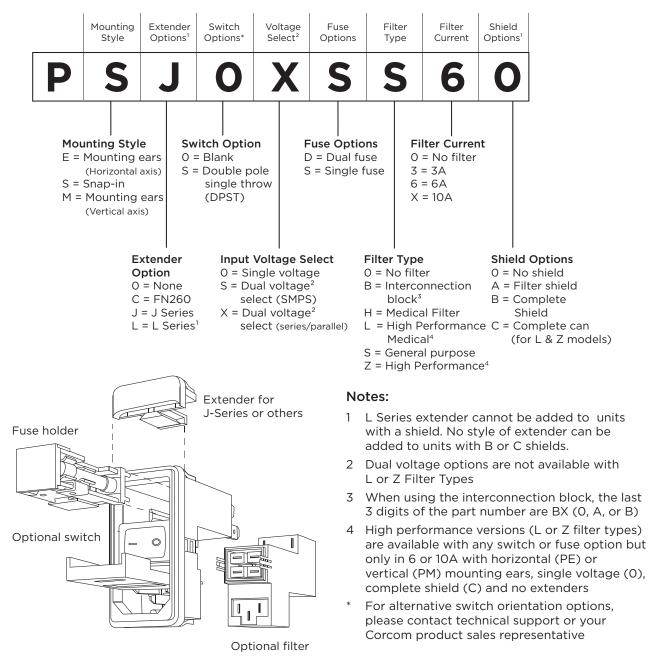
The CHAMELEON module has four filter and one non-filtered option:

S models provide an extended performance two element circuit EMI filter, with attenuation similar to the EEB Series power inlet filter. It offers protection for general purpose applications with stray Line to Ground and Line to Line noise that must be attenuated at the power inlet. These filters have limited leakage current and are available in current ratings of 3, 6 and 10A.

H models provide susceptibility protection with minimal leakage current, and are suitable for patient care and non-patient care medical equipment.

L models feature a high performance medical filter designed to help bring most digital equipment (including switching power supplies) into compliance with EN55022, Level B (as well as FCC part 15J, Class B) conducted emissions limits. They are available with current ratings of 6 and 10A. These high performance versions are only available with mounting ears, single voltage selection, in a complete RFI shield with options for switch, fuses and current ratings. Mounting extenders are not compatible with the L or Z models.

Z models provide a high performance three element differential mode circuit filter, with extended EMI attenuation similar to the M Series Z models, to help bring most digital equipment (including switching power supplies) into compliance with EN55022, Level B (as well as FCC Part 15J, Class B) conducted emissions limits. They are available with current ratings of 6 and 10A. These high performance versions are only available with mounting ears, single voltage selection, in a complete RFI shield with options for switch, fuses and current ratings. Mounting extenders are not compatible with the L or Z models. For minimum depth behind the panel, see the M Series


B models are non-filtered and incorporate an interconnection block. The block connects the voltage selection terminals of an unfiltered CHAMELEON module with an IEC connector and an optional switch to reduce external wiring. Compatible with the A or B RFI shield options.

P Series

Ordering Information

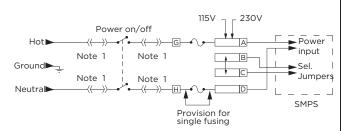
Part numbers are constructed by selecting the alphanumeric character which represents the desired feature. Note: For any option where shown as "0" use the digit ZERO (0) not the letter (0).

The part number PSOSXSS6B would represent:

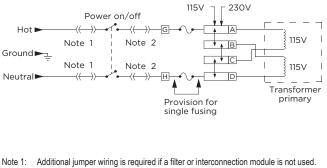
P Series (P) with a snap-in mount (S) with no extender (O) a switch (S) dual voltage select (X) single fusing (S) general purpose filter (S) for 6A (6) with a B shield (B)

Downloaded From Oneyac.com

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


P Series

Voltage Selection


P series power entry modules include the voltage selector integral with the fuse holder. Three voltage selection options are each supported by one of three different fuse holders. The fifth digit of the part number specifies which of the three fuse holders is included to provide the desired voltage selection. The single voltage fuse holder (option "0") has no voltage indication markings. The dual voltage options select 115V or 230V by removing the fuse holder, flipping it over, and reinstalling it. Voltage selection is indicated through a window in the P Series door. The "SMPS" fuse holder (option "S") jumpers two independent P Series terminals to indicate 230V operation to a switching mode power supply. The "PRSR" parallel/serial fuse holder (option "X") connects the windings of the equipment's dual primary transformer (not included) to step down the voltage or double up the current. The markings on the voltage selection fuse holders also remind the user to install the appropriate fuse for the current at the selected voltage.

Input Voltage Selection Schemes

S - "SPMS" Jumper Type

X - "PRSR" Parallel / Serial Type for Dual Primary Transformer

Note 2: Location of optional filter. Additional jumper wiring is required if a filter or interconnection block is not used.

Shield Options

The P series offers several RF shield options. The metal shield, optional on S, H and B filtered models, provides shielding from radiated emissions and provides an RF ground for the filter to the panel. This shield is available in two versions; a shield of the filter components (designated by an A as the final digit) and a complete shield (designated by B as the final digit).

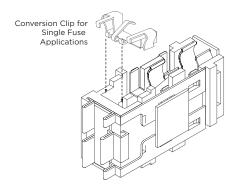
The A shield covers the filter portion of the module and increases performance of the filter by protecting the components from RFI coupling. This shield allows the use of the C or J extender.

The B shield covers the entire power entry module with metal, protecting the filter from RFI coupling, and covering the mounting cut-out to block RFI entering or leaving the equipment. The B shield cannot be used with any extender.

A complete metal enclosure is integral to both the high performance L and Z models, and must be specified by a C in the part number's final digit. This option is only available with the L or Z models.

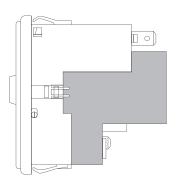
"A" Shield

"B" Shield

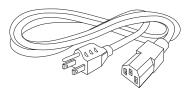

194

P Series

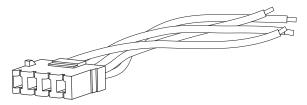
Fuseholder


Another feature of the P series power entry module is the versatile fusing arrangement. The fuse holder can hold two 1/4" x 1-1/4" (3AG) or 5 x 20mm (metric) fuses. Single fusing is supported with a conversion clip that shorts one of the two fuse positions, and is designated by an S in the sixth part number digit. A module designated for a single fuse may be reconfigured by the manufacturer or the user to accept two fuses by simply removing the shorting clip. For applications intended for dual fusing, specify a D in the sixth part number digit.

Interconnection Block


Installation of the unfiltered versions of the P series requires wiring of the IEC socket terminals to the optional switch and the switch to the fuse holder. Labor can be eliminated by ordering the module with an interconnection block. This feature, designated by "BX" in the seventh and eighth digits, pre wires the module so that only connection to the equipment must be done during installation. The interconnection block includes a plastic case to prevent access to the internal connections.

The dimensions of this alternative are the same as the filtered versions.



Accessories

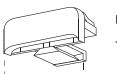
GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

PA100: Power interconnect assembly For voltage select models. Designed for use with either filtered or non-filtered units, 6" wire leads

PA101: Plug only

PA102: Pins only for use with PA101

PA105: Same as PA100 but with two wires for units with no voltage selection


PA400: J Extender

Extends P Series height to fit J panel cutout **PA410**: L Extender

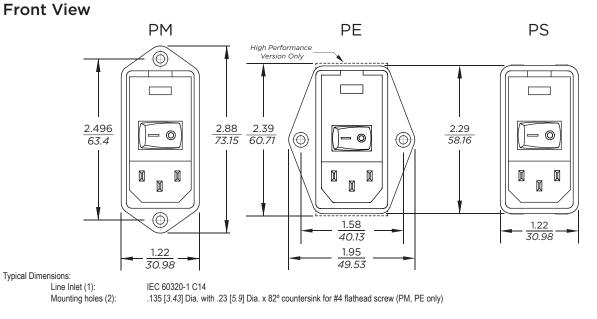
Extends P Series width to fit L panel cutout

PA420: C Extender

Extends P Series height to fit C panel cutout

PA400 J Series Extender

C & *L* Extenders can not be used with B Shields. *L* Extender can not be used with shields

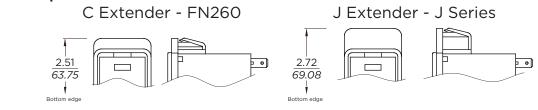


.

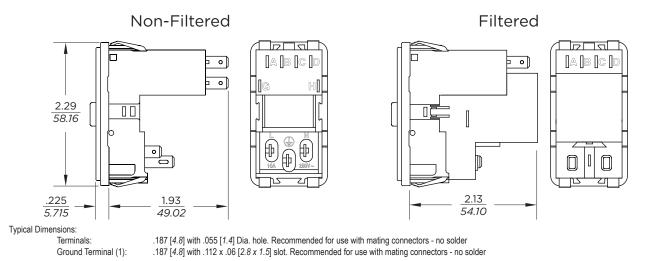
P Series

Specifications			Electrical Schem	atics
Maximum leakage curr	ent each Line to H & L Models	Ground: <u>S & Z Models</u>	H Model	LOAD
@ 120 VAC 60 Hz: @ 250 VAC 50 Hz:	2 μΑ 5 μΑ	.25 mA .50 mA		
Hipot rating (one minu Line to Ground: Line to Line:	te):	2250 VDC 1450 VDC		
Rated Voltage(max.):		250VAC	S Model	
Operating Voltages: Selectable or Fixed		115/230 VAC		
Operating Frequency:		50/60 Hz		
Rated Current:	Nor	n-Filtered – 10A		
	Filtere	ed - 3, 6 or 10A	L Model	
Fuseholder:	.25 x 1.25	ne or two fuses "(not included) (not included)	LINE	
Switch: 10,000	operations at 5	DPST 51A max. inrush		
			Z Model	
			LINE	LOAD
Case Styles				

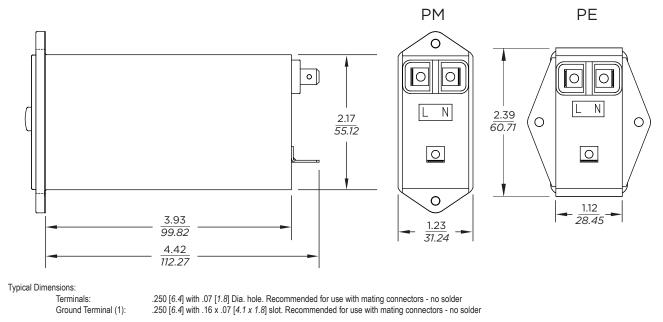
Case Styles



196


P Series

Case Styles (continued)

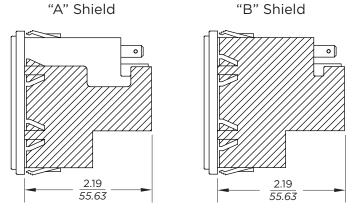

Extender Options

Standard Models - Side and Rear View

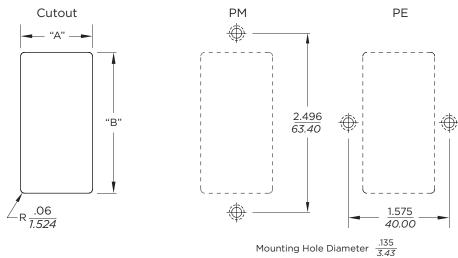
High Performance Models - Side and Rear View

Downloaded From Oneyac.com

Dimensions are in inches and millimeters unless otherwise specified. Values in italics


are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

P Series


Case Styles (continued)

Shield Options

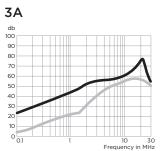
Note: Shields can only be used with filtered models. B shield may not be used with J or C extender

Recommended Panel Cutout

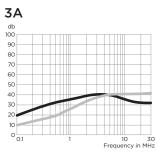
Note: For snap-in applications, the "A" sides must have a .020 [.508] radius on the installation side. Dimensions are for front mount applications. Rear mount dimensions should be determined based on customer's application parameters. Snap-in models allow for front mounting only. Not recommended for use in plastic panels.

Style		Dimension "A" +.008000	Dimension "B" +.008000		
	No Shield	Shielded	High Performance	Standard	High Performance
PM	1.06 [26.92]	1.12 [<i>28.45</i>]	1.12 [28.45]	2.13 [<i>54.10</i>]	2.201 [55.91]
PE	1.12 [28.45]	1.12 [<i>28.45</i>]	1.15 [<i>29.21</i>]	2.201 [<i>55.91</i>]*	2.201 [55.91]
PS	1.06 [<i>26.92</i>]	1.12 [<i>28.45</i>]	-	2.201 [<i>55.91</i>]*	-
PSC	1.06 [<i>26.92</i>]	1.12 [<i>28.45</i>]	-	2.52 [64.01]	-
PSJ	1.06 [<i>26.92</i>]	1.12 [<i>28.45</i>]	-	2.60 [66.04]	-
PSL	1.12 [28.45]	-	-	2.201 [<i>55.91</i>]*	-

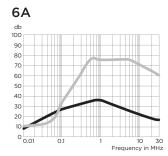
*For panel thickness of 0.031 - 0.079 [0.787 - 2.01] only. Use 2.213 [56.21] for panel thickness of 0.083 - 0.114 [2.0 - 2.90]

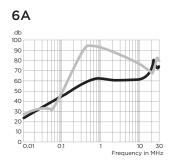

P Series

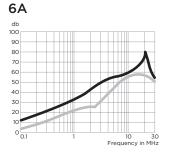
Performance Data


Typical Insertion Loss

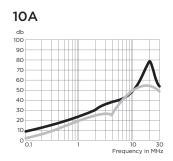
Measured in closed 50 Ohm system

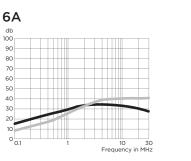

S Models

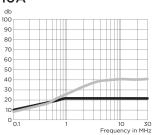




L Models




Z Models



Common Mode / Asymmetrical (L-G) Differential Mode / Symmetrical (L-L)

10A

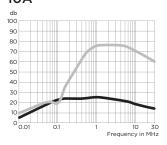
10A

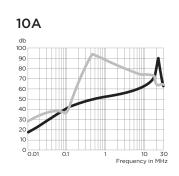
db 100

90

80

70


60


50

40

30

20 10

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

For email, phone or live chat, please go to te.com/help corcom.com

P Series

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Ma	ode /	Asyr	nme	trica	l (Lir	ne to	Gro	und)		Differential N	Mode	/ Sy	mme	etrica	al (Li	ne to	Line	e)	
Current			F	requ	ency	– M	Ηz			Current			F	requ	ency	– MI	Hz		
Rating	.03	.1	.15	.5	1	3	5	10	30	Rating		.10	.15	.5	1	3	5	10	30
S Models										S Models									
3A	7	17	21	27	33	40	44	50	32	3A	3A 2		4	12	15	30	48	50	45
6A	-	8	12	17	23	32	36	44	30	6A		2	4	12	15	22	42	55	45
10A	-	3	5	10	13	23	27	35	27	10A	10A 2		4	12	15	22	42	55	45
H Models										H Models									
3A	7	17	21	27	30	29	26	23	15	3A	2		4	12	18	31	40	48	41
6A	-	8	11	15	17	19	18	16	13	6A	2		4	12	16	26	35	40	35
10A	3	5	8	10	12	11	11	10	10	10A		2	4	12	16	26	33	40	32
Current				roqu	ency	- M	1 -			Current				requ	oncy	_ N/I	1 7		
Rating	.01	.05	.1	.15	.5	- wii	5	10	30	Rating	.01	.05	.1	.15	.5	- 1	5	10	30
L Models	.01	.00			.0	•	•	10	00	L Models	.01	.00			.0	•	•	10	
6A	8	21	27	29	34	35	25	21	16	6A	10	15	34	44	75	75	75	70	60
10A	5	17	22	23	24	25	21	18	14	10A	10	20	20	35	67	75	75	70	60
Z Models	0		~~~	20	21	20	21	10		Z Models	10	20	20	00	01	10	10	10	
6A	8	21	27	30	37	43	49	52	42	6A	10	15	34	44	75	75	75	70	60
10A	5	17	21	24	27	32		47	40	10A	10	20	20	35	67	75	75	70	60
IVA	5	17	~~	27	21	52	52	יד	70	IVA	10	20	20	55	01	15	15	10	00

Power Inlet Connectors

SR Series

SR Series

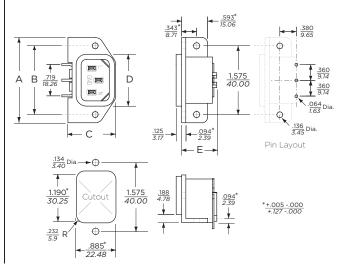
UL Recognized CSA Certified VDE Approved*

Full Line of popular AC receptacles
Male and female power line connectors
Snap-in and flange mount versions

Ordering Information

6 E SR M - P

IEC60320-1 C-13 & C14 inlets rated up to 15A
IEC60320-1 C-19 & C-20 inlets rated up to 20A


Specifications

Rated Voltage (max.):	250 VAC							
Materials:								
Insulator: Thermoplastic UL 94V-0 flame ratin								
Prongs:	Solid brass, nickel plated							
Terminals:	Brass, tin plated							
Temperature Rating:	For "cold" connections, 65°C							

Available Part Numbers

Туре	Male Connector	Female Connector
PC Pins	6ESRM-P	
Snap-In	6ESRMC2	6ESRFC3
Flange Mount	6ESRM-3	6ESRF-3
Snap-In	20ESRMC2	
Flange Mount	20ESRM-3	

Case Styles 6ESRM-P

2 - .187 [4.8] spade terminals 3 - .250 [6.3] spade terminals P - PC board pins Fits .063 [7.6] hole Mounting Style C - Snap-In - Flange Front Connector Styles M - Male 15A = IEC 60320-1 C-14 20A = IEC 60320-1 C-14 20A = IEC 60320-1 C-13 SR Series

Leakage current designation E - Low Leakage (<0.5 mA) Current Rating Indicator

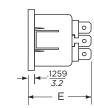
Rear Connector Styles

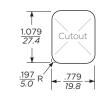
6 = 15A max.* 20 = 20A max.*

*15A versions are VDE approved at 10A, 250VAC max. 20A versions are VDE approved at 16A, 250VAC max.

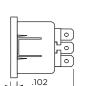
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com


Power Inlet Connectors (continued)


SR Series

Case Styles (continued)



Typical Dimensions: Front Connector: Rear Terminals:

6ESRFC3

2.6

Е

IEC 60320-1 C14

.187 [4.8] with .07 [1.8] Dia. hole

.134 34 Dia.→

G

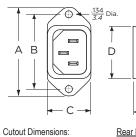
R

Cutout

Φ

Н

Typical Dimensions: Front Connector: Rear Terminals:


IEC 60320-1 C13 .25 [6.3] with .07 [1.8] Dia. hole

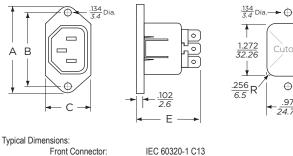
0

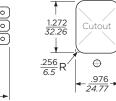
0

0

6ESRM-3

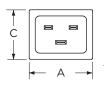
G: H: R:

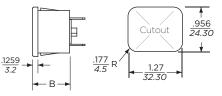

Rear Terminals:



Е Rear Mount Front Mount 1.19 [30.23] 1.079 [27.4] 0.894 [22.7] 0.779 [19.8] 0.232 [5.9] 0.197 [5.0]

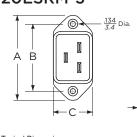
> IEC 60320-1 C14 .25 [6.3] with .07 [1.8] Dia. hole

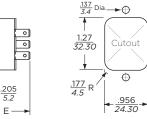

6ESRF-3



.25 [6.3] with .07 [1.8] Dia. hole

20ESRMC2





Typical Dimensions: Front Connector: Rear Terminals:

20ESRM-3

3.2

Typical Dimensions: Front Connector: Rear Terminals:

IEC 60320-1 C20 .25 [6.3] with .07 [1.8] Dia. hole

F

IEC 60320-1 C20

.25 [6.3] with .07 [1.8] Dia. hole

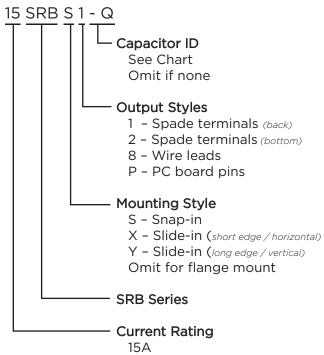
Case Dimensions

Part No.	A (max.)	B +.017006 +.4315	C (max.)	D (max.)	E (max.)
6ESRM-P	1.96	1.575	1.094	1.118	.807
OESKM-P	49.8	40.0	27.8	28.39	20.5
6ESRMC2	1.182	_	.885	_	1.192
0ESRINC2	30.00		22.5		30.3
6ESRFC3	1.39	_	1.09	_	1.496
OLSKI CS	35.5		27.8		38.0
6ESRM-3	1.96	1.575	.885	1.19	1.275
	49.8	40.0	22.5	30.23	32.4
6ESRF-3	1.953	1.575	1.133	_	1.496
	49.6	40.0	28.8		38.0
20ESRMC2	1.377	.921	1.06	_	_
	35.0	23.4	27.0		
20ESRM-3	2.087	1.653	.999	-	1.318
2013111-3	53.0	42.0	25.4		33.5

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Minimum Depth, Cost-effective Shielded Power Inlet Filter

SRB Series



UL Recognized CSA Certified VDE Approved*

- Smallest depth Corcom RFI filter available
- Complete shield
- Wide range of capacitor values
- Attenuates coupled EMI up to 300MHz
- Minimal to low leakage current versions are suitable for patient and non-patient contact medical equipment.
- Full range of mounting and termination options including unique vertical and horizontal orientation slide in mounts eliminate the need for mounting hardware

Ordering Information

*15A versions are tested by Underwriters Laboratories to US and Canadian requirements and are VDE approved at 10A, 250VAC

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Specifications

Maximum leakage current each Line to Ground:

· · · · · · · · · · · · · · · · · · ·		
	@120 VAC	@250 VAC
<u>Capacitor ID / Value</u>	<u>60 Hz</u>	<u>50 Hz</u>
Blank / None	2 µA	5 µA
Q / 33 pF	2.1 µA	3.65 µA
R / 100 pF	9.6 µA	16.6 µA
S / 220 pF	19.2 µA	33.2 µA
T / 330 pF	24.0 µA	41.5 µA
W / 470 pF	0.04 mA	0.07 mA
X / 1000 pF	0.07 mA	0.13 mA
Y / 2200 pF	0.16 mA	0.28 mA
Z / 3300 pF	0.24 mA	0.42 mA
Hipot rating (one minute)	:	
Line to Ground:		2250 VDC
Line to Line:		1450 VDC
Rated Voltage (max.):		250 VAC
		F0 (00 L)
Operating Frequency:		50/60 Hz
Rated Current:		15A*
Oneveting Ambient Temp	anatura Danaa	

Operating Ambient Temperature Range

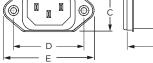
(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/45}$

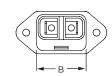
Capacitor Options

Capacitor ID	Capacitor Value
Q	33 pF
R	100 pF
S	220 pF
Т	330 pF
W	470 pF
Х	1000 pF
Y*	2200 pF
Z*	3300 pF

*Not available in SRB8, SRBX or SRBY styles

Minimum Depth, Cost-effective Shielded Power Inlet Filter (continued)

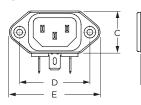

SRB Series


Available Part Numbers

Flange Mount										
15SRB1	15SRB2	15SRBP	15SRB8							
15SRB1-Q	15SRB2-Q	15SRBP-Q	15SRB8-Q							
15SRB1-R	15SRB2-R	15SRBP-R	15SRB8-R							
15SRB1-S	15SRB2-S	15SRBP-S	15SRB8-S							
15SRB1-T	15SRB2-T	15SRBP-T	15SRB8-T							
15SRB1-W	15SRB2-W	15SRBP-W	15SRB8-W							
15SRB1-X	15SRB2-X	15SRBP-X	15SRB8-X							
15SRB1-Y	15SRB2-Y	15SRBP-Y								
15SRB1-Z	15SRB2-Z	15SRBP-Z								
Sna	p-In	Slide-In								
15SRBS1	15SRBS8	15SRBX8	15SRBY8							
15SRBS1-Q	15SRBS8-Q	15SRBX8-Q	15SRBY8-Q							
15SRBS1-R	15SRBS8-R	15SRBX8-R	15SRBY8-R							
15SRBS1-S	15SRBS8-S	15SRBX8-S	15SRBY8-S							
15SRBS1-T	15SRBS8-T	15SRBX8-T	15SRBY8-T							
15SRBS1-W	15SRBS8-W	15SRBX8-W	15SRBY8-W							
15SRBS1-X	15SRBS8-X	15SRBX8-X	15SRBY8-X							
15SRBS1-Y										
15SRBS1-Z										

Case Styles SRB1

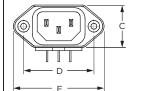
Ũ M \bigcirc Ø

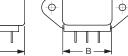


 \diamond

Typical Dimensions: Mounting holes (2):

> Line Inlet (1): Load Terminals (2): Ground Terminal (1):


SRB2


Typical Dimensions: Mounting holes (2):

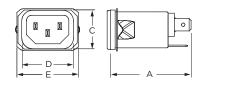
> Line Inlet (1): Load Terminals (2): Ground Terminal (1):

SRBP

φ

Typical Dimensions: Mounting holes (2):

Line Inlet (1):


PC board pins (3):

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14

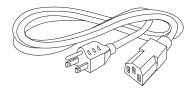
.031 [0.7] square, ± .003 [.07]

Δ

SRBS1

Typical Dimensions: Line Inlet (1): Load Terminals (2): Ground Terminal (1):

IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot


Accessories

Electrical Schematic

LINE

GA400: NEMA 5-15P to IEC 60320-1 C-13 line cord

╧

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

LOAD

For email, phone or live chat, please go to te.com/help corcom.com

0 ľ0 0 Δ

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw

.250 [6.3] with .07 [1.8] Dia. hole

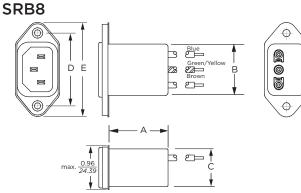
.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

0

IEC 60320-1 C14

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot

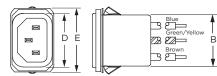
 \bigcirc


 \bigcirc

 \bigcirc

Minimum Depth, Cost-effective Shielded Power Inlet Filter (continued)

SRB Series

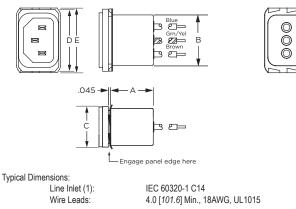

Typical Dimensions: Mounting holes (2):

Line Inlet (1):

Wire Leads:

.132 [3.35] Dia. with .236 [5.99] Dia. x 90° countersink for #4 flathead screw IEC 60320-1 C14 4.0 [101.6] Min., 18AWG, UL1015

SRBS8



А 387

Typical Dimensions: Line Inlet (1): Wire Leads:

IEC 60320-1 C14 4.0 [101.6] Min., 18AWG, UL1015

SRBX8

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to

.045 -Δ Blue Grn/Y b 28 B Brow H۹ Engage panel edge here

SRBY8

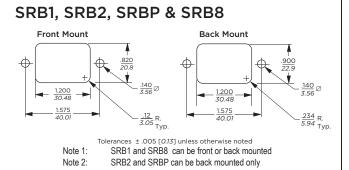
IEC 60320-1 C14 4.0 [101.6] Min., 18AWG, UL1015

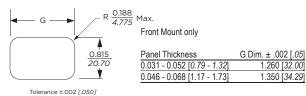
3 ED

Case Dimensions

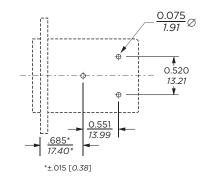
Part No.	Α	В	С	D	Е
Fart NO.	(max.)	(max.)	(max.)	<u>±.015</u> ±.38	(max.)
15SRB1	1.75	1.13	0.96	1.58	2.04
IJSKDI	44.45	28.70	24.38	40.00	51.76
15SRB2	1.54	1.13	0.96	1.58	2.04
IJSKDZ	39.12	28.70	24.38	40.00	51.76
15000	1.54	1.13	0.96	1.58	2.04
15SRBP	39.12	28.70	24.38	40.00	21.76
1500001	1.75	1.13	0.96	1.19	1.41
15SRBS1	44.45	28.70	24.38	30.10	35.81
15SRB8	0.95	1.13	0.96	1.58	2.04
IJJKDO	24.13	28.70	24.38	40.00	51.76
15SRBS8	.95	1.13	0.96	1.19	1.41
1358630	24.13	28.70	24.38	30.10	35.81
15SRBX8	0.95	1.11	0.89	1.35*	1.41
IJSKDAO	24.1	28.2	22.61	34.29*	35.81
15SRBY8	0.95	1.11	0.89	1.30*	1.36
IJSKDIO	24.1	28.2	22.61	33.02*	34.54
					*max.

te.com/help

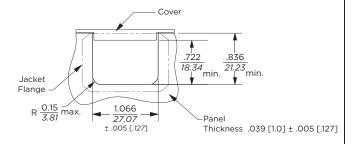

corcom.com


Minimum Depth, Cost-effective Shielded Power Inlet Filter (continued)

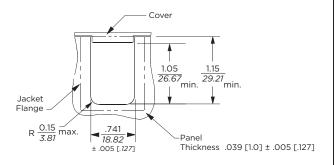
SRB Series


Recommended Panel Cutouts

SRBS



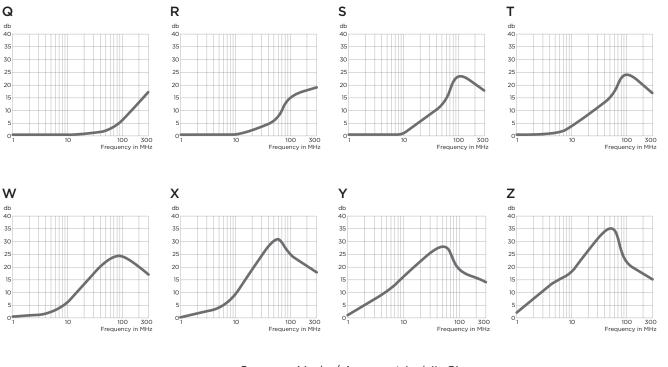
PC Board Layout



SRBX

SRBY

206


Minimum Depth, Cost-effective Shielded Power Inlet Filter (continued)

SRB Series

Performance Data

Typical Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (L-G)
 Differential Mode / Symmetrical (L-L)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Current		Frequency – MHz										
Rating	1	5	10	50	100	300						
Q	-	-	-	-	-	20						
R	-	-	-	3	6	22						
S	-	-	1	6	17	19						
Т	-	-	2	13	13	19						
W	-	2	4	18	13	20						
Х	-	5	9	25	10	17						
Y	1	10	15	20	8	22						
Z	2	14	18	17	7	15						

Common Mode / Asymmetrical (Line to Ground)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

3

Power Inlet Filters & Power Entry Modules

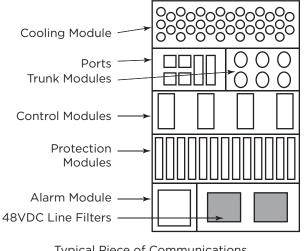
Engineering Notes

																			_			
																			_			
										_							_		_			_
																	_		-			
																			_			
			_					_	_										_			
										_							_		_			
								++									_		_			
						 	$\left \right $	++							$\left \cdot \right $		_	$\left \cdot \right $	-			-
	+						+	++	+			++			+			\vdash	-	++	+	+
								++								++			-			
								++									_		_	\square		
						 -	$\left \right $	+							$\left \right $		_	\vdash	-			
	+	+		++		\vdash	++	++	+		\vdash	++		++	+	++		\vdash	+-	++	+	+
																			_			
		_						_								_		$\left \right $	_			
																			_			
										_							_		_			
		_	_							_												
																						_
																_			_			
								++							+		_		_		+	-
	+			+	+		+	++						++-	+	++		\vdash		++		-
																		\square	-			
								\square											_			
								++							$\left \cdot \right $		_	$\left \cdot \right $	-			
	+						+	++				++			+			\vdash	-	++	+	+
								++								++			-			
								+											_		+	
	+	+		+		 \vdash	+	++	+	_	\vdash	++		++	+	++	_	\vdash	-	++	+	$\rightarrow \rightarrow$
	+	+		+	+	 	+	++						++-	+	+++		\vdash	-	+	+	
							$\uparrow \uparrow$											$ \uparrow $	1			
								++							+		_		_		+	-
	+	+		+	+	 	+	++						++-	+	+++		\vdash	-	+	+	
								++								++				+		
				μŢ											\square							

4. DC Filters — Table of Contents

Introduction
Selector Chart
DA Series
DB Series
DC Series
P Series

Introduction


STAY CONNECTED WITH CORCOM PRODUCTS

TE Connectivity (TE) is a world leader in EMI-RFI filtering technology. Since 1955, TE has been providing EMI-RFI solutions to leading computer, industrial and telecommunications companies worldwide. Whether you are meeting FCC and international EMC standards on EMI-RFI emissions or developing a newly designed piece of equipment from being disturbed by EMI-RFI in the environment, a power line filter will help your equipment with compliance.

This section highlights TE's product offering of DC rated products. Whether the issues involve filtering noise on the data lines or on the power lines, TE can provide the needed solutions for both susceptibility and to help achieve system emissions and immunity compliance.

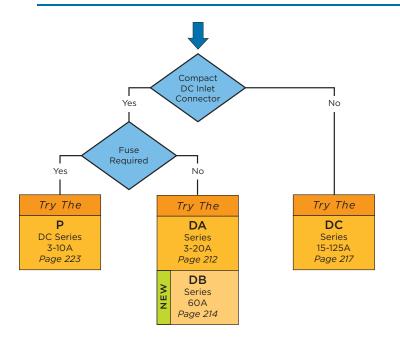
As new technologies in the Telecom-Datacom industry are developed and introduced, TE continues to design and develop new products to address the EMI-RFI filtering issues. TE's design engineers are very actively working with telecom and datacom system engineers to solve EMI-RFI issues.

In working with two of the leading North American communications equipment companies, TE engineers solved the EMI-RFI issues present by applying 48 VDC filters at the primary input of the DC power supply. One of the applications was on network routing equipment and required a two-stage 48VDC filter on the input to the DC power supply. TE applied highfrequency attenuating 48VDC filters on the load side of the DC power supplies to solve high-frequency EMI-RFI issues.

Typical Piece of Communications Equipment Utilizing 48VDC Filters TE has provided solutions in both power line filtering and signal line filtering applications for many leading communications companies. As data transmission speeds increase and EMI-RFI issues multiply, TE has developed products to better solve the newer challenges communications companies encounter.

Corcom DC power line and signal line filters have been included in:

- Network routing equipment
- Servers
- Modems
- Switching equipment
- Wireless cabinets
- Ethernet hubs
- Base stations
- Repeater stations
- Power supplies for all types of communications equipment


TE has developed DC filter products specifically for the communications industry including:

- DC power line clean-up filters
- Medium and multiple-stage high-performance DC power line filters
- High frequency DC power line filters (up to 3GHz)
- High current DC power line filters (up to 60A)
- Data-transmission signal line filters

Corcom DC filters are available in versions that can solve a wide variety of EMI-RFI issues. TE has solved basic EMI-RFI issues with simple cleanup DC filters and has solved more complex EMI-RFI issues with mid-range and multiple-stage high performing DC filters. TE has also solved high-frequency noise problems (up to 3GHz) encountered with high-speed data transmission and switching power supplies.

Selector Chart

Series	Input	Output	Mounting	Options	Current Rating		
	2-pin Inlet	1/4" Terminal	Snap In Panel <i>or</i> Flange Panel	Fuse	3, 6, 10A		
DA / DAS	3-pin Inlet	1/4" Terminal <i>or</i> PC Board	Snap In Panel <i>or</i> Flange Panel	_	3, 6, 10, 15A		
DB	2-pin High Current Inlet	Wire Leads	Flange Panel and Rear Mount	Compact, Standard, Feedthrough & Hi-Performance Filters and Unfiltered Inlet & Plug available Separately	60A		
DC	Redundant Stud Terminal Block	Redundant Stud <i>or</i> Terminal Block	Bulkhead <i>or</i> Flange Chassis	Circuit Breaker <i>and/or</i> High Frequency Performance	15, 30, 60, 100, 125A		

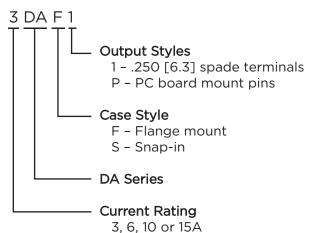
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

4

DC Filters

Compact RFI Line Filter with DC Inlet Connection

DA Series



UL Recognized CSA Certified TUV Certified

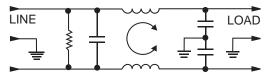
DA Series

- General purpose line filters for DC applications up to 125VDC.
- Compact with a 3-pin inlet connector
- Available in 3, 6, 10 and 15A versions
- Flange mount with 1/4" or PCB terminals
- Mates with a standard MOLEX* connector (HCS Series)

Ordering Information

Available Part Numbers

3DAF1	10DAF1
3DAS1	10DAS1
3DAFP	10DAFP
6DAF1	15DAF1
6DAS1	15DAS1
6DAFP	15DAFP



Specifications

Hipot rating (one minute): Line to Ground: LIne to Line:	2250 VDC 1450 VDC
Rated Voltage (max):	125 VDC
Rated Current:	3 to 15A
Operating Ambient Temperature Range	

(at rated current I_r): In an ambient temperature (T_a) higher than +55°C the maximum operating current (I_o) is calculated as follows: $I_o = I_r \sqrt{(85-Ta)/45}$

Electrical Schematic

Accessories

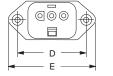
GA310 – (shown above) Pre-assembled connector housing and terminals with three 36" long 18 gauge wires to mate with DA Series filters

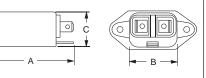
MOLEX* connector part numbers:

03-12-1036	Connector housing for DA Series
18-12-1222	Female terminals (3 per connector)

*MOLEX is a trademark of MOLEX Incorporated

212



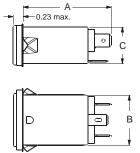

Compact RFI Line Filter with DC Inlet Connection (continued)

DA Series

Case Styles

DAF1

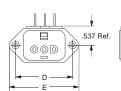


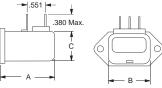


Typical Dimensions:

Load Terminals (2): Ground Terminal (1): Mounting Holes (2): .250 [6.3] with .07 [1.8] Dia. hole .250 [6.3] with .07 x .16 [1.8 x 3.8] slot .187 ± .008 [4.75 ± .20] Dia. 90° countersunk for # 4 flathead screw

DAS1

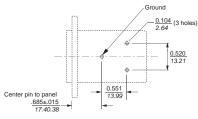

.250 [6.3] with .07 [1.8] Dia. hole


.250 [6.3] with .07 x .16 [1.8 x 3.8] slot

Rear View

Typical Dimensions: Load Terminals (2): Ground Terminal (1):

DAFP

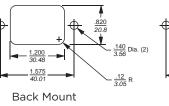


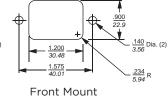
Typical Dimensions: Pins (3):

Mounting Holes (2):

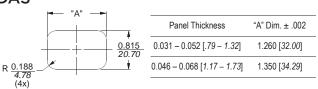
PC Board Layout

.031 x .06 ± .003


 $0.187 \pm .008$ [4.75 $\pm .20$] Dia. 90° countersunk for #4 flathead screw


Case Dimensions

Dart No.	Α	A B		D	Е
Part No.	(max.)	(max.)	(max.)	<u>±.010</u> ±.25	(max.)
	2.15	1.12	0.81	1.575	1.98
DAF1	54.61	28.45	20.57	40.01	50.29
DAS1	1.98	1.10	0.81	0.96*	1.41
	50.29	27.94	20.57	24.38	35.81
	1.54	1.12	0.81	1.575	1.98
DAFP	39.12	28.45	20.57	40.01	50.29
			*Rep	presents max	. dimension


Recommended Panel Cutouts

DAS

Performance Data

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

			-								
Current	Frequency – MHz										
Rating	.05	.1	.15	.5	1	3	5	10	30	100	200
3A	6	9	11	26	41	48	52	55	46	22	16
6A	2	4	6	18	30	37	42	48	42	-	-
10A	-	1	4	8	17	25	30	36	38	21	11
15A	-	-	-	3	5	13	19	25	29	10	14

Differential Mode / Symmetrical (Line to Line)

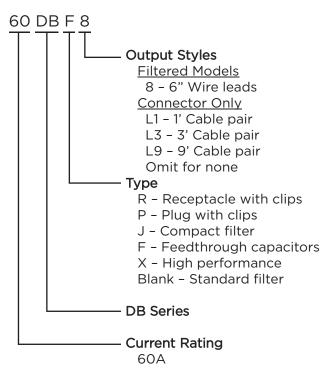
Current	Frequency – MHz										
Rating	.05	.1	.15	.5	1	3	5	10	30	100	200
3A	-	4	7	16	18	37	47	50	43	31	36
6A	-	4	7	19	21	27	40	53	41	-	-
10A	2	4	6	17	22	23	32	48	38	30	26
15A	-	-	2	17	19	29	33	37	37	31	28

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

213

Compact RFI High Current DC Inlet Connection

DB Series


UL Recognized CSA Certified TUV Certified

EURA FRAKER CORCON C

DB Series

- Compact connector for high-current DC applications
- Reliable performance in a compact assembly
- Polarized mating scheme
- Easy customer termination of power source
- Plug and receptacle available pre-terminated in standard wire lengths
- Available filtered or unfiltered

Ordering Information

Specifications

Hipot rating (one minute):

	Filtered Models	DBR & DBP
Line to Ground:	2121 VDC	n/a
Line to Line:	1768 VDC	1600 VAC
Rated Voltage (max):	150VDC*	300 VDC

Rated Current:

Operating Ambient Temperature Range

(at rated current I_r): -10°C to +55°C In an ambient temperature (T_a) higher than +55°C the maximum operating current (I₀) is calculated as follows: I₀ = I_r $\sqrt{(85-Ta)/30}$

*Certified to 120V for TUV

60A (all versions)

Available Part Numbers

Filtered Models								
60DB8	60DBJ8							
60DBF8	60DBX8							

Connectors Only								
60DBR	60DBP							
60DBRL1	60DBPL1							
60DBRL3	60DBPL3							
	60DBPL9							

WARNING

This is not approved for hot swap or current interruption in DC applications. Doing so will result in irreparable damage to contacts.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

-

0 -VDC (Black)

Load

0 RTN (Red)

Compact RFI High Current DC Inlet Filter (continued)

DB Series

Electrical Schematics

DB8 & DBJ8

DBF8

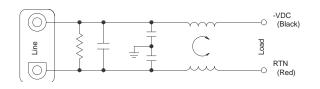
DBX8

(O)

Line

 \bigcirc

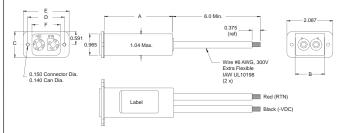
O

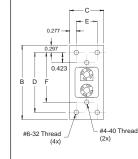

Line

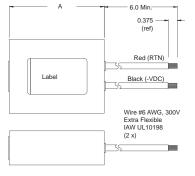
0

Ş

60DBPL


Available as connector only (shown) or with pre-installed 6AWG 300V Extra Flexible wire


1



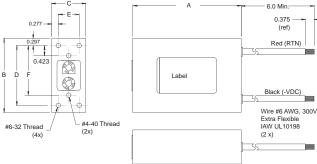
DBJ8

DB8 & DBF8

DC Filters

DBX8

-VDC


RTN 0 (Red)

(Black)

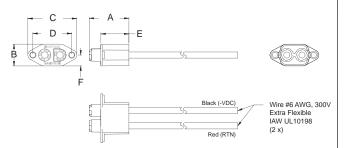
0

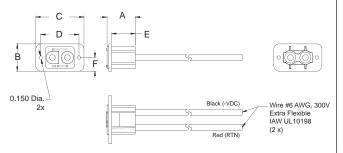
Load

Ŧ

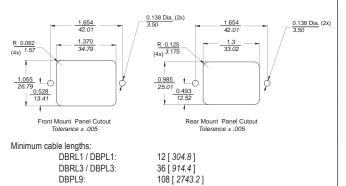
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

60DBRL


Downloaded From Oneyac.com


Compact RFI High Current DC Inlet Filter (continued)

DB Series


Case Styles (continued) DBPL

DBRL

Recommended Panel Cutout

Accessories / Tooling

Insertion/Extraction Tool:	1643922-1*
Crimp per TE spec:	114-13206
Crimp tool:	M22520/23-01
Indenter head:	M22520/23-04
Locator:	M22520/23-11
Connector system locking kit ¹ :	
	Contact TE

Case Dimensions

	Α	В	С	D	Е	F
Part No.	(max)	(max)	<u>±.025</u> ±.635	<u>±.025</u> ±.635	<u>±.025</u> ±.635	<u>±.025</u> ±.635
60DBJ8	3.2	1.36	1.181	1.654	2.087	1.28
	81.28	34.544		42.012	53.01	32.512
60DB8	4.06	3.20	1.45	2.50	0.875	2.077
60DBF8	103.12	81.28	36.83	63.50	22.23	52.76
60DBX	6.06	3.50	1.45	2.876	0.875	2.265
OUDBA	153.92	88.90	36.83	73.05	22.23	57.53
60DBRL	1.22*	1.181*	2.087	1.654	1.023	0.591
OUDBRL	30.99*	29.99	53.009	42.011	25.984	15.011
	1.695*	0.93*	2.08	1.654	1.195	0.465
60DBPL	43.05*	23.62*	52.832	42.011	30.353	11.811
					*± 0.	025 [0.635]

Performance Data

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

	Frequency – MHz										
Part No.	0.1	0.15	0.5	1	5	1	20	30	50	100	
60DBJ8	-	-	-	1	13	21	30	40	30	20	

	Frequency – MHz									
Part No.	0.05	0.1	0.15	.5	1	3	5	10	20	30
60DB8	2	7	10	23	30	48	38	28	20	16
60DBF8	15	22	25	35	42	50	58	54	38	36
60DBX8	-	10	16	40	48	54	60	51	40	36

Differential Mode /	[/] Symmetrical	(Line to Line)
---------------------	--------------------------	----------------

	Frequency – MHz									
Part No.	0.1	0.15	0.5	1	5	1	20	30	50	100
60DBJ8	5	8	19	26	34	26	20	16	-	-

	Frequency – MHz									
Part No.	0.05	0.1	0.15	.5	1	3	5	10	20	30
60DB8	20	26	29	43	53	30	30	24	20	18
60DBF8	9	15	18	30	34	40	44	44	48	52
60DBX8	31	30	30	70	70	54	50	60	54	50

*for DBR / DBP Only

 $^{\rm 1}{\rm Tool}$ required to disengage $\,$ mated connector when using locking kit $\,$

RFI Power Line Filters for DC Applications

DC Series

UL Recognized CSA Certified TUV Certified

DC Series

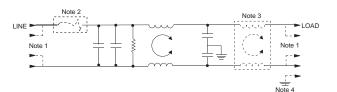
- General purpose line filters for DC applications up to 125VDC
- Available with or without a circuit breaker
- Available with feedthrough capacitors for added high frequency performance
- Available in both flange mound (DCF) and bulkhead mount (DCB) configuration

60DCF6B

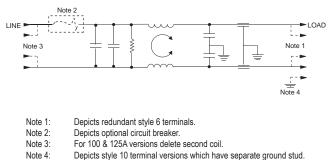
15DCF10

Specifications

Hipot rating (one minute): Line to Ground: LIne to Line:	2250 VDC 1450 VDC
Rated Voltage (max):	80 VDC
Rated Current:	15 to 125A
Operating Ambient Temperature Range	


(at rated current I_r): -10°C to +55°C In an ambient temperature (T_a) higher than +55°C the maximum operating current (I_O) is calculated as follows: I_O = I_r $\sqrt{(85-T_a)/30}$

Ordering Information



Electrical Schematics

Standard Performance

High Frequency Performance (F & BF Styles)

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

DC Series

Available Part Numbers

Standard P	erformance	High Performance				
15DCF6	15DCF10	15DCB10F	15DCB6F			
30DCF6	30DCF10	30DCB10F	30DCB6F			
60DCF6	60DCF10	60DCB10F	60DCB6F			
100DCF6	100DCF10	100DCB10F	100DCB6F			
125DCF6	125DCF10	125DCB10F	125DCB6F			
15DCF6B	15DCF10B	15DCB6BF				
30DCF6B	30DCF10B	30DCB6BF				
60DCF6B	60DCF10B	60DCB6BF				
100DCF6B	100DCF10B	100DCB6BF				
125DCF6B	125DCF10B	125DCB6BF				
15DCB6	15DCB10	15DCB10BF				
30DCB6	30DCB10	30DCB10BF				
60DCB6	60DCB10	60DCB10BF				
100DCB6	100DCB10	100DCB10BF				
125DCB6	125DCB10	125DCB10BF				
15DCB6B	15DCB10B					
30DCB6B	30DCB10B					
60DCB6B	60DCB10B					
100DCB6B	100DCB10B					
125DCB6B	125DCB10B					

Termination Options

Style 6 (15, 30 & 60A)

- Supplied with #10-32 redundant studs
- 0.625 [15.88] spacing like polarity
- 0.750 [19.05] spacing opposing polarity
- Torque specification: 27 ±3 in-lb.

Style 10 (15 & 30A)

- PHOENIX CONTACT* part number: VDFK4
- Accepts 12 AWG stranded wire
- Wire strip length: 0.315 [8.0]
- Torque specification: 5.5 7.0 in-lb.
- Ground stud: 8-32

Style 10 (100A)

- PHOENIX CONTACT* part number: HDFK 25-VP
- Accepts 4 AWG stranded wire
- Wire strip length: 0.748 [19.0]
- Torque specification: 35.4 39.9 in-lb.
- Ground stud: 1/4-20

Style 6 (100 & 125A)

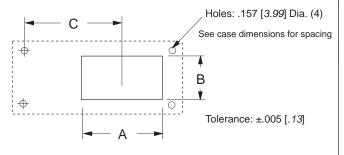
- Supplied with 1/4-20 redundant studs
- 0.750 [19.05] spacing like polarity
- 1.00 [25.4] spacing opposing polarity
- Torque specification: 45 ±2 in-lb

Style 10 (60A)

- PHOENIX CONTACT* part number: HDFK 16-VP
- Accepts 6 AWG stranded wire
- Wire strip length: 0.630 [16.0]
- Torque specification: 17.7 21.2 in-lb.
- Ground stud: 10-32

Style 10 (125A)

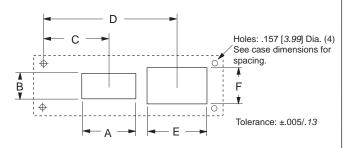
- PHOENIX CONTACT* part number: HDFK 50-VP
- Accepts 1 AWG stranded wire
- Wire strip length: 0.945 [24.0]
- Torque specification: 35.4 39.9 in-lb.
- Ground stud: 1/4-20


*PHOENIX CONTACT is a trademark of Phoenix Contact GmbH & Co. KG.

DC Series

Recommended Panel Cutouts

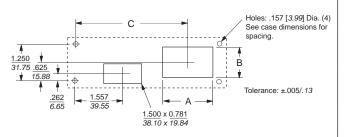
DCB6(F) & DCB10(F)



Cutout Dimensions

DCB6(F) & DCB10(F)

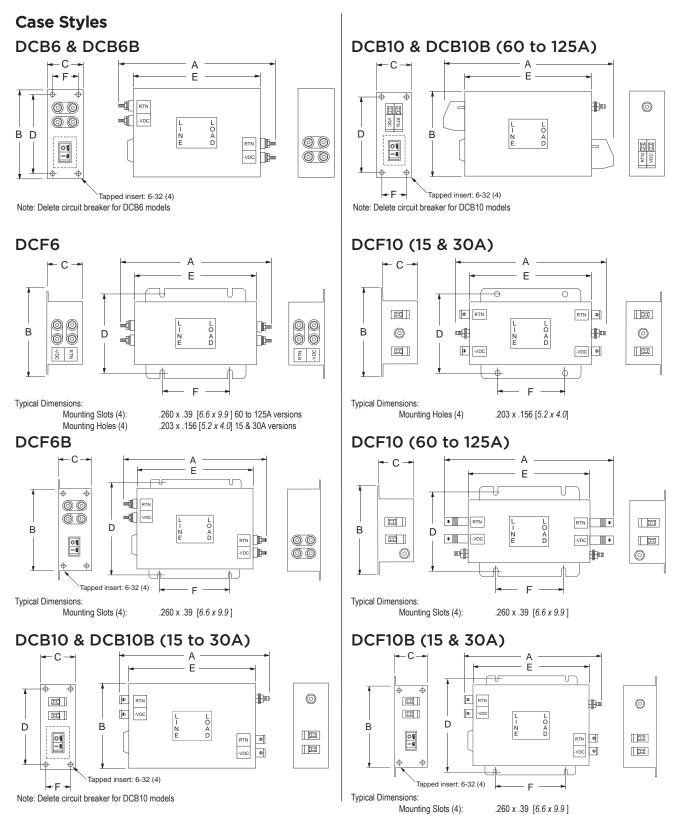
Part No.	Α	В	с
15DCB6(F)	1.375	1.249	3.472
30DCB6(F)	34.93	31.72	88.19
15DCB10(F)	1.250	1.000	3.472
30DCB10(F)	31.75	25.40	88.19
	1.375	1.249	3.472
60DCB6(F)	34.93	31.72	88.19
	1.674	1.010	3.443
60DCB10(F)	42.52	25.65	87.45
100DCB6(F)	1.700	1.549	3.472
125DCB6(F)	43.18	39.34	88.19
100000010(5)	1.954	1.500	2.830
100DCB10(F)	49.63	38.10	71.20
1050 0010/5	2.250	1.590	2.725
125DCB10(F)	57.15	40.39	69.22


DCB6B(F) & DCB10B(F) 15 to 60A

DCB6B(F) & DCB10B(F) 15 to 60A

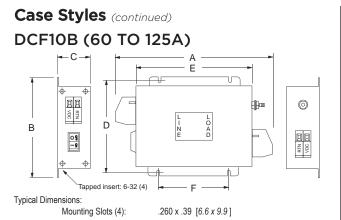
Part No.	Α	в	С	D	Е	F
15DCB6B(F)	1.50	0.781	1.308	3.472	1.375	1.249
15DCF6B	38.10	19.84	33.22	88.19	34.93	31.72
15DCB10B(F)	1.50	0.781	1.308	3.472	1.250	1.00
15DCF10B	38.10	19.84	33.22	88.19	31.75	25.40
30DCB6B(F)	1.50	0.781	1.308	3.472	1.375	1.249
30DCF6B	38.10	19.84	33.22	88.19	34.93	31.72
30DCB10B(F)	1.50	0.781	1.308	3.472	1.250	1.00
30DCF10B	38.10	19.84	33.22	88.19	31.75	25.40
60DCB10B(F)	1.50	0.781	1.308	3.443	1.674	1.010
60DCF10B	38.10	19.84	33.22	87.45	42.52	25.65
60DCF6B(F)	1.50	0.781	1.308	3.472	1.375	1.249
60DCF6B	38.10	19.84	33.22	88.19	34.93	31.72

DCB6B(F) & DCB10B(F) 100 to 125A


DCB6B(F) & DCB10B(F) 100 to 125A

•••	•••		
Part No.	Α	В	с
100DCB6B(F) 100DCF6B	1.70	1.549	4.222
125DCB6B(F) 125DCF6B	43.18	39.34	107.23
100DCB10B(F)	1.954	1.50	4.295
100DCF10B	49.63	38.10	109.09
125DCB10B(F)	2.25	1.59	4.147
	57.15	40.39	105.33
125DCF10B	2.25	1.59	2.725
	57.15	40.39	105.33

DC Series

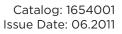


Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com

DC Series

Case Dimensions


	Α	в	С	D	Е	F
Part No.	(max)	(max)	(max)	<u>±.020</u> ±.51	(max)	<u>±.020</u> ±.51
15DCB6(F)	5.69	5.06	1.48	4.50	4.06	0.950
	144.5 7.69	128.5 5.06	37.6 1.48	114.3 4.50	103.1 6.06	24.13 0.950
15DCB6B(F)	195.3	128.5	37.6	4.30 114.3	1 53.9	24.13
	5.06	5.06	1.48	4.50	4.06	0.950
15DCB10(F)	128.5	128.5	37.6	114.3	103.1	24.13
15DCB10B(F)	7.06	5.06	1.48	4.50	6.06	0.950
ISDCBIOB(F)	179.3	128.5	37.6	114.3	153.9	24.13
15DCF6	5.33	3.10	1.78	2.677	3.70	2.00
	135.4	78.7	45.2	68.0	94.0	50.80
15DCF6B(F)	7.69	5.06	1.48	5.740	6.06	3.52
	195.3	128.5	37.6	145.8	153.9	89.41
15DCF10	4.75	3.10	1.78	2.677	3.70	2.0
	120.7	78.7	45.2	68.0	94.0	50.8
15DCF10B(F)	7.06	5.06	1.48	5.740	6.06	3.520
	179.3	128.5	37.6	145.80	153.9	89.41
30DCB6(F)	7.69	5.06	1.48	4.50	6.06	0.95
	195.3	128.5	37.6	114.3	153.9	24.13
30DCB6B(F)	8.69	5.06	1.48	4.50	7.06	0.95
	220.7	128.5	37.6	114.3	179.3	24.13
30DCB10(F)	7.06	5.06	1.48	4.50	6.06	0.95
	179.3	128.5	37.6	114.3	153.9	24.13
30DCB10B(F)	8.06	5.06	1.48	4.50	7.06	0.95
	204.7	128.5	37.6	114.3	179.3	24.13
30DCF6	6.19	3.96	2.18	3.50	4.56	2.00
	157.2	100.6	55.4	88.9	115.8	50.8
30DCF6B	8.69	5.0	1.48	5.74	7.06	4.52
	220.73	127.0	37.6	145.8	179.3	114.81
30DCF10	5.56	3.96	2.18	3.5	4.56	2.0
	141.2	100.58	55.4	88.9	115.8	50.8
30DCF10B	8.06 204.7	5.06 128.52	1.48 37.6	5.74 145.8	7.06 179.3	4.52 114.81

Case Dimensions (continued)

	А	в	с	D	Е	F
Part No.	(max)	(max)	(max)	<u>±.020</u> ±.51	(max)	<u>±.020</u> ±.51
	8.69	5.06	1.48	4.50	7.06	0.95
60DCB6(F)	220.73	128.52	37.6	114.3	179.3	24.13
60DCB6B(F)	10.69	5.06	1.48	4.50	9.06	0.95
		128.52	37.6	114.3	230.1	24.13
60DCF6	7.56	5.48	2.55	4.92	5.94	2.756
	192.0	139.2	64.8	124.97	150.9	70.0
60DCF6B	10.69	5.06	1.48	5.74	9.06	6.52
		128.52	37.6	145.8	230.1	165.61
60DCF10	8.56	5.48	2.55	4.92	5.94	2.576
	217.4	139.2	64.8	124.97	150.9	65.43
60DCF10B	11.75	5.06	1.48	5.74	9.06	6.52
	298.5	128.5	37.6	145.8	230.1	165.61
100DCB6(F)	10.31	5.06	1.78	4.50	8.06	1.25
	261.9	128.5	45.2	114.3	204.7	31.75
100DCB6B(F)	12.31	6.06	1.78	5.50	10.06	1.25
	312.7	153.9	45.2	139.7	255.5	31.75
100DCB10(F)	11.13	5.06	1.78	4.50	8.06	1.25
	282.6	128.5	45.2	114.3	204.7	31.75
100DCB10B(F)	13.13 333.5	6.06 153.9	1.78 45.2	5.50 139.7	10.06 255.5	1.25 31.75
	10.60	6.30	2.52	5.70	8.46	4.52
100DCF6	269.2	160.0	2.32 64.0	144.78	214.9	4.32 114.81
	12.31	6.06	1.78	6.74	10.06	7.52
100DCF6B	312.7	153.9	45.2	171.2	255.5	191.01
	11.50	6.30	2.52	5.70	8.46	4.52
100DCF10	292.1	160.0	64.0	144.78		114.81
	13.13	6.06	1.78	6.74	10.06	7.52
100DCF10B	333.5	153.9	45.2	171.2	255.5	191.01
1250000(5)	10.31	5.06	1.78	4.50	8.06	1.25
125DCB6(F)	261.9	128.5	45.2	114.3	204.7	31.75
125DCB6B(F)	12.31	6.06	1.78	5.50	10.06	1.25
	312.7	153.9	45.2	139.7	255.5	31.75
125DCB10(F)	11.50	5.06	1.78	4.50	8.06	1.25
	292.1	128.5	45.2	114.30		31.75
125DCB10B(F)	13.50	6.06	1.78	5.50	10.06	1.25
	342.9	153.9	45.2	139.7	255.5	31.75
125DCF6	10.60	6.30	2.52	5.70	8.46	4.52
	269.2	160.0	64.0	144.78		114.81
125DCF6B	12.31	6.06	1.78	6.74	10.06	7.52
	312.7	153.9	45.2	171.2		191.01
125DCF10	11.86	6.30	2.52	5.70	8.46	4.52
	301.2	160.0	64.0	144.78		114.81
125DCF10B	13.50	6.06	1.78	6.74 171.2	10.06	7.52
	342.9	153.9	45.2	171.Z	200.0	191.01

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

221

DC Series

Performance Data (continued)

Minimum Insertion Loss

Measured in closed 50 Ohm system

Standard Performance

Current Frequency – WHz Rating .01 .05 .1 .15 .5 1 3 5 10 30 15A - 1 12 20 41 45 61 63 47 39 30A - 4 15 23 47 59 64 56 44 36 60A - - 9 17 38 40 59 50 39 34 100A - - 10 18 38 39 53 50 35 21 125A - - 12 18 30 32 44 49 29 18											
15A - 1 12 20 41 45 61 63 47 39 30A - 4 15 23 47 59 64 56 44 36 60A - - 9 17 38 40 59 50 39 34 100A - - 10 18 38 39 53 50 35 21	Current	Frequency – MHz									
30A - 4 15 23 47 59 64 56 44 36 60A - - 9 17 38 40 59 50 39 34 100A - - 10 18 38 39 53 50 35 21	Rating	.01	.05	.1	.15	.5	1	3	5	10	30
60A - 9 17 38 40 59 50 39 34 100A - - 10 18 38 39 53 50 35 21	15A	-	1	12	20	41	45	61	63	47	39
100A 10 18 38 39 53 50 35 21	30A	-	4	15	23	47	59	64	56	44	36
	60A	-	-	9	17	38	40	59	50	39	34
125A 12 18 30 32 44 49 29 18	100A	-	-	10	18	38	39	53	50	35	21
	125A	-	-	12	18	30	32	44	49	29	18

Common Mode / Asymmetrical (Line to Ground)

Differential Mode / Symmetrical (Line to Line)

Current	Frequency – MHz									
Rating	.01	.05	.1	.15	.5	1	3	5	10	30
15A	7	22	27	30	30	36	56	49	38	31
30A	7	22	28	31	32	59	56	51	41	28
60A	15	30	36	40	40	35	60	51	39	32
100A	14	29	35	39	33	30	53	53	41	30
125A	14	24	35	39	40	28	53	60	42	33

High Frequency Performance (F & BF Styles)

Common Mode / Asymmetrical (Line to Ground)

Current		Frequency – MHz										300 to
Rating	.01	.05	.1	.15	.5	1	3	5	10	20	300	3000
15A	-	1	12	20	41	45	55	50	45	25	50	30
30A	-	4	15	20	46	58	60	60	48	35	50	30
60A	-	-	9	16	38	42	52	60	48	26	40	30
100A	-	-	9	16	38	42	52	60	42	26	40	30
125A	-	-	9	16	28	34	46	54	34	34	40	30

Differential Mode / Symmetrical (Line to Line)

Current				Fre	quen	cy – I	MHz			
Rating	.01	.05	.1	.15	.5	1	3	5	10	20
15A	7	22	27	30	30	50	60	60	60	36
30A	7	22	27	30	33	56	60	60	60	40
60A	15	30	36	40	37	26	46	54	48	30
100A	14	29	35	39	33	30	56	53	41	30
125A	14	29	35	39	40	28	53	60	42	33

222

The CHAMELEON Adaptable Module for DC Applications

P Series

UL Recognized CSA Certified **TUV Certified**

P Series

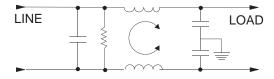
package

AC Power

PS000DJ3D

Ordering Information

Hipot rating (one Line to Ground: Line to Line:		e):	2250 VDC 1450 VDC
Rated Voltage (m	ax):		80 VDC
Rated Current:			3 to 10A
Fuseholder*:			.25 x 1.25" or 5 x 20 mm


.187 x .032 [4.8 x .81] terminal tabs

Operating Ambient Temperature Range

(at rated current I_r): -10°C to +40°C In an ambient temperature (T_a) higher than +40°C

*Holds one or two fuses. Conversion clip provided on fuseholder for single fuse models.

Electrical Schematic

Available Part Numbers

PE000DD3D	PS000DD3D
PE000DD6D	PS000DD6D
PEOOODDXD	PSOOODDXD
PE000SD3D	PS000SD3D
PE000SD6D	PS000SD6D
PE000SDXD	PSOOOSDXD

*MOLEX is a trademark of MOLEX Incorporated

Specifications • Mates with a standard MOLEX* connector (HCS Series) which prevents accidental connection to

Terminals:

the maximum operating current (I₀) is calculated as follows: $I_0 = I_r \sqrt{(85-Ta)/45}$

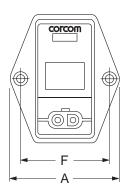
223

Shield Options D = Complete Shield (DC Version) **Current Rating** 3 = 3A 6 = 6A X = 10A Filter Type D = DC version **Fuse Options** D = Dual fuse S = Single fuse · Input Voltage Select 0 = Single voltage Switch Options 0 = No switch **Extender** Options 0 = NoneMounting Style E = Mounting ears

• Full flexibility of design in the most compact

• General purpose designed for DC applications

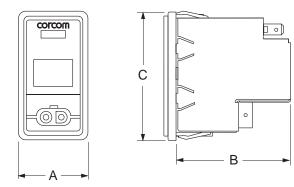
S = Snap-in




The CHAMELEON Adaptable Module for DC Applications (continued)

P Series

Case Styles


PE

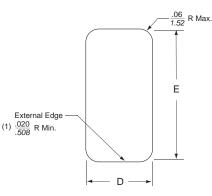
1.78 min. Radius Ground connection

PS

Accessories

GA210 – (shown above) Pre-assembled connector housing with two 36" long 18 gauge wires to mate with P Series DC filters

MOLEX Part Numbers:


03-12-1026	DC Connector housing for P Series
18-12-1222	Female terminals (2 per connector)

Case Dimensions

Part No.	Α	В	С	D	Е	F
Part NO.	(max.)	(max.)	(max.)	*see note	*see note	(ref.)
PE	1.98	2.13	2.31	1.12	2.201	1.575
	50.29	54.10	58.67	28.45	55.91	40.0
D 6	1.24	2.13	2.31	1.06	2.201	
PS	31.50	54.10	58.67	26.93	55.91	-

*+ .008 / - .000 [+.20 / - .00]

Recommended Panel Cutouts

Note: The external edges (installation side) on the "D" sides of the cutout should have a minimum .020" radius. For optimal retention against extraction, the corresponding inner edge should be sharp, without paint or coatings. Edge coatings, including anodization are also discouraged for good shield contact.

Performance Data

Minimum Insertion Loss

Measured in closed 50 Ohm system

Common Mode / Asymmetrical (Line to Ground)

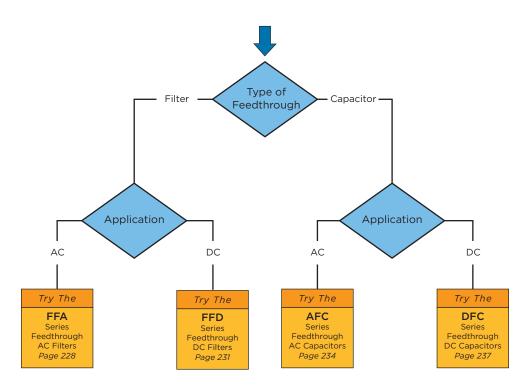
Current		Frequency – MHz							
Rating	.03	.1	.15	.5	1	3	5	10	30
3A	7	17	21	27	33	40	44	50	32
6A	-	8	12	17	23	32	36	44	30
15A	-	3	5	10	13	23	27	35	27

Differential Mode / Symmetrical (Line to Line)

Current	Frequency – MHz							
Rating	.1 .15 .5 1 3 5 10 3							30
3A	2	4	12	15	30	48	50	45
6A	2	4	12	15	22	42	55	45
15A	2	4	12	15	22	42	55	45

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com


-

5. Feedthrough Filters and Capacitors — Table of Contents

Feedthrough Application Selector Chart	5
Introduction	6
FFA Series	8
FFD Series	31
AFC Series	4
DFC Series	7

Feedthrough Application Selector Chart

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

Introduction - Corcom Feedthrough Filters and Capacitors

Installation, Background and Safety

Feedthrough capacitors and filters are designed for through-bulkhead mounting for offering high frequency filtering in line-to-ground applications. They should be mounted through a metal bulkhead or chassis. The bulkhead mounting surface should be clean and unpainted to offer a low impedance path from the capacitor or filter to the equipment chassis. Poor earth bonding will limit the available performance of the product and could compromise safety.

Conductive paint finishes should be avoided as they do not usually provide adequate conductivity. Two wrenches (or spanners) should be used when making electrical connections to the terminals and maximum tightening torque figures quoted should be observed.

Relevant safety standards have been adhered to in the design and manufacture of these products. However, all capacitors will store charge after power has been removed and must be treated with respect as this can be lethal when the voltage and charge are high enough. The filters and capacitors contained within this catalog do not contain internal discharge resistors. It is therefore recommended that they are fitted with external discharge resistors to discharge the capacitors after the power has been removed. Where necessary, terminals should be enclosed by the user to prevent any danger of electric shock or accidental shorting. In all cases, capacitors and filters should always be shorted to earth prior to touching to ensure they are fully discharged.

The user should ensure he/she is familiar with restrictions on capacitance value, earth leakage current, test voltage, and safety labeling requirements, which may be applicable to his/her particular installation. In particular, safety standards IEC950 and EN60950, which most electrical equipment needs to comply with, contain a number of specific requirements for capacitors, which may be applicable.

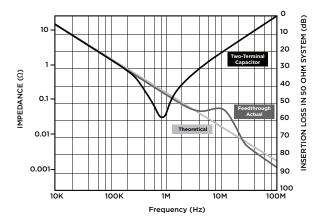
Applications

Offers reliability and performance in high frequency applications such as:

- Servers
- Base stations
- Routers
- Main power supplies
- Telecom systems / racks
- MRI rooms
- High power microwave lines
- Military vehicles and equipment
- High current switch mode power supplies
- Power amplifier and generators
- Industrial controls
- Screened rooms
- High frequency welding equipment
- Secure communications
- Computer facilities

Key Features

- Designed to meet EN133200 and EN132400 safety requirements
- Custom designs available where special packaging, mounting, terminations, or multiple lines are required.
- RoHS compliant



Introduction - Corcom Feedthrough Filters and Capacitors

Feedthrough Capacitor Performance

- Normal two-terminal capacitors resonate with their lead inductance in the region of 1 to 10MHz
- This limits their use as suppression components above a few MHz
- Feedthrough capacitors have no major resonance as they have no lead inductance
- Performance continues to increase with frequency
- Feedthrough capacitors are essential for good high frequency performance
- Feedthrough filters incorporate feedthrough capacitors for the same benefits
- As an example, the graph in Figure 1 compares the performance of a 1μF feedthrough capacitor with a 1μF two-terminal capacitor

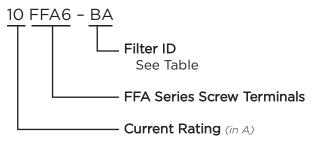
Figure 1: Feedthrough Filters Performance

227

Downloaded From Oneyac.com

AC Feedthrough Filters – Class Y2

FFA Series


Component Recognized by UL to US and Canadian Requirements

FFA Series

- AC feedthrough filters
- Current Ratings from 10 to 300A
- Designed to meet the very stringent safety requirements of EN133200 class Y2 including the 5000V pulse test
- Custom versions available

Ordering Information

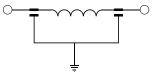
Filter Options / Specifications

			Max. Leakage	DC
Filter		Inductance	Current	Resistance
ID	Value (nF)	(nH)	(mA)*	(m Ω) Max.
BA	2 x 4.7	70	0.9	6
CA	2 x 10	70	1.9	4
CE	2 x 10	140	1.9	7
DG	2 x 22	170	4.2	4
DH	2 x 22	180	4.2	4
GB	2 x 47	80	8.9	3
GJ	2 x 47	210	8.9	9
HC	2 x 100	90	19	2
HD	2 x 100	120	19	1
HF	2 x 100	160	19	< 1
HN	2 x 100	250	19	6
JK	2 x 150	240	29	3
NP	2 x 470	330**	89	< 2
PP	2 x 1000	330	188	< 2
				@ 250 VAC 60 Hz

**240 for 100A Version

Specifications

Rated Voltage (max):	250 VAC
Operating Frequency:	50/60 Hz
Rated Current:	10 to 300A
Test Voltage (two seconds):	5000 VDC
Capacitor Class (EN133200):	Designed to meet Y2
Pulse Test (EN133200):	5000V Peak
Inculation Desistance (within 1	minutol

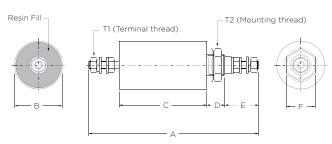

Insulation Resistance (within 1 minute):

For C < 0.33μ F, R> 15000M Ω For C > 0.33μ F, RC(M $\Omega^*\mu$ F)>5000s

Operating Ambient Temperature Range (at rated current I_r):

10 to 100A: -40°C to +60°C 200A: -40°C to +50°C 250 & 300A: -40°C to +40°C							
Category Temperature Range:	-40°C to +85°C						
Current Derating Above Ambient:							
10-100A: For temperature, $ heta{ m I}_{ extsf{ heta}}$	$= IR \sqrt{(85{\theta})/25}$						
200A: For temperature, $ heta{ m I}_{ extsf{ heta}}$	= IR √(85- _θ)/35						
250 & 300A: For temp., $ heta\mathrm{I}_{ extsf{ heta}}$	$= IR \sqrt{(85{\theta})/45}$						
Climatic Category:	40/85/21						
MTBF: > 5 millio	on hours typical						
Insulating Materials Flammability Rati	ing: UL94V-0						
Case & Terminal Material: Nic	kel Plated Brass						

Electrical Schematic



AC Feedthrough Filters - Class Y2 (continued)

FFA Series

Case Style

T1 - Terminal Thread

Part No.	Thread	Torque max. in.lb.
10FFA6-BA/CE/CJ	M3	4
16FFA6-CA/DG/HN 32FFA6-CA/DH/HN	M4	11
63FFA6-GB/JK/NP	M6	22
100FFA6-HC/NP/PP	M8	44
200FFA6-HD/NP/PP	M10	70
250FFA6-HF/NP/PP	M12	97
300FFA6-HF/NP/PP	M16	177

T2 - Mounting Thread

Part No.	Thread	Torque max. in.lb.
10FFA6-BA/CE/CJ 16FFA6-CA 32FFA6-CA	M12 x 1	35
16FFA6-DG/HN 32FFA6-DH/HN 63FFA6-GB	M16 x 1	62
63FFA6-JK 100FFA6-HC	M20 x 1	89
100FFA6-NP 200FFA6-HD	M24 x 1	124
63FFA6-NP 100FFA6-PP 200FFA6-NP/PP	M27 x 1.5	142
250FFA6-HF/NP/PP 300FFA6-HF/NP/PP	M32 x 1.5	212

	Α	в	С	D	Е	F
Part No.	<u>± .04</u> 1	<u>± .02</u> 0.5	<u>± .08</u> 2	<u>± .04</u> 1	<u>± .08</u> 2	(max)
	3.86	0.79	2.24	0.47	0.63	0.67
10FFA6-BA	98	20	57	12	16	17
16FFA6-CA	4.17	0.79	2.40	0.47	0.71	0.67
32FFA6-CA	106	20	61	12	18	17
63FFA6-GB	6.30	0.98	3.70	0.55	1.02	0.87
03FFA0-06	160	25	94	14	26	22
	7.24	1.26	4.09	0.63	1.26	1.06
100FFA6-HC	184	32	104	16	32	27
	8.23	1.50	4.41	0.75	1.57	1.06
200FFA6-HD	209	38	112	19	40	27
	7.87	2.13	3.66	0.75	1.81	1.57
300FFA6-HF	200	54	93	19	46	40
	4.21	0.79	2.60	0.47	0.63	0.67
10FFA6-CE	107	20	66	12	16	17
16FFA6-DG	4.57	0.98	2.72	0.55	0.71	0.87
32FFA6-DH	116	25	69	14	18	22
	6.81	1.26	4.13	0.63	1.02	1.06
63FFA6-JK	173	32	105	16	26	27
	8.98	1.50	5.71	0.75	1.26	1.06
100FFA6-NP	228	38	145	19	32	27
200FFA6-NP	9.57	2.13	5.75	0.75	1.57	1.57
200FFA0-NP	243	54	146	19	40	40
250FFA6-NP	10.51	2.13	6.30	0.75	1.81	1.57
300FFA6-HN	267	54	160	19	46	40
10FFA6-GJ	5.51	0.79	3.90	0.47	0.63	0.67
IUFFA6-GJ	140	20	99	12	16	17
16FFA6-HN	5.83	0.98	3.98	0.55	0.71	0.87
32FFA6-HN	148	25	101	14	18	22
	7.44	2.13	4.65	0.75	1.02	1.57
63FFA6-NP	189	54	118	19	26	40
100FFA6-PP	8.94	2.13	5.67	0.75	1.26	1.57
	227	54	144	19	32	40
	9.57	2.13	5.75	0.75	1.57	1.57
200FFA6-PP	243	54	146	19	40	40

10.51 2.13

54

267

6.3

160

Case Dimensions

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

0.75

19

1.81

46

1.57

40

250FFA6-PP

300FFA6-PP

AC Feedthrough Filters - Class Y2 (continued)

FFA Series

Available Part Numbers

Standard Performance	High Performance	Extended Performance
10FFA6-BA	10FFA6-CE	10FFA6-GJ
16FFA6-CA	16FFA6-DG	16FFA6-HN
32FFA6-CA	32FFA6-DH	32FFA6-HN
63FFA6-GB	63FFA6-JK	63FFA6-NP
100FFA6-HC	100FFA6-NP	100FFA6-PP
200FFA6-HD	200FFA6-NP	200FFA6-PP
250FFA6-HF	250FFA6-NP	250FFA6-PP
300FFA6-HF	300FFA6-NP	300FFA6-PP

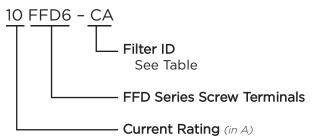
Performance Data

 $\label{eq:transformation} \textbf{Typical Insertion Loss} - \texttt{Line to Ground in 50 Ohm circuit}$

Filter				Frequen	cy – MHz			
ID	0.01	0.03	0.1	0.3	1	10	100	1000
BA	-	-	-	-	4	18	80	100
CA	-	-	2	4	10	22	65	100
CE	-	-	2	3	10	28	65	100
DG	-	-	3	7	15	40	72	100
DH	-	-	3	7	15	40	72	100
GB	-	-	6	11	21	50	85	100
GJ	-	-	5	12	21	60	90	100
HC	-	2	10	18	27	60	100	100
HD	-	2	10	18	27	60	100	100
HF	-	2	10	18	27	60	100	100
HN	2	4	10	17	24	75	90	100
JK	3	8	15	21	28	72	100	100
NP	7	15	24	31	44	80	100	100
PP	12	20	29	33	56	80	100	100

DC Feedthrough Filters - Class Y4

FFD Series


Component Recognized by UL to US and Canadian Requirements

FFD Series

- DC feedthrough filters
- Current ratings from 10 to 200A
- Designed to meet the very stringent safety requirements of EN133200 class Y4 including the 2500V pulse test
- Custom versions available

Ordering Information

Filter Options / Specifications

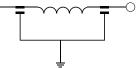
		Inductance	DC Resistance
Filter ID	Value (nF)	(nH)	(mΩ) Max.
CA	2 x 10	70	6
HB	2 x 100	80	3
HE	2 x 100	140	8
NC	2 x 470	90	2
ND	2 x 470	120	1
NH	2 x 470	180	3
PK	2 x 1000	240	2
RP	2 x 4700	330	2

Specifications

Rated Voltage (max):	130 VDC				
Rated Current:	10 to 200A				
Test Voltage (two seconds):	2500 VDC				
Capacitor Class (EN133200):	Designed to meet Y4				
Pulse Test (EN133200):	2500V Peak				
Insulation Resistance (within 1 minute):					
	< 0.33μF, R> 15000MΩ				
For C > 0.33	μF, RC(MΩ*μF)>5000s				

Operating Ambient Temperature Range (at rated current I_r):

> 10 to 100A: -40°C to +60°C 200A: -40°C to +50°C


> > -40°C to +85°C

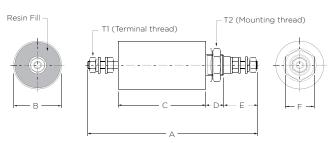
Category Temperature Range:

Current Derating Above Ambient:

10-100A: For tempera	ature, θ I _{θ} = IR $\sqrt{(85{\theta})/25}$
200A: For tempera	ature, θ I _{θ} = IR $\sqrt{(85{\theta})/35}$
Climatic Category:	40/85/21
MTBF:	> 5 million hours typical
Insulating Materials Flamma	bility Rating: UL94V-0
Case & Terminal Material:	Nickel Plated Brass

Electrical Schematic

231



DC Feedthrough Filters - Class Y4 (continued)

Case Dimensions

FFD Series

Case Style

T1 - Terminal Thread

Part No.	Thread	Torque max. in.lb.
10FFD6-CA/HE	M3	4
16FFD6-CA/HE 32FFD6-CA/HE	M4	11
63FFD6-HB/NH	M6	22
100FFD6-NC/PK	M8	44
200FFD6-ND/RP	M10	70

	Α	в	С	D	Е	F
Part No.	<u>+ .04</u> 1	<u>+ .02</u> 0.5	<u>±.08</u> 2	<u>± .04</u> 1	<u>± .08</u> 2	(max)
10FFD6-CA	3.54	0.79	1.93	0.47	0.63	0.67
	90	20	49	12	16	17
16FFD6-CA	3.86	0.79	2.09	0.47	0.71	0.67
32FFD6-CA	98	20	53	12	18	17
63FFD6-HB	6.30	0.98	3.70	0.55	1.02	0.87
	160	25	94	14	26	22
100FFD6-NC	7.24	1.26	4.09	0.63	1.26	1.06
	184	32	104	16	32	27
200FFD6-ND	8.23	1.50	4.41	0.75	1.57	1.06
	209	38	112	19	40	27
10FFD6-HE	5.12	0.79	3.50	0.47	0.63	0.67
	130	20	89	12	16	17
16FFD6-HE	5.47	0.79	3.70	0.47	0.71	0.67
32FFD6-HE	139	20	94	12	18	17
63FFD6-NH	6.81	1.26	4.13	0.63	1.02	1.06
	173	32	105	16	26	27
100FFD6-PK	8.98	1.50	5.71	0.75	1.26	1.06
	173	32	105	16	26	27
200FFD6-RP	10.98	2.13	7.17	0.75	1.57	1.57
	279	54	182	19	40	40

T2 - Mounting Thread

Part No.	Thread	Torque max. in.lb.
10FFD6-CA/HE 16FFD6-CA/HE 32FFD6-CA/HE	M12 x 1	35
63FFD6-HB/NH	M20 x 1	89
100FFD6-NC/PK	M24 x 1	124
200FFD6-ND/RP	M27 x 1.5	142

DC Feedthrough Filters - Class Y4 (continued)

FFD Series

Available Part Numbers

Standard Performance	High Performance
10FFD6-CA	10FFD6-HE
16FFD6-CA	16FFD6-HE
32FFD6-CA	32FFD6-HE
63FFD6-HB	63FFD6-NH
100FFD6-NC	100FFD6-PK
200FFD6-ND	200FFD6-RP

Performance Data

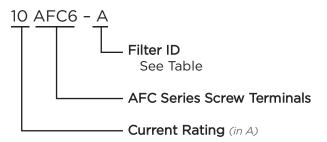
Typical Insertion Loss – Line to Ground in 50 Ohm circuit

Filter				Frequen	cy – MHz			
ID	0.01	0.03	0.1	0.3	1	10	100	1000
CA	-	-	2	4	10	23	65	100
HB	2	4	10	18	27	62	95	100
HE	2	4	10	18	27	67	95	100
NC	7	14	23	30	32	70	100	100
ND	7	14	23	30	32	70	100	100
NH	7	14	23	31	35	75	100	100
PK	14	21	30	34	53	75	100	100
RP	20	32	40	52	85	100	100	100

233

AC Feedthrough Capacitors - Class Y2

AFC Series


Component Recognized by UL to US and Canadian Requirements

AFC Series

- AC feedthrough capacitors
- Current ratings from 10 to 300A
- Designed to meet the very stringent safety requirements of EN132400 class Y2 including the 5000V pulse test
- Custom versions available

Ordering Information

Filter Options / Specifications

Filter ID	Value (nF)	Max. Leakage Current (mA)*
А	2.2	0.21
В	4.7	0.44
С	10	0.94
F	33	3.1
G	47	4.4
Н	100	9.4
K	220	21
Ν	470	44
Р	1000	94
		*@250VAC 60 Hz

Specifications

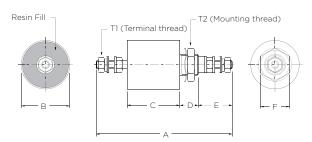
Rated Voltage (max):	250 VAC				
Operating Frequency:	50/60 Hz				
Rated Current:	10 to 300A				
Test Voltage (two seconds):	5000 VDC				
Capacitor Class (EN132400):	Designed to meet Y2				
Pulse Test (EN132400):	5000V Peak				
Insulation Resistance (within 1 minute):					

For C < 0.33μ F, R> 15000M Ω For C > 0.33μ F, RC(M $\Omega^*\mu$ F)>5000s

Operating Ambient Temperature Range (at rated current I_r):

10	to	200A:	-40°C	to	+60°C
250	&	300A:	-40°C	to	+40°C

Category Temperature Range: -40° C to $+85^{\circ}$ CCurrent Derating Above Ambient:10-200A: For temperature, θ I $_{\theta}$ = IR $\sqrt{(85-\theta)/25}$ 250 & 300A: For temp., θ I $_{\theta}$ = IR $\sqrt{(85-\theta)/45}$ Climatic Category:40/85/21MTBF:> 10 million hours typical


Insulating Materials Flammability Rating: UL94V-0 Case & Terminal Material: Nickel Plated Brass

AC Feedthrough Capacitors – Class Y2 (continued)

AFC Series

Case Style

T1 - Terminal Thread

Part No.	Thread	Torque max. in.lb.
10AFC6-A/B	M3	4
16AFC6-B/C/G/H 20AFC6-B 32AFC6-B/C/F/G/H	M4	11
63AFC6-C/G/H	M6	22
100AFC6-G/H/K/N	M8	44
200AFC6-H/K/N/P	M10	71
250AFC6-H/K/N/P	M12	97
300AFC6-H/K/N/P	M16	177

T2 - Mounting Thread

Part No.	Thread	Torque max. in.lb.
10AFC6-A/B	M10 x 1	27
16AFC6-B/C/G 20AFC6-B 32AFC6-B/C/G/F	M12 x 1	35
16AFC6-H 32AFC6-H 63AFC6-C/G/H	M16 x 1	62
100AFC6-G/H	M20 x 1	89
100AFC6-K/N 200AFC6-H/K	M24 x 1	124
200AFC6-N/P	M27 x 1.5	142

Case Dimensions

	А	в	С	D	Е	F
	<u>±.04</u> 1	<u>±.02</u> 0.5	<u>± .08</u> 2	<u>± .04</u> 1	<u>± .08</u> 2	(max)
Part No.						
10AFC6-A	2.24	0.59	0.71	0.39	0.63	0.51
10AFC6-B	57	15	18	10	16	13
16AFC6-B	2.48	0.79	0.71	0.47	0.71	0.67
16AFC6-C	63	20	18	12	18	17
16AFC6-G	2.95	0.79	1.18	0.47	0.71	0.67
	75	20	30	12	18	17
16AFC6-H	3.03	0.98	1.18	0.55	0.71	0.87
	77	25	30	14	18	22
20AFC6-B	2.48	0.79	0.71	0.47	0.71	0.67
	63	20	18	12	18	17
32AFC6-B	2.48	0.79	0.71	0.47	0.71	0.67
32AFC6-C	63	20	18	12	18	17
32AFC6-F	2.95	0.79	1.18	0.47	0.71	0.67
32AFC6-G	75	20	30	12	18	17
	3.03	0.98	1.18	0.55	0.71	0.87
32AFC6-H	77	25	30	14	18	22
63AFC6-C	3.78	0.98	1.18	0.55	1.02	0.87
63AFC6-G	96	25	30	14	26	22
	3.78	0.98	1.18	0.55	1.02	0.87
63AFC6-H	96	25	30	14	26	22
100AFC6-G	4.45	1.26	1.30	0.63	1.26	1.06
100AFC6-H	113	32	33	16	32	27
	4.57	1.50	1.30	0.75	1.26	1.06
100AFC6-K	116	38	33	19	32	27
200AFC6-H	5.24	1.50	1.97	0.75	1.26	1.06
200AFC6-K	133	38	50	19	32	27
200AFC6-N	5.12	1.50	1.30	0.75	1.57	1.06
200AFC6-P	130	38	33	19	40	27
250AFC6-H	5.79	2.13	1.97	0.75	1.57	1.57
250AFC6-K	147	54	50	19	40	40
250AFC6-N	5.83	2.13	1.65	0.75	1.81	1.57
250AFC6-P	148	54	42	19	46	40
300AFC6-H	6.30	2.13	2.13	0.75	1.81	1.57
300AFC6-K	1 60	2.13 54	2.13 54	19	46	40
300AFC6-N	5.83	2.13	1.65	0.75	1.81	1.57
300AFC6-P	3.03 148	2.13 54	42	19	46	40
	, 10	01	12	10	10	

AC Feedthrough Capacitors - Class Y2 (continued)

AFC Series

Available Part Numbers

10AFC6-A	32AFC6-H	
	JZAFC0-N	200AFC6-P
10AFC6-B	63AFC6-C	250AFC6-H
16AFC6-B	63AFC6-G	250AFC6-K
16AFC6-C	63AFC6-H	250AFC6-N
16AFC6-G	100AFC6-H	250AFC6-P
16AFC6-H	100AFC6-H	300AFC6-H
20AFC6-B	100AFC6-K	300AFC6-K
32AFC6-B	100AFC6-N	300AFC6-N
32AFC6-C	200AFC6-H	300AFC6-P
32AFC6-F	200AFC6-K	
32AFC6-G	200AFC6-N	

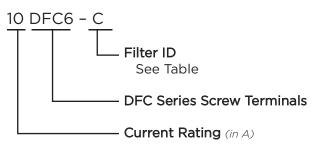
Performance Data

Filter				Frequen	cy – MHz			
ID	0.01	0.03	0.1	0.3	1	10	100	1000
А	-	-	-	-	-	8	38	45
В	-	-	-	-	-	14	43	60
С	-	-	-	-	3	21	45	70
F	-	-	-	4	12	30	48	90
G	-	-	2	6	15	34	50	90
Н	-	2	5	11	20	40	65	90
K	-	4	11	18	27	45	85	90
Ν	6	9	16	22	33	33	90	90
Р	10	15	22	30	40	42	90	90

Typical Insertion Loss – Line to Ground in 50 Ohm circuit

DC Feedthrough Capacitors - Class Y4

DFC Series


Component Recognized by UL to US and Canadian Requirements

DFC Series

- DC feedthrough capacitors
- Current ratings from 10 to 300A
- Designed to meet the very stringent safety requirements of EN132400 class Y4 including the 2500V pulse test
- Custom versions available

Ordering Information

Filter Options / Specifications

Filter ID	Value (nF)
С	10
G	47
Н	100
Ν	470
Р	1000
Q	3300
R	4700
Т	8000

Specifications

Rated Voltage (max):	130 VDC							
Rated Current:	10 to 300A							
Test Voltage (two seconds):	2500 VDC							
Capacitor Class (EN132400):	Designed to meet Y4							
Pulse Test (EN132400):	2500V Peak							
Insulation Resistance (within 1	Insulation Resistance (within 1 minute):							
For C	< 0.33μF, R> 15000MΩ							
For C > 0.33	μF, RC(MΩ*μF)>5000s							

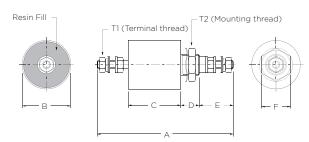
Operating Ambient Temperature Range (at rated current I_r):

> 10 to 200A: -40°C to +60°C 250 & 300A: -40°C to +40°C

Category Temperature Range: -40°C to +85°C Current Derating Above Ambient:

•	
10-200A: For temper	rature, θ I _{θ} = IR $\sqrt{(85{\theta})/25}$
250 & 300A: For 1	temp., $\theta I_{\theta} = IR \sqrt{(85{\theta})/45}$
Climatic Category:	40/85/21
MTBF:	> 10 million hours typical
Insulating Materials Flamma	ability Rating: UL94V-0
Case & Terminal Material:	Nickel Plated Brass

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


237

DC Feedthrough Capacitors - Class Y4 (continued)

DFC Series

Case Style

T1 - Terminal Thread

Part No.	Thread	Torque max. in.lb.
10DFC6-C	M3	4
16DFC6-C/G/H/N 32DFC6-C/G/H/N	M4	11
63DFC6-C/G/H/N	M6	22
100FDC6-G/H/N/P	M8	44
200DFC6-H/N/P/R	M10	71
250DFC6-P/Q/T	M12	97
300DFC6-P/Q/T	M16	177

T2 - Mounting Thread

Part No.	Thread	Torque max. in.lb.
10DFC6-C	M10 x 1	27
16DFC6-C/G/H 32DFC6-C/G/H	M12 x 1	35
63DFC6-C/G/H	M16 x 1	62
16DFC6-N 32DFC6-N 63DFC6-N 100DFC6-G/H/N	M20 x 1	89
100DFC6-P 200DFC6-H/N/P	M24 x 1	124
200FFC6-R	M27 x 1.5	142

Case Dimensions

	А	в	С	D	Е	F
Part No.	<u>± .04</u> 1	<u>±.02</u> 0.5	<u>± .08</u> 2	<u>± .04</u> 1	<u>± .08</u> 2	(max)
10DFC6-C	2.24	0.59	0.71	0.39	0.63	0.51
IUDFC6-C	57	15	18	10	16	13
16DFC6-C	2.48	0.79	0.71	0.47	0.71	0.67
	63	20	18	12	18	17
16DFC6-G	2.95	0.79	1.18	0.47	0.71	0.67
16DFC6-H	75	20	30	12	18	17
16DFC6-N	3.23	1.26	1.30	0.63	0.71	1.06
	82	32	33	16	18	27
32DFC6-C	2.48	0.79	0.71	0.47	0.71	0.67
	63	20	18	12	18	17
32DFC6-G	2.95	0.79	1.18	0.47	0.71	0.67
32DFC6-H	75	20	30	12	18	17
32DFC6-N	3.23	1.26	1.30	0.63	0.71	1.06
	82	32	33	16	18	27
63DFC6-C	3.78	0.98	1.18	0.55	1.02	0.87
63DFC6-G	96	25	30	14	26	22
63DFC6-H						
63DFC6-N	3.98	1.26	1.30	0.63	1.02	1.06
	101	32	33	16	26	27
100DFC6-G	4.45	1.26	1.30	0.63	1.26	1.06
100DFC6-H	113	32	33	16	32	27
100DFC6-N						
100DFC6-P	5.24	1.50	1.97	0.75	1.26	1.06
	133	38	50	19	32	27
200DFC6-H	5.12	1.26	1.30	0.75	1.57	1.06
200DFC6-N	130	32	33	19	40	27
200DFC6-P	5.79	1.50	1.97	0.75	1.57	1.06
	147	38	50	19	40	27
200DFC6-R	6.50	2.13	2.68	0.75	1.57	1.57
	165	54	68	19	40	40
250DFC6-P	5.83	2.13	1.65	0.75	1.81	1.57
300DFC6-P	148	54	42	19	46	40
250DFC6-Q	6.30	2.13	2.13	0.75	1.81	1.57
300DFC6-Q	160	54	54	19	46	40
250DFC6-T	7.01	2.13	2.83	0.75	1.81	1.57
300DFC6-T	178	54	72	19	46	40

238

DC Feedthrough Capacitors - Class Y4 (continued)

DFC Series

Available Part Numbers

10DFC6-C	32DFC6-H	100DFC6-H	250DFC6-P
16DFC6-C	32DFC6-N	100DFC6-N	250DFC6-Q
16DFC6-G	63DFC6-C	100DFC6-P	250DFC6-T
16DFC6-H	63DFC6-G	200DFC6-H	300DFC6-P
16DFC6-N	63DFC6-H	200DFC6-N	300DFC6-Q
32DFC6-C	63DFC6-N	200DFC6-P	300DFC6-T
32DFC6-G	100DFC6-G	200DFC6-R	

Performance Data

Typical Insertion Loss – Line to Ground in 50 Ohm circuit

Filter		Frequency – MHz												
ID	0.01	0.03	0.1	0.3	1	10	100	1000						
С	-	-	-	-	3	21	45	70						
G	-	-	2	6	15	34	50	90						
Н	-	2	5	11	20	40	65	90						
Ν	6	9	15	22	33	33	90	90						
Р	10	15	24	32	42	50	90	90						
Q	13	21	31	42	50	58	90	90						
R	18	26	36	45	42	70	90	90						
Т	22	31	41	52	62	82	90	90						

239

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

Engineering Notes

			_																														
			_									_	_		_					_			_				_						
				$\left \right $		_	_		_			_	_		_		_	_		_			_		_		_		_		_		
			_				-		-			-	-		-			-		-			-		-		-		-		-		
													-									_			-								
			_				_		_			_	_		_			_		_		_	_		_		_		_		_		
							_						-		-		_					_											
													-		-					-			-		-		-				-		
						\square		\square								\square			\square													\square	
				\square	\rightarrow	+			_				_		_				\square	_			_		_		_	\square	_			\vdash	+
		$\left \right $		$\left \cdot \right $		+	_	+	_	$\left \cdot \right $	+			\vdash				_	++		$\left \cdot \right $			++	-	$\left \cdot \right $	_	$\left \cdot \right $	_			\vdash	+
	\vdash			$\left \cdot \right $	+	+	+			\vdash		-		\vdash		\vdash			++		$\left \cdot \right $			+	-	$\left \cdot \right $		\vdash		+		\vdash	+
							\neg						1	$ \uparrow $	1				$\uparrow \uparrow$	1				$\uparrow \uparrow$	-	$ \uparrow $	1					\square	+
						\square										\square																	\square
	-				\rightarrow				_			_	-		_				\square	_			_		_		_	\square				\vdash	+
		$\left \right $		$\left \cdot \right $					_	$\left \cdot \right $			+-	\vdash		\vdash			++		$\left \cdot \right $			++	-	$\left \cdot \right $		$\left \cdot \right $		++		\vdash	+
							-					-	+		-					-			-						-				
			_									_	_		_					_			_				_						
			_				_		_			_	_		_		_			_		_	_		_		_		_		_	\square	
									_			-					_	_				_	-		-		_		_				
													-		-							_	-		-								
						_	_					_	_		_		_			_		_	_		_						_		
			_			_	_					_	_		_					_		_	_		_		_		_		_		
													-		-					-		_	-		-						-		
													-		-																		
			_									_	_		_					_			_				_						
		$\left \right $		$\left \cdot \right $		+	_	+	_	$\left \cdot \right $		_	-	\vdash		\vdash		_	++	_	$\left \cdot \right $		_	++	-	$\left \cdot \right $	_	\square	_	++		\vdash	+
				$\left \cdot \right $					_			-	-	$\left \cdot \right $	-	\vdash			+	-	$\left \right $		_	+	-	$\left \cdot \right $		$\left \right $	_			\vdash	+
\vdash													-		-	\vdash			+	-				+	-							\square	+
																			\square														
	- -		_	$ \cdot $		+			_				-		_			_	\square	_			_	+	_	$ \cdot $	_			\square		\vdash	
				$\left \cdot \right $								-	-	$\left \cdot \right $	-	\vdash			+	-	$\left \right $		_	+	-	$\left \cdot \right $		$\left \right $	_			\vdash	+
				\vdash			+		-			-	-	\vdash	+	\vdash		-	+	-	+		-	+	-	\vdash	-	\vdash	-			\square	+
																																	\top
					\rightarrow	\square									_				\square	_							_					\square	
\vdash	$\left \cdot \right $		_	$\left \cdot \right $		+		+	_				-		-	\vdash		_	+	-	$\left \cdot \right $		_	+	_	$\left \cdot \right $	-	\square				\vdash	+
\vdash	\vdash		_	$\left \cdot \right $	++	+	+	+		\vdash			+	\vdash	+-	\vdash			++		++			++	-	$\left \cdot \right $		$\left \cdot \right $		++		\vdash	+
													-		-	\vdash			+	-				+	-							\square	+
		$\left \right $		$\left \cdot \right $					_	$\left \cdot \right $			_	$\left \cdot \right $				_	+	_	$\left \cdot \right $		_	+	-	$\left \cdot \right $	_	$\left \cdot \right $	_			\vdash	
	$\left \cdot \right $			\vdash		+		+			+	-	+-		+	\vdash			+	+	++	+	-	++	-	\vdash	-	\vdash		++		\vdash	+
													1		1	\vdash			\square	-	+			++			1					\square	+

6. Signal Line Products — Table of Contents

Introduction
SignalSentry Filtered Modular Jacks
SignalSentry Product Part Number Matrix / Ordering Information $\dots 244$
SignalSentry Product Selector Chart245
L Series
L - Ganged Series
LC Series
LCT Series
N Series
X Series
Z Series
Model Dimensions
L, LC, LCT and X Series RJ Jack Dimensions
N and Z Series RJ Jack Dimensions

Introduction

Corcom brand SignalSentry filtered modular jack series product combines different levels of filtering with RJ45 and RJ11 modular jacks to solve signal line noise problems and crosstalk.

Corcom brand SignalSentry filtered modular jack series product has expanded into 80 different products for filtering the signal line, including inductor and capacitor, shielded, ganged, low profile and surface mountable versions. Designs not only save valuable panel space, but also place the filtering elements where they can be most effective in eliminating RFI.

The L and N series RJ11 and RJ45 jacks offer filtering with inductance and optional shielding, while the LC and LCT series combine inductance with 82pF or 820pF capacitors. The X and Z series complete the offering with unfiltered versions of our standard profile and low profile jacks.

Use the selector chart to combine your filtering performance with the RJ11 or RJ45 jacks. Mechanical dimensions are listed following the series information.

For the latest information and additional technical articles, find Corcom products on the Internet at www.corcom.com.

242

SignalSentry Filtered Modular Jacks

Corcom brand SignalSentry filtered modular jacks are a space saving and cost-effective solution to RFI problems on signal lines. Its inductive and optional capacitive elements effectively strip common-mode noise from the incoming signal, and at the same time limit the signal line's ability to radiate emissions like an antenna.

The SignalSentry filtered modular jack series has expanded into 80 different products for filtering the signal line, including inductor and capacitor, shielded, ganged, low profile and surface mountable versions. Filtered RJ jacks provide interference suppression at the optimal location by integrating the filtering into the RJ jack itself. Our new ganged jacks are the only RJ11 filtered ganged jacks available in the market.

SignalSentry filtered modular jack products are useful for any electronic equipment that sends or receives data on unshielded twisted pair or other multi-conductor cabling systems. Modems, PBX's, LAN, ISDN, and local I/O interfaces that use RJ connectors are all candidates.

Jack design and component selection compatible with equipment registered under FCC part 68.

CL[®] UL Recognized

CSA Certified

Applications

A fax/modem board was being certified for FCC Class B emissions at an independent test laboratory. The board caused every computer it was tested in to exceed the radiated limits above 30 MHz, at multiples of each microprocessor's clock frequency, on the telephone line.

The test lab replaced the modem's unfiltered RJ11 jack with a **Corcom RJ11-4L-B** filtered modular jack out of their sample kit, and the board/computer combinations passed with 4 dB margin worst case.

-Mr-Mh-Mm

An RISC workstation designed to operate in a twisted-pair Local Area Network required two DIP package inductors and 12 chip capacitors to meet

FCC radiated emissions limits. All 14 discrete components were eliminated by replacing the two RJ45 connectors with two **Corcom RJ45-8LC1-B** shielded and filtered jacks, and the margin of compliance actually improved.

-Mr-Mr-Mm

A secure telephone set failed hardened application testing at a government facility, due to intelligible emanations radiated from the coiled handset cord. The unit passed after the handset connector in the desk set was replaced by a **Corcom RJH-4L-B** filtered handset jack.

-Mr-Mh-Mm

A medical manufacturer was designing a heart monitor which would transfer data over a signal line to the nurses' station so they could monitor patients. When the doctors used their modems, the data coming from the monitor became distorted.

This occurred due to the close proximity of the modem card and monitor communication card placed next to each other. A **Corcom low profile RJ45-8N3-B** modular jack was designed in to filter out the unwanted noise.

243

SignalSentry Part Num	ber Matrix / Ordering Information
WHAT TYPE OF CONNECTOR DO YOU NEED? Handset jack four pin connector RJ11 six pin connector RJ45 eight pin connector	RJH RJ11 RJ45
HOW MANY TERMINALS WILL BE LOADED? (See 4 on RJH 2, 4 or 6 on RJ11 6 or 8 on RJ45	below) RJ11- <mark>4</mark> L1-B
WHAT LEVEL OF FILTERING PERFORMANCE De No filter, standard profile Inductor (block or sleeve), standard profile Inductor plus capacitors with shield Inductor, 82 pF cap. and shield Inductor (block or sleeve), low profile No filter, low profile	D YOU NEED? X models L models LC models LCT model N models Z models
DO YOU WANT A SHIELDED JACK? (Optional on L, X, N, WHAT TYPE OF GROUND? ¹ Panel and board ground (spring fingers on panel inter ¹ Board ground pins only ² Panel, board and cable ground (low profile versions) ² Board ground and cable ground (low profile versions) ¹ L, LC, LCT, X models ² N, Z models	face) 1 2 3 RJ11-4L1-B
WHAT TYPE OF INDUCTORS DO YOU NEED? Sleeve — Average performance Block — Higher performance Sleeve inductance is recommended in cases where crosstalk may be a	S RJ11-4L1-B problem.
RJ11 Model Contact Loading Program R	J45 Model Contact Loading Program
Lead Frame Position	Lead Frame Position

RJ11 – 2		
RJ11 – 4		Х
RJ11 – 6	Х	Х

5	0		1	2	5	4	5	0
		RJ45 - 6		Х	Х	Х	Х	Х
Х		RJ45 - 8	Х	Х	Х	Х	Х	Х
Х	Х							

244

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Х

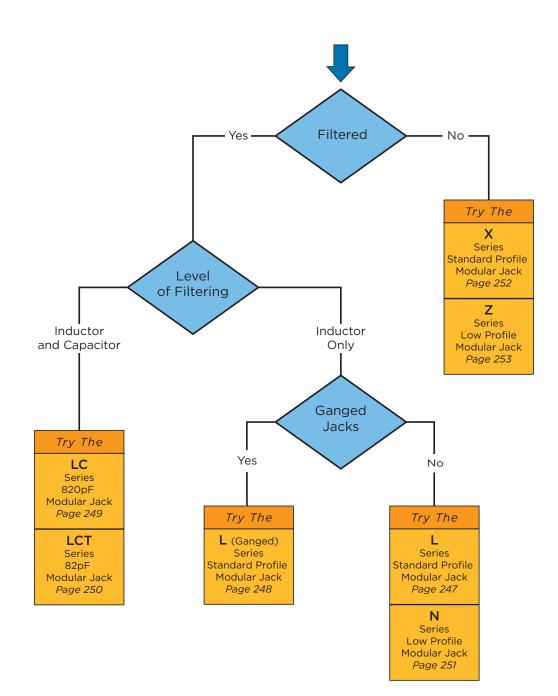
Х

Х

Х

Х

Х


Х

Х

Х

SignalSentry Selector Chart

Engineering Notes

				_		-		_		-																										-
																																				_
	-	-		_		_		_		_	-		_	-	_		-	_		_	_	-	_	_				-		-		_	_	_		_
	+									-	-		-	-			-			-		-	-							+		+				-
																																				_
	_	_		_		_		_		_	_		_	_	_		_	_		_	_	_	_	_		_		_		_		_	_	_		_
	+	-									-	+	-	-	-		-	-		-		-	-			_				+	+ +	-		_		-
																																				_
		_								_	_		_	_				_				_	_					_								_
	+	-		_				_		_	-		_	-	_		-			-	_	-	-			_		-		-		-	_	_		-
																														-						-
	_	_		_		_		_		_	_		_	-	_		_	_		_	_	_	_	_		_		_		_		_		_		_
	+	-		-		-					-			-						-			-	-				-		+		+				-
																																				_
\mid		_		_		_			\square	_		+		_				_		_				_	$\left \cdot \right $			_		_		_			++	_
$\left + \right $	+	-	$\left \cdot \right $			+	$\left \cdot \right $	_	$\left \cdot \right $	+	+	+	+	-		$\left \cdot \right $	+	+	$\left \right $	+		+	+	+	$\left \cdot \right $	_	$\left \cdot \right $	+-	$\left \cdot \right $	+	+	+		_	++	_
																																				_
																									\square										\square	_
	-	-		_		_		_		_	-		_	-	_		-	_		_	_	-	_	_				-		-		_	_	_		_
\vdash	+	-	\vdash	-	++	+	\vdash	-	\square	+	+	+	+	-			+	+	\square	+	+	+	+	+	\square	-		+	\vdash	+	+	+		-	++	-
	_	_		_		_		_		_	_		_	_	_		_	_		_	_	_	_	_		_		_		_		_	_	_		_
	+	-								-	-		-	-	-	-	-	-		-		-	-			-		-		+		+		_		-
																																				_
										_										_																_
	-			_		-		_		-	-		_	-	_		-			-	_	-	-	-		_		-		-		-		_		-
	-										+																	-		-		+				-
	-	-		_		_		_		_	-		_	-	_		_	_		_	_	-	_	_				-		-		_	_	_		_
	+	-				+					-		-	-				-						+						-		-				-
	_	_		_		_		_		_	_		_	_	_		_	_		_	_	_	_	_		_		_		_		_		_		_
	+	-									-	+	-	-	-		-	-		-		-	-			_				+	+ +	-		_		-
\square								_	\square			\square									\square				\square								\square		\square	
$\left + \right $	+	-	$\left \cdot \right $			+	$\left - \right $	_	\vdash	+	+	+	+	-		$\left \right $	+	+	$\left \right $	+		+	+	+	$\left \cdot \right $	_	$\left \cdot \right $	+-	$\left \cdot \right $	+	+	+		_	+	_
																																				_
\square							-		\square	_		-				\square						_			\square							_			\square	_
\vdash	+	-	$\left \cdot \right $	_	$\left \cdot \right $	-	$\left \cdot \right $	_	\vdash	+	+	+	-	-	_	$\left \right $	+	+	\square	-	+	-	-	-	$\left \cdot \right $	_	$\left \cdot \right $	+	\vdash	+	+	+		_	++	_
H																																			\square	-
																																			\square	
$\left \right $	-	-	$\left \cdot \right $	_	$\left \cdot \right $	-	$\left \cdot \right $		\square	_	_	+	-	-	_	$\left \right $	_	-		_		-	_	-	$\left \cdot \right $		$\left \cdot \right $	-	$\left \cdot \right $	+	+	_			+	_
\vdash	+	-				+	$\left \cdot \right $	-	\square	+	+	+	+	-		\square	+	+	\square	+		+	+	+	\vdash			+		+	+	+			++	-
\mid	_	_		_		_		_	\square	_	_	+	_	-			_	-	$\left \right $	_		_	_	_	$\left \cdot \right $	_		-		_		_		_	+	_
\vdash	+	-	$\left \cdot \right $		+	+	+		\square	+	+	+	+	-	-	$\left \right $	+	+	\square	+		+	+	+	$\left \cdot \right $	-		+	\vdash	+	+	+			++	-
																																			\square	
$\left + \right $	+	-	$\left \cdot \right $		$\left \cdot \right $	+	$\left - \right $		\vdash	+	+	+	+	-		$\left \right $	+	+	$\left \right $	+	+	+	+	+	$\left \cdot \right $	_	$\left \cdot \right $	+-	$\left \cdot \right $	+	+	+		_	++	_
H																																			\square	_
																																			\square	
\vdash	_	_	\square	_	$\left \cdot \right $	-	$\left \cdot \right $	_		_		+		-	_			-		_	+			-	$\left \cdot \right $	_	$ \cdot $	-	\square	_	+	_		_	++	_
\vdash	+	-	$\left \right $			-	$\left - \right $		\square	+	+	+	-	-			+	+		-		-	-	-	$\left \cdot \right $		$\left \right $	-		+	+	+		_	++	-
							1 1							-	 		_	_				_		-				-	 	1						

Inductive Filtering Modular RJ Jacks

L Series

UL Recognized CSA Certified

- Inductive filtering in standard RJ11, RJ45, or handset jacks.
- Available with standard ferrite sleeve inductors or higher performance ferrite blocks
- Available unshielded or shielded with board grounded shield or spring fingered panel ground interface

Available Part Numbers

Inducto	or Filter
Inducto	or Filter
RJH-4L-B	RJ45-6L-S
RJ11-2L-S	RJ45-6L-B
RJ11-2L-B	RJ45-8L-S
RJ11-4L-S	RJ45-8L-B
RJ11-4L-B	
RJ11-6L-S	
RJ11-6L-B	
Inductor Filte	er and Shield
RJ11-2L2-B	RJ45-6L1-S
RJ11-4L1-S	RJ45-6L1-B
RJ11-4L1-B	RJ45-6L2-S
RJ11-4L2-S	RJ45-6L2-B
RJ11-4L2-B	RJ45-8L1-S
RJ11-6L1-S	RJ45-8L1-B
RJ11-6L1-B	RJ45-8L2-S
RJ11-6L2-S	RJ45-8L2-B
RJ11-6L2-B	

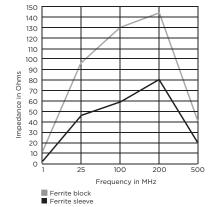
RJ11

RJ11 with Block Filter

RJ45 with Sleeve Filter

RJ45

Specificatio	ons
--------------	-----


Contacts: Material: Plating: Barrier underplat Resistance: Initial: After 500	ting: mating cycle	50 mic 100 micro	osphor Bronze roinches gold oinches nickel 20 mΩ max. 30 mΩ max.
Ferrites: Type: Sleeves: Block:	Si	ngle-aper	l zinc ceramic ture cylinders angular prism
Shield Material:		Tin-plated	d copper alloy
Housing Material:	Glass-fille	ed polyest	er (UL94V-0)
Dielectric Withstan Line to Line and			1000 VAC for 60 seconds

Printed Circuit Board Retention: Before soldering:

After soldering:

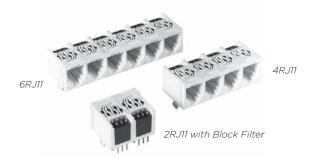
1	lb.	minimum
20	lb.	minimum

Typical Impedance in Ohms

Model dimensions and PC board layout on pages 255-259

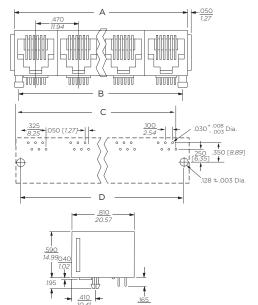
Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

For email, phone or live chat, please go to te.com/help corcom.com



Inductive Filtering Ganged Modular RJ Jacks

L – Ganged Series

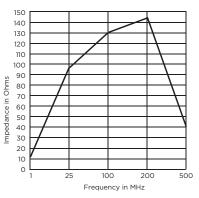

UL Recognized CSA Certified

L – Ganged Series

- Ganged version of our L Series filtered jacks
- Available in RJ11 models with block inductors
- Available in gangs of 2, 4 or 6
- Retrofits existing unfiltered ganged jack footprints

Dimensions and PC Board Layout

	10.41	4.19		
Ports	А	В	С	D
	0.99	0.87	0.795	.87
2	25.15	22.1	20.19	22.1
4	1.93	1.81	1.735	1.81
4	49.02	45.97	44.07	25.97
6	2.87	2.75	2.675	2.75
ð	72.9	69.85	67.95	69.85


Specifications

Contacts: Material: Plating: Barrier underplat Resistance: Initial: After 500 r	-	50 micro 100 microi	phor Bronze oinches gold inches nickel 20 mΩ max. 30 mΩ max.
21	High resisti	vity, nickel	zinc ceramic
Block:	Multi-ape	erture recta	ngular prism
Housing Material:	Glass-fille	ed polyeste	r (UL94V-0)
Dielectric Withstan Line to Line and I			000 VAC for 60 seconds
Printed Circuit Boa Before soldering: After soldering:	rd Retentic	1	lb. minimum lb. minimum

Available Part Numbers

2RJ11-6L-B	4RJ11-6L-B
6RJ11-6L-B	

Typical Impedance in Ohms

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

-

Filtered Modular Jacks with Enhanced Performance

LC Series

UL Recognized CSA Certified

LC Series

- Chip capacitors provide enhanced filtering performance on each line
- Available with block or sleeve inductance
- Available with board grounded shield or spring fingered panel ground interface

Performance Data

Typical Insertion Loss

Line to ground (stop band) in 50 Ohm circuit

	Frequency – MHz						
Model	30	60	80	100	200	500	1000
S – Ferrite Sleeves	28	40	51	40	27	24	22
B – Ferrite Blocks	30	41	59	40	31	28	24

Line to line (pass band) in 50 Ohm circuit

			Frequ	ency ·	– MHz		
Model	2	5	10	30	50	70	100
S – Ferrite Sleeves	-	4	8	18	24	30	40
B – Ferrite Blocks	1	8	11	21	28	33	37

Model dimensions and PC board layout on pages 255-259

RJ11

Shield 1 Shield 2

RJ11

Shield 2 RJ45

Shield *RJ*45

Specifications

opeenieutiona			
Contacts: Material: Plating: Barrier underpla Resistance: Initial: After 500	ting: mating cycle		nes gold
Capacitors: Type: Standard Value: Standard Tolerar		Monolithic cerar	nic chip 820 pF ± 20%
Ferrites: Type: Sleeves: Block:	Si	vity, nickel zinc ngle-aperture c rture rectangula	ylinders
Shield Material:		Tin-plated copp	ber alloy
Housing Material:	Glass-fille	ed polyester (Ul	_94V-0)
Dielectric Withsta Line to Line and	-	und: 1000	VAC for seconds
Printed Circuit Bo Before soldering After soldering:		1 lb. m	ninimum ninimum

Available Part Numbers

RJ11-2LC1-S	RJ11-6LC2-S
RJ11-2LC1-B	RJ11-6LC2-B
RJ11-2LC2-S	RJ45-6LC1-S
RJ11-2LC2-B	RJ45-6LC1-B
RJ11-4LC1-S	RJ45-6LC2-S
RJ11-4LC1-B	RJ45-6LC2-B
RJ11-4LC2-S	RJ45-8LC1-S
RJ11-4LC2-B	RJ45-8LC1-B
RJ11-6LC1-S	RJ45-8LC2-S
RJ11-6LC1-B	RJ45-8LC2-B

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

249

Signal Line Products

Downloaded From Oneyac.com

Low Capacitance Modular RJ Jacks

LCT Series

UL Recognized CSA Certified

LCT Series

- Low capacitance model for improved performance.
- Particularly suited for ethernet applications
- Available with block or sleeve inductance
- Available with board grounded shield or spring fingered panel ground interface

Performance Data

Typical Insertion Loss

Line to ground (stop band) in 50 Ohm circuit

	Frequency – MHz						
Model	40	100	200	250	300	500	1000
S – Ferrite Sleeves	8	12	27	50	38	25	20
B – Ferrite Blocks	10	18	22	55	40	28	24

Line to line (pass band) in 50 Ohm circuit

			Frequ	ency ·	- MHz		
Model	2	5	10	30	50	70	100
S – Ferrite Sleeves	-	1.2	1.9	4	5	7	10
B – Ferrite Blocks	1	2	3	5	8	10	13

Model dimensions and PC board layout on pages 255-259

Shield 1

RJ11

R.145

Shield 2 RJ11

Shield 2

Shield RJ45

Specifications

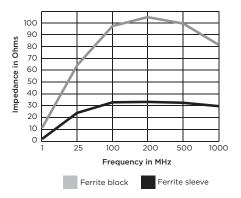
Contacts: Material: Plating: Barrier underpla Resistance: Initial: After 500	ting: mating cycle	50 mic 100 micro	sphor Bronze roinches gold binches nickel 20 mΩ max. 30 mΩ max.
Capacitors: Type: Standard Value: Standard Tolerar		Monolithic	ceramic chip 82 pF ± 20%
Ferrites: Type: Sleeves: Block:	Si	ingle-aper	l zinc ceramic ture cylinders angular prism
Shield Material:		Tin-plated	l copper alloy
Housing Material:	Glass-fille	ed polyest	er (UL94V-0)
Dielectric Withsta Line to Line and			1000 VAC for 60 seconds
Printed Circuit Bo Before soldering After soldering:			1 lb. minimum) lb. minimum

Available Part Numbers

RJ11-6LCT1-S	RJ45-8LCT1-S
RJ11-6LCT1-B	RJ45-8LCT1-B
RJ11-6LCT2-S	RJ45-8LCT2-S
RJ11-6LCT2-B	RJ45-8LCT2-B

Low Profile Filtered Modular Jacks

N Series



UL Recognized CSA Certified

- Low profile SignalSentry filtered jack
- Available with sleeve or block inductors
- Available unshielded or shielded with board grounded shield or spring fingered panel ground interface

Typical Impedance in Ohms

Unshielded Ferrite Block

Shield 3 RJ11

Shield 4 RJ45

Specifications

Contacts: Material: Plating: Barrier underpla Resistance: Initial: After 500	ting: mating cycle	50 n 100 mi	Phosphor Bronze nicroinches gold icroinches nickel 20 mΩ max. 30 mΩ max.
Ferrites:			
Type: Sleeves: Block:	Si	ngle-ap	kel zinc ceramic perture cylinders ectangular prism
Shield Material:		Tin-pla	ted copper alloy
Housing Material:	Blac	-	filled polyamide ANYL TE250F3)
Dielectric Withsta Line to Line and			1000 VAC for 60 seconds
Printed Circuit Bo Before soldering After soldering:		n:	1 lb. minimum 20 lb. minimum
		_	

Available Part Numbers

RJ11-6N-B	RJ45-8N-B
	RJ45-8N-S
RJ11-6N3-B	RJ45-8N3-B
	RJ45-8N3-S
RJ11-6N4-B	RJ45-8N4-B
	RJ45-8N4-S

Model dimensions and PC board layout on pages 255-259

251

Unfiltered Modular Jacks

X Series

UL Recognized CSA Certified

X Series

- Unfiltered standard jack
- RJ11 or RJ45
- 2, 4, 6 or 8 loaded contacts
- Available unshielded or shielded with board grounded shield or spring fingered panel ground interface

Specifications

Contacts: Material: Plating: Barrier underplating: Resistance:	Phosphor Bronze 50 microinches gold 100 microinches nickel
Initial: After 500 mating	$20 \text{ m}\Omega \text{ max.}$ cycles: $30 \text{ m}\Omega \text{ max.}$
Shield Material:	Tin-plated copper alloy
Housing Material: Glas	ss-filled polyester (UL94V-0)
Dielectric Withstanding Voltage:Line to Line and Line to Ground:1000 VAC for 60 seconds	
Printed Circuit Board Ret Before soldering: After soldering:	ention: 1 lb. minimum 20 lb. minimum

Shield 1

Shield 2

Available Part Numbers

RJ11-2X	RJ45-6X
RJ11-4X	RJ45-8X
RJ11-6X	RJ45-8X1
	RJ45-8X2

Model dimensions and PC board layout on pages 255-259

Low Profile Unfiltered Modular Jacks

Z Series

UL Recognized CSA Certified

Shield 3 RJ11

Shield 4 RJ45

Z Series

- Low profile
- Unfiltered
- Available unshielded or shielded with board grounded shield or spring fingered panel ground interface

Available Part Numbers

RJ11-6Z	RJ45-8Z
RJ11-6Z3	RJ45-8Z3
RJ11-6Z4	RJ45-8Z4

Specifications

Contacts: Material: Plating: Barrier underplating: Resistance:	Phosphor Bronze 50 microinches gold 100 microinches nickel
Initial: After 500 mating o	20 mΩ max. cycles: 30 mΩ max.
Shield Material:	Tin-plated copper alloy
Housing Material:	Black glass-filled polyester (VALOX 457)
Dielectric Withstanding Vo Line to Line and Line to C	5
Printed Circuit Board Rete Before soldering: After soldering:	ntion: 1 lb. minimum 20 lb. minimum

Model dimensions and PC board layout on pages 255-259

Downloaded From Oneyac.com

Engineering Notes

													-		-				-												
		_	_			_					_		_		_	$\left \right $	_	_	_			_		_		\square	_		_	_	
											_														_	\vdash					
													-		-				-												
		_									_		_		_			_	_					_							
			_			_		_	_		_		_		_		_	_	_			_			_		_			_	
			-			-			_		-		-		-			-	-			-			-		-			-	
													-		-																
		_	_										_		_			_	_			_		_					_		
			_			_		_	_		-		-		-		_	-				_			_	\square	_			_	
				+	+		\vdash			\vdash		++	-	\vdash	+	+				\vdash	+		\vdash	++		\vdash					
			-		$\uparrow \uparrow$		$ \uparrow $			\square		$\uparrow \uparrow$	-		1	$ \uparrow $			-	\square		-	$ \uparrow $			\square					
													_		_				_				\square	\rightarrow							
			_		$\left \cdot \right $	_	$\left \cdot \right $		_	$\left \cdot \right $	_	+	-		-	$\left \cdot \right $		_	_	$\left \cdot \right $	+	_	\vdash		_	$\left \cdot \right $	_	$\left \right $		_	
		+	-	+	+	-	$\left \right $			$\left \cdot \right $		+	-		-	+			-	\vdash	+	-	\vdash	+		\vdash		$\left \cdot \right $			+
			-		+	-	\square			H			-		1				-			-			-	\square					
	\square																				\square		-			\square					
			_			_					_		_		_		_	_	_			_			_		_			_	
																									_	\vdash					
													-		-																
									_						_				_												
			_			_		_	_		-		-		-		_	-				_			_	\square	_			_	
													-		-			-								\square					
		_																													
		_	_			_					_		_		_	$\left \right $	_	_	_			_		_	_	\square			_	_	
													-													\vdash					
													-		-																
		_													_		_	_			_			_						_	
					+		$\left \cdot \right $		_	$\left \cdot \right $	_	+	-		+	+				$\left - \right $	+		\vdash		_	$\left \cdot \right $	_	$\left \right $		_	
		++	-		+	-	\vdash			\vdash	-	+	-	\vdash	+	+		-	-	\vdash	+	-	\vdash	++		\square					
							ЦŢ																	-							
 			_			_	$\left \cdot \right $		_	\square	_	++	_		_	$\left \cdot \right $	_		_	\square	+	_	$\left \cdot \right $		_	\square	_			_	
			_		+	-				\square		+	-		-				-	$\left \cdot \right $	+	_	$\left \cdot \right $	+	-	\square	_			_	
										\vdash			-		-									+		\square					
	- -																			\square	\square		\square	44							
			_		$\left \cdot \right $	_	$\left \cdot \right $		_	$\left \cdot \right $	_	+	-		-	$\left \cdot \right $		_	_	$\left \cdot \right $	+	_	\vdash		_	$\left \cdot \right $	_	$\left \right $		_	
		++		+	+		\vdash			$\left \cdot \right $		++			+	+				\vdash	+		\vdash	++		\vdash					
													_		_				_				\square	\rightarrow							
				$\left \cdot \right $	+		\vdash		_	$\left \cdot \right $	_	++	-	\vdash	-	+				\vdash	+		\vdash			\vdash	_	$\left \cdot \right $		_	
			_									++	_		_					\square	+	_									
		\rightarrow	_	+	+	_	\vdash	+	_	$\left \cdot \right $	_	++		\vdash	-	+				\vdash	+	_	\vdash	++	_	\vdash	_	$\left \cdot \right $		_	+
			-		+	-		+		\square		++	-		+				-		+	-	\vdash	+	-	\square				-	
 				(1						_	1 1	1									- 1	1				

Model Dimensions

L, LC, LCT and X Series RJ Jack Dimensions

Part No.

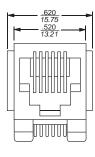
RJ11-2L-B

RJ11-4L-B

RJ11-6L-B

.780 19.81

.195


Part No.

RJ11-2LC1-B

RJ11-4LC1-B

RJ11-6LC1-B

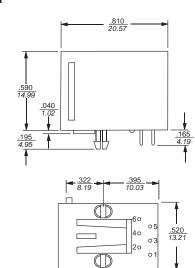
RJ11-2L-S

RJ11-4L-S

RJ11-6L-S

.840

0 0


-000001

RJ11-2LC1-S

RJ11-4LC1-S

RJ11-6LC1-S

RJ11 - Style 1 Shield

RJ11-2X

RJ11-4X

RJ11-6X

<u>.900</u> 22.86 <u>.860</u> 21.84

11

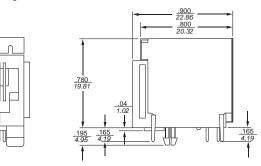
(IT)

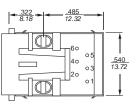
60 40

20 03

RJ11-6L1-B

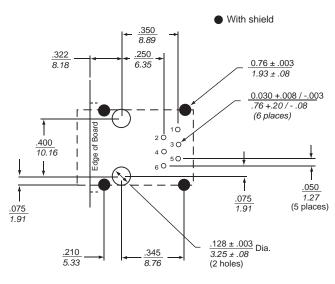
RJ11-6LCT1-S


RJ11-6LCT1-B


.540 13.72

8.18

RJ11 - Style 2 Shield


η η

	Part	No.	
RJ11-2LC2-S	RJ11-2LC2-B	RJ11-4L2-S	RJ11-6L2-B
RJ11-4LC2-S	RJ11-4LC2-B	RJ11-6L2-S	RJ11-6LCT2-S
RJ11-6LC2-S	RJ11-6LC2-B	RJ11-4L2-B	RJ11-6LCT2-B

RJ11 - PC Board Layout

For all RJ11 L, LC, LCT and X Series Models Shown from Component Side

6

255

All tolerances ± 0.010 [0.25] unless otherwise noted

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

RJ11-4L1-S

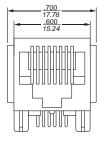
RJ11-6L1-S

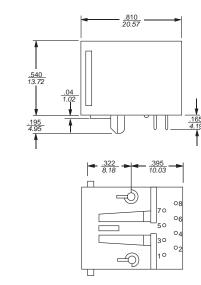
RJ11-4L1-B

For email, phone or live chat, please go to te.com/help corcom.com

Downloaded From Oneyac.com

L, LC, LCT and X Series RJ Jack Dimensions (continued)

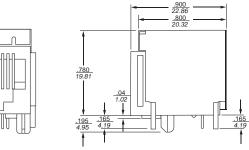


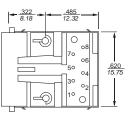

RJ45-6L-S

RJ45-8L-S

RJ45-6L-B

RJ45 - Style 1 Shield

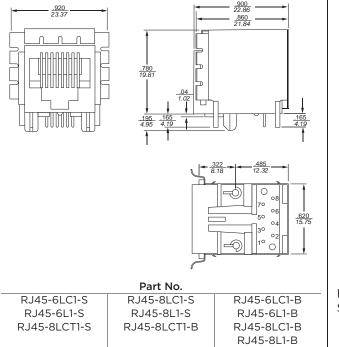

RJ45-8L-B

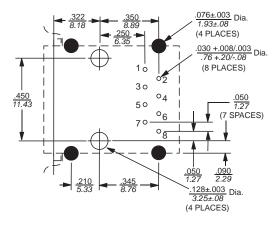

RJ45-6X

RJ45-8X

RJ45 - Style 2 Shield

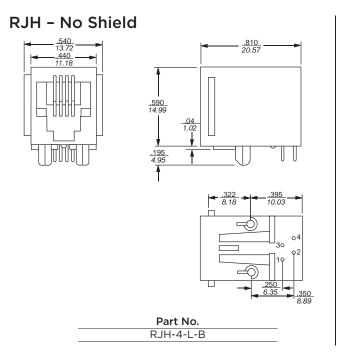
Π

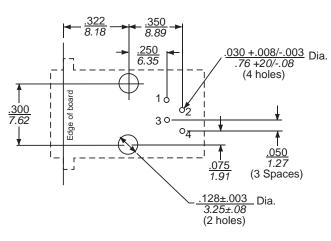



Part No.

RJ45-6LC2-S	RJ45-8LC2-S	RJ45-6LC2-B	RJ45-8LC2-B
RJ45-6L2-S	RJ45-8L2-S	RJ45-6L2-B	RJ45-8L2-B
RJ45-8LCT2-S	RJ45-8LCT2-B		

RJ45 - PC Board Layout

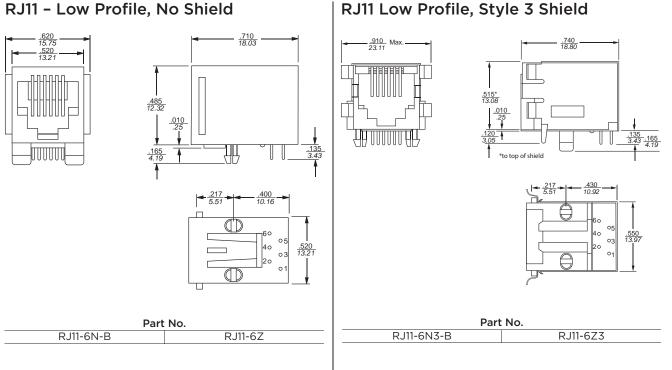

Part No.



For all RJ45 L, LC, LCT and X Series Models Shown from Component Side

All tolerances \pm 0.010 [0.25] unless otherwise noted

L, LC, LCT and X Series RJ Jack Dimensions (continued)



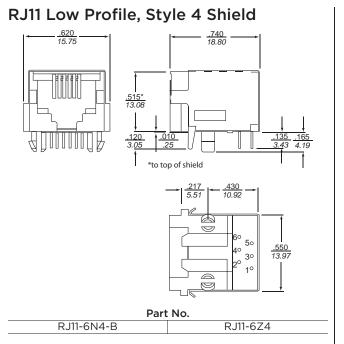
RJH - PC Board Layout

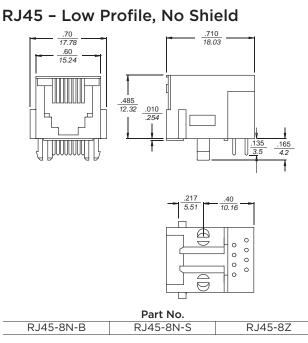
N and Z Series RJ Jack Dimensions

•

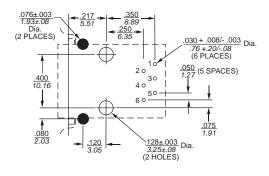
257

All tolerances ± 0.010 [0.25] unless otherwise noted

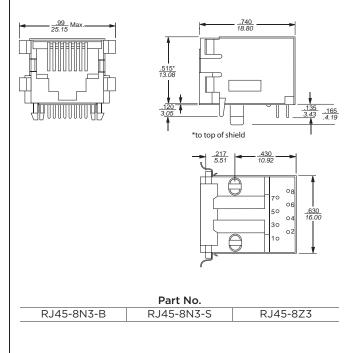

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.


For email, phone or live chat, please go to te.com/help corcom.com

Downloaded From Oneyac.com



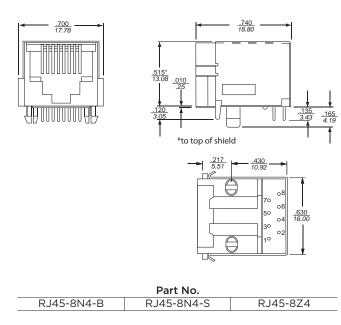
N and Z Series RJ Jack Dimensions (continued)



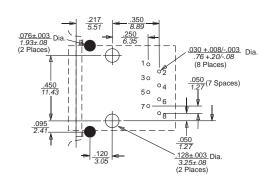
RJ11 Low Profile, PC Board Layout

For all RJ11 N and Z Series Models Shown from Component Side

RJ45 - Low Profile, Style 3 Shield



All tolerances ± 0.010 [0.25] unless otherwise noted



N and Z Series RJ Jack Dimensions (continued)

RJ45 Low Profile, Style 4 Shield

RJ45 Low Profile PC Board Layout

For all RJ45 N and Z Series Models Shown from Component Side

All tolerances ± 0.010 [0.25] unless otherwise noted

259

Downloaded From Oneyac.com

Dimensions are in inches and millimeters unless otherwise specified. Values in italics

Engineering Notes

			_									_	_		_					_			_				_						
				$\left \right $		_	_		_			_	_		_		_	_		_			_		_		_		_		_		
			_				-		-			-	-		-			-		-		_	-		-		-		-		-		
													-									_			-								
			_			_	_		_			_	_		_			_		_		_	_		_		_		_		_		
													-		-		_					_											
													-		-					-			-		-		-				-		
						\square		\square								\square			\square													\square	
				\square	\rightarrow	+			_				_		_				\square	_			_		_		_	\square	_			\vdash	+
		$\left \right $		$\left \cdot \right $		+	_	+	_	$\left \cdot \right $	+			\vdash					++		$\left \cdot \right $			++	-	$\left \cdot \right $	_	$\left \cdot \right $	_			\vdash	+
\vdash	\vdash			$\left \cdot \right $	+	+	+			\vdash		-		\vdash		\vdash			+		$\left \right $			+	-	$\left \cdot \right $		\vdash		+		\vdash	+
				$ \uparrow $			\neg						1	$ \uparrow $	1				$\uparrow \uparrow$	1				$\uparrow \uparrow$	-	$ \uparrow $	1					\square	+
						\square										\square																	\square
	-				\rightarrow				_			_	-		_				\square	_			_		_			\square				\vdash	+
		$\left \right $		$\left \cdot \right $					_	$\left \cdot \right $			+-	\vdash		\vdash			++		$\left \cdot \right $			++	-	$\left \cdot \right $		$\left \cdot \right $		++		\vdash	+
							-					-	+		-					-			-						-				
			_									_	_		_					_			_				_						
			_				_		_			_	_		_		_			_		_	_		_		_		_		_	\square	
									_			-					_	_				_	-		-		_		_				
													-		-							_	-		-								
						_	_					_	_		_		_			_		_	_		_						_		
			_			_	_					_	_		_					_		_	_		_		_		_		_		
													-		-					-		_	-		-						-		
													-		-																		
			_									_	_		_					_			_				_						
		$\left \right $		$\left \cdot \right $		+	_	+	_	$\left \cdot \right $		_	-	\vdash		\vdash		_	++	_	$\left \cdot \right $		_	++	-	$\left \cdot \right $	_	\square	_	++		\vdash	+
				$\left \cdot \right $								-	-	$\left \cdot \right $	-	\vdash			+	-	$\left \right $		_	+	-	$\left \cdot \right $		$\left \right $	_			\vdash	+
\vdash													-		-	\vdash			+	-				+	-							\square	+
						\square													\square														
$\mid \mid \mid$			_	$ \cdot $		+		+	_	\square			-		_			_	\square	_			_	+	_	$ \cdot $	_			\square		\vdash	+
				$\left \cdot \right $					_			-	-	$\left \cdot \right $	-	\vdash			+	-	$\left \right $		_	+	-	$\left \cdot \right $	-	$\left \right $	_			\vdash	+
				\vdash			+		-			-	-	\vdash	+	\vdash		-	+	-	+		-	+	-	\vdash	-	\vdash	-			\square	+
																																	\top
					\rightarrow	\square									_				\square	_							_					\square	
\vdash	$\left \cdot \right $		_	$\left \cdot \right $		+		+	_				-		-	\vdash		_	+	-	$\left \cdot \right $		_	+	_	$\left \cdot \right $	-	\square				\vdash	+
\vdash	\vdash		_	$\left \cdot \right $	++	+	+	+		\vdash			+	\vdash	+-	\vdash			++		++			++	-	$\left \cdot \right $		$\left \cdot \right $		++		\vdash	+
													-		-	\vdash			+	-				+	-							\square	+
		$\left \right $		$\left \cdot \right $					_	$\left \cdot \right $			_	$\left \cdot \right $	_			_	+	_	$\left \cdot \right $		_	+	-	$\left \cdot \right $	_	$\left \cdot \right $	_			\vdash	
	$\left \cdot \right $			\vdash		+		+			+	-	+-	\square	+	\vdash			+	+	++	+	-	++	-	\vdash	-	\vdash		++		\vdash	+
													1		1	\vdash			\square	-	+			++			1					\square	+

7. Technical Notes — Table of Contents

Introduction
Understanding RFI Power Line Filters
Understanding Hipot Testing
Understanding Leakage Current (Touch Current)
Understanding Insertion Loss
Appendix A - Conducted RFI Emissions Testing
Appendix B - Conducted RFI Susceptibility Testing
Appendix C - Health Care Equipment
Appendix D - Safety Agency File Numbers

Introduction

TE Connectivity (TE) has established itself as a world leader in RFI technology by introducing the first line of catalog filter products over 50 years ago. Today, TE continues to pursue the latest in RFI filter design through testing and evaluating power supplies and studying their effects.

Changing international standards obligate designers to constantly review and evaluate their filtering needs. The following section provides some basic information on RFI terminology and filter selection.

Additional information can be accessed through TE's Corcom product internet pages at **www.corcom.com**

Understanding RFI Power Line Filters

What Is Radio Frequency Interference (RFI)?

RFI is unwanted electromagnetic energy in the frequency range generally used for radio communications. The frequency ranges of interest are 10kHz to 30MHz for conducted phenomena and 30MHz to 1GHz for radiated phenomena.

What are the modes of propagation of RFI?

RFI is propagated via radiation (electromagnetic waves in free space) and by conduction over signal lines and AC power systems.

Radiated - One of the most significant contributors to radiated RFI from electronic equipment is the AC power cord. The power cord is often an efficient antenna since its length approaches a quarter wave length for the RFI frequencies present in digital equipment and switching power supplies.

Conducted - RFI is conducted over the AC power system in two modes. Common mode (asymmetrical) RFI is present on both the line and neutral current paths with reference to the ground or earth path. Differential mode (symmetrical) RFI is present as a voltage between the line and neutral leads.

Why Be Concerned with RFI?

The designers and manufacturers of digital equipment must concern themselves with RFI for two reasons. (1) Their equipment must operate properly in the application environment, often in the presence of significant levels of RFI. (2) Their equipment must not emit RFI that interferes with RF communications often vital to health and safety. The necessity for reliable RF communications has given rise to legal regulations ensuring RFI control for electronic equipment.

What are the FCC requirements?

The U.S. Federal Communications Commission (FCC) has established regulations to reduce the interference potential of electronic computing devices (FCC Rules, Part 15, Subpart J). A computing device is defined as any electronic device or system that generates and uses timing signals or pulses at a rate in excess of 10,000 per second and that uses digital techniques. It is important to note that a switching power supply does not itself fall into this category, but that its emissions must still meet the limits when it is installed in a piece of equipment that is subject to the regulations.

The level of emissions the equipment must meet depends on whether it is marketed for use in a residential environment (Class B) or in a commercial, industrial, or business environment (Class A). The limits for Class B are more stringent than those for Class A (see Appendix A). Most Class B equipment must undergo certification, meaning that emissions

Specifications subject to change.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics

are metric equivalents. Dimensions are shown for reference purposes only.

test data must be submitted to the FCC for type approval. Class A and all other Class B equipment must be verified—i.e. the manufacturer conducts his own emissions testing and verifies that he complies with the limits, but no forms need to be filed with the FCC.

Further details on FCC requirements can be obtained from the FCC, RF Devices Branch (Authorization and Standards Division), Washington, DC 20554, (301) 725-1585.

What are CE markings and RFI filters?

As of January 1, 1996, electrical and electronic equipment shipped to Europe is required to be labeled with the CE marking. In order to apply the CE marking, equipment must meet the General Product Safety Directive and Electromagnetic Compatibility Directive.

RFI power line filters are components and therefore not covered by the CE requirements, but they are used in electronic systems to meet EMC specifications.

Two of the most common emission specifications are EN 55011 for industrial, science, and medical equipment, and EN 55022 for information technology equipment. The conducted emission limits for these specifications are the same and broken down to Class "A" and Class "B" limits. Electronic equipment that may be connected to a power main shared with a residential area must comply with the more stringent Class "B" limits. The measurement technique is done using quasi-peak and average detection, with different limits for each measure in dB above one microvolt.

There are several immunity tests to which electronic equipment must comply, one of which is the electrically fast transient (EFT), IEC 61000-4-4. The equipment must continue to operate during this test. The transient wave form is a 5ns rise time with a 50ns duration. A burst is induced onto the power line at 1kV with a repetition rate of 5kHz lasting 15ms and repeated every 300ms. The test simulates switching of inductive loads and contacts.

To pass the EFT test, it is important that the RFI filter's enclosure have a good RF ground with the system's chassis ground. This provides a lower impedance path from the safety ground to the system ground. The shielding effect of the RFI filter's metal enclosure eliminates radiation into the system's cabinet induced by the conducted EFT burst. Stray capacitance may occur from any of the three input power wires to chassis ground where voltage can build up from the EFT burst and cause system interrupts. The RFI filter's inductor offers an impedance to the burst.

For email, phone or live chat, please go to

te.com/help corcom.com

Downloaded From Oneyac.com

Understanding RFI Power Line Filters (continued)

In cases where the stray capacitances have caused multiple RF ground planes or where plastic enclosures are used, an inductive choke may be needed to provide isolation of the safety ground from the chassis ground.

What Is a Power Line Interference Filter?

A power line interference filter is a primary tool available to the designer of electronic equipment to control conducted RFI both into the equipment (potential equipment malfunction) and out of the equipment (potential interference to other system elements or RF communication). By controlling the RFI conducted onto the power cord, a power line filter also contributes significantly to the amount of radiated RFI.

A power line filter is a multiple-port network of passive components arranged as a dual low-pass filter; one network for common mode attenuation, another network for differential mode attenuation. The network provides attenuation of RF energy in the stopband of the filter (typically above 10kHz), while passing the power current (50-60Hz) with little or no attenuation.

How Does a Power Line Interference Filter Work?

Power line interference filters, as passive, bilateral networks, have complex transfer characteristics, which are extremely dependent upon source and load impedance. The magnitude of this transfer characteristic describes the attenuation performance of the filter. In the power line environment, however, the source and load impedances are not defined. Therefore the industry has standardized upon the practices of verifying filter uniformity through measurement of attenuation with 50 Ohm resistive source and load terminations. This measurement is defined to the Insertion Loss (I.L.) of the filter.

I.L. = 10 log
$$\frac{P_L (Ref)}{P_l}$$

where P_L (Ref) is the power transferred from the source to the load without the filter, and P_L is the power transferred when a filter is inserted between the source and load. The Insertion Loss may also be expressed in terms of voltage or current ratios as shown:

I.L. = 20 log
$$\frac{V_L (Ref)}{V_L}$$

I.L. = 20 log $\frac{I_L (Ref)}{I_I}$

where V $_L$ (Ref) and I $_L$ are measured without a filter and V $_I$ and I $_I$ are measured with a filter.

It is important to note that Insertion Loss does not describe the RFI attenuation provided by a filter in the power line environment. In the power line environment the relative magnitudes of the source and load impedances must be estimated and the appropriate filter configuration selected such that the greatest possible impedance mismatch occurs at each termination.

This dependence of filter performance on terminated impedances is the basis for the concept of "mismatching networks."

What is the concept of power line filters as "Impedance Mismatching Networks"?

RFI power line filters can be thought of as "impedance mismatching networks" at higher frequencies in the attenuation band. Network analysis shows that the greater the mismatch of filter impedance to terminating impedance, the more effective the filter is in attenuating RF energies.

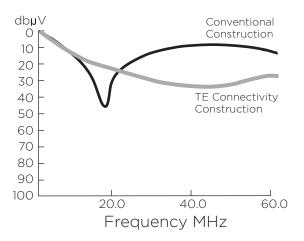
Common mode power line impedance is considered to be low (on the order of 50 Ohms). Thus, following the concept of an impedance mismatch, Corcom power line filters employ a high common mode impedance (series inductance) on the power line side of the filter.

For load (equipment) side common mode impedance mismatch, Corcom products are available with a high impedance (series inductance) or a low impedance (shunt capacitance).

High (common mode) impedance filters for use with low impedance equipment include the EP, H, 6A Q, R and V series. Low (common mode) impedance filters for use with high impedance equipment include the B, EC, ED, EF, G, K, N, 3A Q, S, SK, T, W, X, Y, and Z series.

Knowing the input impedance of your equipment, then, may be useful in initially selecting the filter series most likely to solve your RFI problems. However, since this impedance is almost certainly complex (having both resistive and reactive components), it may vary widely over the RFI frequency range. Hence a variety of series should be evaluated in your quest for the most effective filter in any one application.

Do all filter networks with the same circuit and element values perform identically?


All filter networks with the same circuit and element values do not perform identically. Element values are specified and measured at a single frequency (usually lkHz). Filter performance is required over the entire frequency spectrum, not just at the frequency of component measurement. The type of component construction and method of incorporation into a filter are extremely important to filter performance.

Understanding RFI Power Line Filters (continued)

Figure 1 illustrates the high-frequency performance difference between the three leaded capacitor construction employed by TE and a conventional method of construction. Both units would be specified by the same nominal 1kHz component value, approximately 5000pF.

Figure 1: Insertion Loss

How Do You Select a Power Line Interference Filter?

The only way to select and qualify a power line interference filter is to test the unit in your equipment. As mentioned above, the performance is highly dependent on equipment load impedance. Filter performance cannot be derived from single impedance (50 Ohm) insertion loss data. Performance is a complex function of filter element impedances and equipment impedances which vary in magnitude and phase over the frequency spectrum of interest. Filter selection testing should be performed in your equipment to your required level of performance for both conducted emission control (FCC, VDE) and susceptibility control.

How do you perform conducted emission tests?

Conducted emission testing requires a quiet RF environment—usually a shielded enclosure—a line impedance stabilization network, and an RF voltage instrument such as a tuned receiver or a spectrum analyzer. Additional testing information is given in Appendix A. The RF ambient of the test environment should be at least 20 dB below the desired compliance limit for accurate results. The line impedance stabilization network (LISN) is required to establish a desired source impedance for the power line input. This is an important part of the test procedure, since this impedance directly affects the measured emission levels. The correct bandwidth for the measurement receiver is also a critical test parameter.

How do you perform susceptibility testing?

Susceptibility testing involves injection of noise onto the power input lines while monitoring the equipment for proper operation. Quantification of the noise levels to be found in the equipment environment is difficult at best. Through analysis of solutions to specific susceptibility problems, TE has developed recommended noise injection levels, which proved a high level of confidence for reliable equipment operation in the real world environment. The test methods and injection noise levels are found in Appendix B.

Is installation important to filter performance?

Mounting and wiring of the filter are critical influences on its performances. A power line filter is best installed at the power line input point of your equipment. The filter is a barrier to high frequency signals. Its purpose must not be defeated by stray capacitance coupling the power input leads to the power output leads, or to any other conductors in the protected equipment.

Normally the case of the filter is bolted to the framework or chassis of the electronic equipment it protects. The line side leads should be kept short and well separated from the load side leads. The ideal isolation system is a bulkhead-mounted filter incorporating a line cord connector, such as the Corcom EC, ED, or EF power line filter series.

How Do You Know Which Filter To Test?

A filter, or ordered group of filters, likely to solve your interference control problem can be obtained by using the selector chart at the front of each section. Every Corcom filter series is available in a range of current ratings and packages. Detailed specifications, including prices, are listed on the individual series' catalog sheets referenced in the selector chart. Telephone numbers of distributors who stock all TE products are listed on the back cover of this catalog.

Why Be Concerned with Safety Agency Requirements?

All components in the AC power system, including power line filters, must be safe from potential fire and shock hazard. The standards set by the various safety agencies, like UL, CSA, VDE, and SEV, provide guidelines to assist the designer in specifying safe and reliable components. Components which carry the compliance symbols from these agencies have been designed and manufactured to comply with these standards. A summary of safety agency requirements can be found in Appendix C.

Understanding RFI Power Line Filters (continued)

What are the significant requirements of UL and CSA?

UL and CSA are primarily concerned with high potential withstand capability, temperature rise, creepage distances, and material temperature capability at the time of manufacture.

What are the additional aspects of VDE safety requirements?

In addition to the requirements of UL and CSA, VDE specifies limits of hipot, insulation resistance, and change of component values, at the conclusion of extreme environmental conditioning. The conditioning includes life tests at elevated temperatures, long term humidity, and temperature/humidity cycling. Components that bear the VDE symbol of safety have been designed and tested not only for initial safety but also for safety over the life of the product.

How Do You Specify a Power Line Filter?

The filter you have selected through system testing can best be specified by the data parameters found on the appropriate catalog page. Combining the product family parameters listed under the "specifications" with the package style and dimensional data from your specific filter will adequately define your selection.

Are there other parameters that need to be specified?

There are three additional requirements that are often specified. Below are our recommended values:

- 1. Insulation Resistance: 6000 $M\Omega$ @ 100VDC
- 2. Current Overload: 6 X rated current for 8 seconds

3. Humidity: 21 days at 40°C 95% RH

What are the test methods for verification of the important specification parameters?

Some filter specifications may be unfamiliar to you or may require slightly different measuring techniques than you have been using for other components. It is very important that supplier and customer use the same techniques for verification of electrical specifications, in order to assure an uninterrupted flow of quality components. Three specifications that must be clearly understood are hipot testing, leakage current, and insertion loss.

Understanding Hipot Testing

The term "hipot" is an acronym for "high potential." Hipot testing stresses the insulation and capacitors of a filter assembly by applying a voltage much higher than is usually experienced in normal operation. The purpose of hipot specifications is to assure safety and reliability.

All the major safety agencies require hipot testing for qualification of power line filters, and also require that each production unit undergo hipot testing to verify the integrity of the line-to-ground components and insulation. Every Corcom filter is hipot tested twice: once during assembly and again after completion. Applying hipot testing as an incoming inspection procedure requires a thorough understanding of its uses and limitations.

Hipot test voltages are applied from each line (both lines tied together for VDE) to ground and from lineto-line. The line-to-ground voltages are always higher. Test voltages may be specified as AC or DC, with the DC voltages at least 1.414 times the AC voltages.

For incoming inspection testing, TE recommends using the voltages given as "hipot rating" for each filter in the catalog. These DC voltages will always be equal to or higher than the peak AC voltage carried by any safety agency whose approval the filter carries. A DC hipot test is generally used.

A variety of hipot testers is available from a number of manufacturers. The tester chosen should have at

least a 500VA rating.

The following precautions must be observed to insure the safety of the operator and the validity of the test:

1. THESE VOLTAGES CAN BE LETHAL—use the utmost safety precautions to protect the test operator.

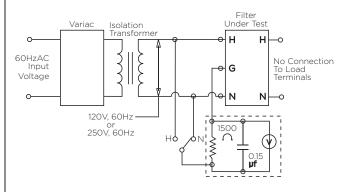
2. The possibility of high surge currents and oscillatory overvoltage during sudden application of the test voltage requires some method of limiting the applied current or increasing the voltage comparatively slowly.

3. For AC hipot tests, use an oscillograph to monitor the applied voltage. The current limiting circuit may react with the filter circuit to distort the 60Hz waveform. This may produce a peak voltage that exceeds the expected peak value of a sinusoidal voltage having the specified rms value. The peak voltage should be 1.414 times the rms value. Higher voltages may cause unwarranted failures due to the peak currents exceeding the trip setting.

4. For line-to-line hipot testing, remember that most filters have a bleeder resistor (typical value $100k\Omega$ to $10M\Omega$) to discharge the line-to-line capacitors. Be sure to set the trip point of the hipot tester above the current level that will flow through the bleeder resistor: 10mA is usually a safe value.

Understanding Leakage Current (Touch Current)

Leakage current (also referred to as "touch current") is an important specification of power line filters. There has always been an undeserved negative connotation to this term. Leakage current is not a function of the quality of components, but is a direct function of the line-to-ground capacitance value. The larger the capacitance, the lower the impedance to common mode currents, and the greater the common mode interference rejection. Hence, leakage current is a measure of filter performance—the higher, the better.


Why, then, do safety agencies specify a maximum allowable leakage current? This is done in order to limit the magnitude of expected ground return currents. The line-to ground capacitors provide a path for 50/60Hz current to flow to the chassis. As long as the equipment is grounded, these currents will flow in the ground circuit and present no hazard. However, in the unlikely but always possible circumstance where the ground circuit is faulty, the earth connection may be established by the body of a person. If this should occur, the maximum leakage current specification limits the ground return current to a safe value, typically 0.5 to 5.0mA. The limits set by safety agencies are based on end user equipment specifications, such as those given below.

Capacitive Current Limits

•		Limits for Class I
<u>Country</u>	Specification 0	Frounded Equipment
U.S.A.	UL 60950	3.5 mA, 120V, 60Hz
Canada	C22.2 No. 60950	3.5 mA, 120V, 60Hz
Europe	EN 60950	3.5 mA, 250V, 50Hz

Since the largest component of leakage current is usually from the power line filter, it is prudent to set a maximum leakage current limit for the filter itself. There has been a tendency in the industry to specify the minimum leakage current to comply with all agency requirements, usually 0.5mA. This specification decision should not be made arbitrarily, because often the size and cost of the filter can be reduced by allowing a greater maximum leakage current.

Figure 2: Leakage Current Measurement

Note that filter case must be floating, not grounded.

The circuit of Figure 2 illustrates the measurement technique for leakage current. The leakage limits apply to each side of the line independently. The test circuit provides the correct value by shunting the line-to-ground path that is not being measured by the millimeter impedance. This test is realistic, because power to a system is provided by a hot line and a neutral line, with the neutral basically at ground potential, thus providing no addition to the leakage.

Note that the leakage current is directly proportional to line voltage and frequency. Hence, it is unwise to specify an operation frequency greater than 60Hz (e.g., 400Hz) when leakage current limits must also be met.

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Downloaded From Oneyac.com

50M

Spectrum

Analvzer

Understanding Insertion Loss

What is insertion loss?

Insertion loss is the ratio (expressed in dB) of the signal voltage transferred from source to load without a filter, to the signal voltage transferred from source to load when the filter is inserted. As discussed above ("How Does a Power Line Interference Filter Work?"), insertion loss is not a measure of filter performance in the power line equipment environment.

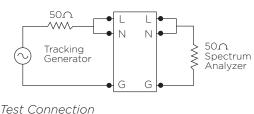
How is it measured?

If the terminating impedances are standardized, then it becomes meaningful to measure insertion loss, but the results so obtained can be applied only to an identical circuit. The most popular set-up is to make the source and load impedances each 50 Ohms, resistive.

The most important aspect of insertion loss measurement is consistency. It is particularly critical that supplier and user employ the same measurement techniques. The standard method of insertion loss measurement used by TE is as follows:

Insertion loss is easily measured with a spectrum analyzer or tuned receiver and a tracking generator. A zero dB reference is established without the filter. Then the filter is inserted, and the attenuation provided over the desired frequency range is recorded.

For a power line filter we are interested in signal attenuation in two different modes:

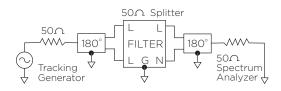

Common Mode (CM) – signals present on both sides of the line (hot and neutral) referenced to ground.

Differential Mode (DM) — signals present on one side of the line, referenced to the other.

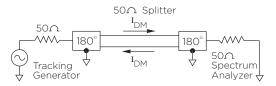
Accordingly, we may deal with CM insertion loss or DM insertion loss or both.

For the common mode, the line and neutral terminals are at the same potential (same magnitude and phase) and may be considered as being in parallel. CM current circulates between this pair and the common (ground) lead. CM insertion loss is measured by strapping the line and neutral terminals together on both sides of the filter (Figure 3). All CM insertion loss data published in the Corcom product catalog are measured this way.For differential mode, the signals on the line and neutral terminals are of the same magnitude but opposite phase. Current circulates between the line and neutral leads only. DM insertion loss is tested with 50 Ohm 180° power splitters as shown in Figure 4. All DM insertion loss data published in the Corcom product catalog are measured this way.

Figure 3: CM Insertion Loss Measurement


50 Tracking

Reference Connection


Generator

For differential mode, the signals on the line and neutral terminals are of the same magnitude but opposite phase. Current circulates between the line and neutral leads only. DM insertion loss is tested with 50 Ohm 180° power splitters as shown in Figure 4. All DM insertion loss data published in the Corcom product guide are measured this way.

Figure 4: DM Insertion Loss Measurement

Test Connection

Reference Connection

Note that all signal leads in Figures 3 and 4 are 50 Ohm coaxial cables.

1. Make your OdB reference measurement over the entire frequency range, not just at one or two points.

2. Make sure the filter case has a good RF ground connection.

3. Make sure the wiring to the load side of the filter is well separated from the wiring to the line side, to avoid RF coupling around the filter.

Understanding Insertion Loss (continued)

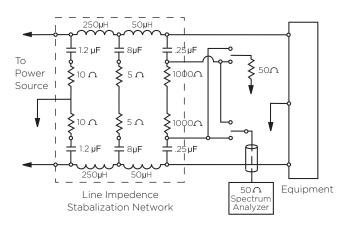
What can it be used for?

Standardized insertion loss data will not accurately predict a filter's performance in your equipment. However, it does serve as an important tool for verifying product consistency through incoming inspection.

The criterion for acceptance would be that the measured insertion loss must either meet or exceed the published data when tested in the standardized manner.

Accordingly, "typical" insertion loss data is not meaningful. The data to which you test should be minimum values. Most of the insertion loss data published by TE are guaranteed minimums, and as such can be tested for a positive indication of component consistency.

Appendix A - Conducted RFI Emissions Testing


Figure A2

Conducted RFI Emissions Testing

Since conducted emissions testing is usually done to insure that your equipment will comply with the limits of FCC Part 15 or EN55022, the test methods used should conform to the specifications of these two agencies. You will need the following equipment:

- 1. Shielded room, to allow measurement with minimal background interference.
- 2. Two 50 Ohm line impedance stabilization networks (LISNs), fixing the line-side impedances as mandated by FCC and CISPR.
- 3. Spectrum analyzer or tuned receiver, with CISPR quasipeak detector, covering the range from 10kHz to 30MHz.

Figure A1

The limits for FCC Part 15 and EN55022 are shown in Figure A2. To which one or more of these limits you will test is determined by whether your equipment is marketed in the United States (FCC) or Europe (EN55022) and into which class of operation it falls at each agency.

dBµV 80 79dBµV QUASI-PEAK CLASS A 73dBµV 66 dBµV AVERAGE CLASS A 60 56 dBµV QUASI-PEAK CLASS B 46 dBuV AVERAGE CLASS B 40 .1 .15 .5 5 10 30 1 Frequency in MHz

FCC Part 15 and EN55022

Technical Notes

5

Downloaded From Oneyac.com

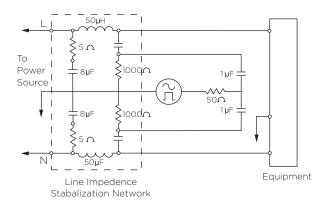
Appendix B - Conducted RFI Susceptibility Testing

Conducted RFI Susceptibility Testing

You can determine whether or not your equipment is susceptible to conducted RFI by subjecting it to predetermined levels of CM and DM interferences, and noting any malfunctions that occur. Such a test approximates real-world interference by standardized test conditions, according to previous experience. TE's recommendation for conducted susceptibility testing follows. The equipment required will be:

- 1. Shielded room, to eliminate spurious signals.
- 2. Two 50 Ohm line impedance stabilization networks (LISNs).
- 3. 50 Ohm signal generator, 1 Watt output.
- 4. 50 Ohm (or less) pulse generator, 0 to 300 Volts output.

CW signals should be injected common-mode, using peak levels of:


7 Volts from 10kHz to 150kHz 2 Volts from 150kHz to 500kHz 1 Volt from 500kHz to 30MHz

Pulse waveforms should be injected common mode and differential mode, pulse width 10 microseconds, rise time 1 microsecond, repetition rate 60Hz and varied in phase 0 to 360 degrees on the 60Hz power waveform. CM pulses should have peak levels of 2 volts; DM pulses should have peak levels of twice the rated line voltage.

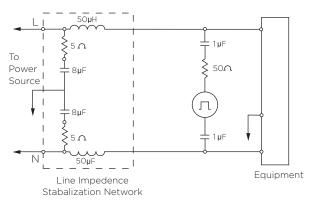

These levels are based on emission data gathered at TE and are considered typical of the levels encountered close to high noise sources.

Figure A3

A. Common Mode

B. Differential Mode

Appendix C - Health Care Equipment

UL 60601-1 Medical Electrical Equipment

The major safety standard for electro-medical devices is the IEC 60601 series, with the IEC 60601-1 standard covering all generic requirements. This standard is the basis of the various harmonized equivalents, the European equivalent is EN 60601, the UL equivalent is UL60601-1 and the CSA equivalent is C22.2 No. 60601-1

Underwriters Laboratories' medical electrical equipment specification is broken down into two basic categories.

A. Patient Care Equipment: "Equipment that is intended to be used on or with, or likely to be contacted by, a patient in a health care facility in the course of his treatment." This equipment can have a maximum leakage current of 100 μ A at 120VAC, 60Hz.

B. Non-patient Equipment: "Equipment primarily for use in a health care facility that is intended for use where contact with a patient is unlikely." This equipment can have a maximum leakage current of 300 μ A at 120VAC, 60Hz.

All filters starting with "H" and "M" are for medical equipment applications. They can be used in both patient care equipment and non-patient equipment. All other Corcom products with an "E" in the part number are suitable for use only in (120V) non-patient equipment.

Appendix D - Safety Agency File Numbers

Filters

UL Recognition

Guide FOKY2, File E48570 All except IK series

Guide ECBT2, File E106884 Non-filtered DB Series connectors only

Component Recognized by UL to Canadian Requirements

Guide ECBT8, File E106884 Non-filtered DB Series connectors only

Component Recognized by UL to Canadian Requirements

UL Guide FOKY2, File E48570 CSA Guide FOKY8, File E48570 AFC, FFA, FFD and DFC Series only

UL Listing

Guide FNFT, File E117533 Model 3FL3 ballast filter

CSA Certification Class 2221, File LR46870 All except IK series

All except IK series

VDE Approval

File 706400-4730 All except IK series

TUV Approval

File E2173035 DAF, DAS Series File E2173028.01 DCB, DCF Series File T72091763.01 Filtered DB Series File T72081913.01 Non-filtered DB Series (Connectors)

Signal Sentry Modular Jacks

UL Recognition Guide DUXR2, File E136872

CSA Certification

Class 4872, File LR96220

Power Entry Modules

UL Recognition

Guide FOKY2, File E48570 All filtered power entry modules

Guide AXUT2, File E61290

All non-filtered fuseless modules and 15SRB with suffix 1, 2, 8, P, S1 or S8

Guide AYVZ2, File E59193

All non-filtered fused modules

Component Recognized by UL to Canadian Requirements

Guide AXUT8, File E61290 Models: 15CE1, 15CS1, 15CBE1, 15CBS1 and 15CU Series

CSA Certification

Class 2221, File LR46870 Filtered modules

TUV Approval File T72051210.01

Non-filtered DC rated P Series with VDE rating only

VDE Approval

File 706400-4730 All filtered modules except J Series

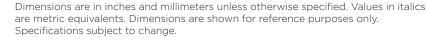
File 706400-1550 All non-filtered modules except J Series

Accessories

UL Recognition

Guide ECBT2, File E106884 MA100

Guide XUHT2 File E106794 TS Series



CSA Certification

Class 6233, File LR88865 MA100

Technical Notes

7

Engineering Notes

	-				_											-				-											
	+																			-						-		+			
		_			_				_			_	_			_				_		_				_		_			
	-	_							 _			_	_			_	$\left \right $	_	_	_		_		_		_		-	_		
	+			+	_				 				-												+ +	-	+ +	-			
	+	-																		-											
		_			_				_			_								_						_		_			
	_				_				 _		_	_				_			_	_		_				_		_	_		
	+			+					 				 				$\left \right $		_			 _				-		-			
	+								 -			-	-							-						-		-			
				$\left \right $					_		+	_	_			_									++	_	++	_	++		$\left - \right $
	+	_		$\left \right $	_			$\left \right $	_	$\left \cdot \right $	+	_				_	$\left \cdot \right $					_	$\left \cdot \right $		+	+	+	+	++	-	\vdash
\vdash	+	+-		+			+				+		-				$\left \cdot \right $						\vdash	++-	++		++	+	++	+	\vdash
\vdash	+	1														-				-					+	-	+	+	++		
		_		\square	_				_				_			_				_					\parallel	_	\parallel		+		- -
	+			+	_	\square		$\left \cdot \right $	_	$\left \cdot \right $	+	-			\square	_	$\left \cdot \right $		_		$ \cdot $	_	\vdash		++	+	++	+	++	-	
	+	-			-				-			-	-		_	-			-	-		_				-		-			
	+				_																										
													_							_											
	_	_			_				_			_	_			_		_	_	_		_				_		_			
	+	-			-				-			-	-		_	-			-	-		_				-		-			
					_				-			-													+ +	-	+ +	-			
	_	_							_							_				_		_						_			
	-	_							 _			_	_	_		_	$\left \right $	_	_	_		_				_		_			
	+			+	_				 				-												+ +	-	+ +	-			
	+				_																										
\square				\square				\square			\square						\square						\square		ЦŢ		ЦŢ		ļŢ		\square
	_	_		\square	_				_			_	_			_	$\left \cdot \right $			_				++	++	_	++	_	++		\vdash
	+		$\left \cdot \right $	+	_	\vdash	+	$\left \cdot \right $		\vdash	+		-				$\left \cdot \right $		+		$\left \cdot \right $	_	\vdash		+	+	+	+	++	-	\vdash
\vdash	+	-		+	-				-							-				-					+		+	+	++		
		_		\square	_				_				_			_				_					\square	_	\square		\square		- -
	+	_		$\left \right $	_			$\left \right $	_	$ \cdot $	+	_				_	$\left \cdot \right $					_	$\left \cdot \right $		++	+	++	+	++	$ \rightarrow $	$\left - \right $
$\left \right $	+			+				$\left \cdot \right $	-	$\left \cdot \right $	+		-			-	$\left \cdot \right $				$\left \cdot \right $	_	\vdash		+	+	+	+	+	+	\vdash
	+	-							-							-	\vdash			-					++	+	++	+	++	+	
		_		\square	_				_				_			_				_					\square	_	\square		\square		- -
$\left \right $	+	_		$\left \right $	_			$\left \right $	_	$ \cdot $	+	_				_	$\left \cdot \right $					_	$ \cdot $		++	+	++	+	++	$ \rightarrow $	
\vdash	+	-			-	\vdash	+		 -	\vdash						-	$\left \cdot \right $			-	\vdash		\vdash	++-	+	+	+	+	+	+	\vdash
									_							_				_						_		_			\square
$\left \right $	_	_		+	_				_		+	_	_		\square	_	$\left \cdot \right $			_			\square		++	_	++	_	++		$\left - \right $
$\left \right $	+		$\left \cdot \right $	+	_	\vdash		$\left \cdot \right $		\vdash	+		-				$\left \cdot \right $		+		$\left \cdot \right $	_	\vdash		+	+	+	+	++	-	\vdash
\vdash	+	-		+	-	\vdash			-						\vdash	-	$\left \cdot \right $			-			\square		+	-	+	+	++		

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
1CFE1	6609113-1	130	1EGG8C-2	6609115-9	166
1CFS1	6609113-2	130	1EGS1-1	6609117-1	166
1CHE1	6609114-1	130	1EGS1-2	6609117-2	166
1CHS1	6609114-2	130	1EHG1-2	6609116-1	166
1CUFE1	2-1609113-2	134	1EHG8-2	1-1609117-4	166
1CUFF1	2-1609114-2	134	1EHGS1-2	1609988-1	166
1CUFS1	2-1609113-7	134	1EJH1	6609008-1	154
1EAH1	6609002-1	149	1EJH2	6609008-6	154
1EAS1	6609005-6	149	1EJH8	2-6609008-8	154
1EB1	6609020-1	15	1EJHP	6609008-7	154
1EB3	6609020-2	15	1EJHS1	1-6609008-6	154
1EBF1	6609018-1	138	1EJHS8	2-6609008-2	154
1EBF4	6609018-2	138	1EJM1	6609985-1	154
1EBH1	6609003-1	149	1EJM8	1-6609985-3	154
1EBP	6609063-1	21	1EJMS1	6609985-7	154
1EBS1	1-6609005-1	149	1EJMS8	1-6609985-8	154
1EC1	6609017-1	141	1EJS1	6609006-4	154
1EC2	6609017-2	141	1EJS8	3-6609006-7	154
1EC4	6609017-3	141	1EJT1	2-6609006-1	163
1EC8	6609017-4	141	1EJT8	2-6609006-6	163
1ED1	6609016-1	144	1EK1	6609027-1	49
1ED2	6609016-2	144	1EK3	6609027-2	49
1ED4	6609016-3	144	1EOP	6609064-1	21
1ED8	6609016-4	144	1ER1	6609031-1	61
1EDK1	6609033-1	18	1ER3	6609031-2	61
1EDK3	6609033-2	18	1EZP	6609062-1	92
1EDP	6609065-1	21	1IK1C	1-6609085-1	46
1EEA1	6609000-1	149	1VB1	6609021-1	15
1EEA2	6609000-2	149	1VB3	6609021-2	15
1EEAP	6609000-3	149	1VDK1	6609034-1	18
1EEB1	6609001-1	149	1VDK3	6609034-2	18
1EEB2	6609001-2	149	1VK1	6609028-1	49
1EEBP	6609001-3	149	1VK3	6609028-2	49
1EEJ1	6609006-1	154	1VR1	6609032-1	61
1EEJ2	6609006-2	154	1VR3	6609032-2	61
1EEJ8	3-6609006-2	154	2EB1	6609020-3	15
1EEJP	6609006-3	154	2EB3	6609020-4	15
1EF1F	6609015-1	160	2EDL1S	6609122-1	176
1EF2F	6609015-2	160	2EDL1SC	6609122-2	176
1EF4	6609014-3	160	2EDL1SCM	6609122-3	176
1EF8	6609014-4	160	2EDL1SM	6609122-4	176
1EGG1-1	6609115-1	166	2EDL4	6609122-5	176
1EGG1-2	6609115-3	166	2EDL4C	6609122-7	176
1EGG1C-1	6609115-4	166	2EDL4CM	6609122-9	176
1EGG1C-2	6609115-5	166	2EDL4M	1-6609122-0	176
1EGG8-1	6609115-6	166	2EK1	6609027-3	49
1EGG8-2	6609115-7	166	2EK3	6609027-4	49
1EGG8C-1	6609115-8	166	2ER1	1609031-3	61

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
2ER3	6609031-4	61	3EEJ2	6609006-6	154
2EYP	6609061-2	92	3EEJ8	3-6609006-3	154
2EZP	6609062-2	92	3EEJP	6609006-7	154
2RJ11-6L-B	3-6609208-6	248	3EF1F	6609015-3	160
2VB1	6609021-3	15	3EF2F	6609015-4	160
2VB3	6609021-4	15	3EF4	6609014-7	160
2VK1	6609028-3	49	3EF8	6609014-8	160
2VK3	6609028-4	49	3EGG1-1	1-6609115-1	166
2VR1	6609032-3	61	3EGG1-2	1-6609115-2	166
2VR3	6609032-4	61	3EGG1C-1	1-6609115-3	166
3AYO1	6609066-1	111	3EGG1C-2	1-6609115-5	166
3CFE1	6609113-5	130	3EGG8-1	1-6609115-7	166
3CFS1	6609113-6	130	3EGG8-2	1-6609115-8	166
3CHE1	6609114-5	130	3EGG8C-1	1-6609115-9	166
3CHS1	6609114-6	130	3EGG8C-2	2-6609115-0	166
3CUFE1	2-1609113-3	134	3EGS1-1	6609117-3	166
3CUFF1	2-1609114-3	134	3EGS1-2	6609117-4	166
3CUFS1	2-1609113-8	134	3EH1	6609012-1	169
3DAF1	6609075-4	212	3EH3	6609012-2	169
3DAFP	6609075-3	212	3EHG1-2	6609116-2	166
3DAS1	1-6609075-7	212	3EHG8-2	1-1609117-5	166
3EAH1	6609002-2	149	3EHGS1-2	1609988-2	166
3EAS1	6609005-7	149	3EHQ1	6609054-1	37
3EB1	6609020-5	15	3EHQ3	6609054-2	37
3EB3	6609020-6	15	3EHQ8	6609054-3	37
3EBF1	6609018-3	138	3EHQ8M	6609054-4	37
3EBF4	6609018-4	138	3EHQ8M	6609054-4	37
3EBH1	6609003-2	149	3EHT1	6609053-1	40
3EBP	6609063-2	21	3EHT3	6609053-2	40
3EBS1	1-6609005-2	149	3EHT7	6609053-3	40
3EC1	6609017-5	141	3EHT7M	6609053-4	40
3EC2	6609017-6	141	3EHZ1	6609055-1	43
3EC4	6609017-7	141	3EJH1	6609008-2	154
3EC8	6609017-8	141	3EJH2	6609008-8	154
3ED1	6609016-5	144	3EJH8	2-6609008-9	154
3ED2	6609016-6	144	3EJHP	6609008-9	154
3ED4	6609016-7	144	3EJHS1	1-6609008-7	154
3ED8	6609016-8	144	3EJHS8	2-6609008-3	154
3EDK1	6609033-3	18	3EJM1	6609985-2	154
3EDK3	6609033-4	18	3EJM8	1-6609985-4	154
3EDP	6609065-2	21	3EJMS1	6609985-8	154
3EEA1	6609000-4	149	3EJMS8	1-6609985-9	154
3EEA2	6609000-5	149	3EJS1	6609006-8	154
3EEAP	6609000-6	149	3EJS8	3-6609006-8	154
3EEB1	6609001-4	149	3EJT1	2-6609006-2	163
3EEB2	6609001-5	149	3EJT8	2-6609006-7	163
3EEBP	6609001-6	149	3EK1	6609027-5	49
3EEJ1	6609006-5	154	3EK3	6609027-6	49

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
3EK7	6609027-7	49	3VK3	6609028-6	49
3EK7M	6609027-8	49	3VK7	6609028-7	49
3EMC1	1-6609037-1	24	3VK7M	6609028-8	49
3EMC3	1-6609037-8	24	3VQ1	6609049-1	58
3EOP	6609064-2	21	3VQ3	6609049-2	58
3EP1	6609037-1	27	3VQ8	6609049-3	58
3EP3	6609037-2	27	3VQ8M	6609049-4	58
3EP7	6609037-3	27	3VR1	6609032-5	61
3EP7M	6609037-4	27	3VR3	6609032-6	61
3EQ1	6609048-1	58	3VR7	6609032-7	61
3EQ3	6609048-2	58	3VR7M	6609032-8	61
3EQ8	6609048-3	58	3VS1	6609042-1	68
3EQ8M	6609048-4	58	3VSK1	6609036-1	75
3ER1	6609031-5	61	3VSK3	6609036-2	75
3ER3	6609031-6	61	3VSK7	6609036-3	75
3ER7	6609031-7	61	3VSK7M	6609036-4	75
3ER7M	6609031-8	61	3VV1	6609043-1	86
3ERK1	1-1609036-7	65	3VW1	6609044-1	86
3ESK1	6609035-1	75	3VW1	6609044-1	86
3ESK3	6609035-2	75	4EDL1S	1-6609122-1	176
3ESK7	6609035-3	75	4EDL1SC	1-6609122-2	176
3ESK7M	6609035-4	75	4EDL1SCM	1-6609122-3	176
3ET1	6609046-1	80	4EDL1SM	1-6609122-4	176
3ET3	6609046-2	80	4EDL4	1-6609122-5	176
3ET7	6609046-3	80	4EDL4C	1-6609122-6	176
3EX1	6609059-1	92	4EDL4CM	1-6609122-7	176
3EXLA2S	6609119-1	180	4EDL4M	1-6609122-8	176
3EXM1S	6609131-7	184	4EXP	6609060-4	92
3EXM4	6609131-8	184	4EYP	6609061-4	92
3EXM4S	6609131-9	184	4RJ11-6L-B	6609213-1	248
3EXP	6609060-3	92	5EB1	6609020-7	15
3EYP	6609061-3	92	5EB3	6609020-8	15
3EZ1	6609059-2	92	5EFLA2S	6609118-1	180
3EZLA2S	6609120-1	180	5EFM1	2-6609129-1	184
3EZM1S	6609132-8	184	5EFM1C	2-6609129-2	184
3EZM4	6609132-9	184	5EFM1S	2-6609129-3	184
3EZM4S	1-6609132-0	184	5EFM1SC	2-6609129-5	184
3EZP	6609062-3	92	5EFM4	2-6609129-6	184
3FL3	2-6609092-3	33	5EFM4C	2-6609129-7	184
3MV1	6609056-1	54	5EFM4S	2-6609129-8	184
3VAQ3	6609057-1	12	5EFM4SC	3-6609129-0	184
3VAQ8F	6609058-1	12	5EHM1	1-6609130-1	184
3VAQ8FS	6609058-2	12	5EHM1S	1-6609130-3	184
3VB1	6609021-5	15	5EHM4	1-6609130-4	184
3VB3	6609021-6	15	5EHM4S	1-6609130-5	184
3VDK1	6609034-3	18	5EK1	6609027-9	49
3VDK3	6609034-4	18	5EK3	1-6609027-0	49
3VK1	6609028-5	49	5EK7	1-6609027-1	49

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
5EK7M	1-6609027-2	49	6EDL1SM	2-6609122-2	176
5ER1	6609031-9	61	6EDL4	2-6609122-3	176
5ER3	1-6609031-0	61	6EDL4C	2-6609122-4	176
5ER7	1-6609031-1 61 6EDL4CM 2-6609122-5		2-6609122-5	176	
5ER7M	1-6609031-2	61	6EDL4M	2-6609122-6	176
5VB1	6609021-7	15	6EDP	6609065-3	21
5VB3	6609021-8	15	6EEA1	6609000-7	149
5VK1	6609028-9	49	6EEA2	6609000-8	149
5VK3	1-6609028-0	49	6EEAP	6609000-9	149
5VK7	1-6609028-1	49	6EEB1	6609001-7	149
5VK7M	1-6609028-2	49	6EEB2	6609001-8	149
5VR1	6609032-9	61	6EEBP	6609001-9	149
5VR3	1-6609032-0	61	6EEJ1	6609006-9	154
5VR7	1-6609032-1	61	6EEJ2	1-6609006-0	154
5VR7M	1-6609032-2	61	6EEJ8	3-6609006-4	154
6AYO1	6609066-2	111	6EEJP	1-6609006-1	154
6CFE1	6609113-9	130	6EF1F	6609015-5	160
6CFS1	1-6609113-0	130	6EF2F	6609015-6	160
6CHE1	6609114-9	130	6EF4	1-6609014-1	160
6CHS1	1-6609114-0	130	6EF8	1-6609014-2	160
6CUFE1	2-1609113-4	134	6EG1	6609050-1	35
6CUFF1	2-1609114-4	134	6EGG1-1	2-6609115-2	166
6CUFS1	2-1609113-9	134	6EGG1-2	2-6609115-3	166
6DAF1	6609075-6	212	6EGG1C-1	2-6609115-4	166
6DAFP	6609075-5	212	6EGG1C-2	2-6609115-6	166
6DAS1	2-6609075-1	212	6EGG8-1	2-6609115-8	166
6EAH1	6609002-3	149	6EGG8-2	2-6609115-9	166
6EAS1	6609005-8	149	6EGG8C-1	3-6609115-0	166
6EBF1	6609018-5	138	6EGG8C-2	3-6609115-1	166
6EBF4	6609018-6	138	6EGS1-1	6609117-5	166
6EBH1	6609003-3	149	6EGS1-2	6609117-6	166
6EBS1	1-6609005-3	149	<u>6EH1</u>	6609012-3	169
6EC1	6609017-9	141	6EH3	6609012-4	169
6EC2	1-6609017-0	141	6EH4	6609013-1	169
6EC4	1-6609017-1	141	6EH5	6609013-4	169
6EC8	1-6609017-2	141	6EH8	6609013-3	169
6ED1	6609016-9	144	<u>6EH9</u>	6609013-2	169
6ED1C	1-6609016-1	144	6EHG1-2	6609116-3	166
6ED2	1-6609016-0	144	6EHG8-2	1-1609117-6	166
6ED4	1-6609016-2	144	6EHGS1-2	1609988-3	166
6ED4C	1-6609016-4	144	6EHL1S	6609123-1	176
6ED8	1-6609016-3	144	6EHL1SC	6609123-2	176
6ED8C	1-6609016-5	144	6EHL1SCM	6609123-3	176
6EDK1	6609033-5	18	6EHL1SM	6609123-4	176
6EDK3	6609033-6	18	6EHL4	6609123-5	176
6EDL1S	1-6609122-9	176	6EHL4C	6609123-6	176
6EDL1SC	2-6609122-0	176	6EHL4CM	6609123-7	176
6EDL1SCM	2-6609122-1	176	6EHL4M	6609123-8	176

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
6EHQ1	6609054-5	37	6ESRM-P	1609078-1	201
6EHQ3	6609054-6	37	6ET1	6609046-4	80
6EHQ8	6609054-7	37	6ET3	6609046-5	80
6EHT1	6609053-5	40	6ET7	6609046-6	80
6EHT3	6609053-6	40	6EU1	6609045-2	84
6EHT7	6609053-7	40	6EUP	6609045-1	84
6EHT7M	6609053-8	40	6EXP	6609060-6	92
6EJH1	6609008-3	154	6FC10	6609069-1	30
6EJH2	1-6609008-0	154	6FCD10	6609070-1	119
6EJH8	3-6609008-0	154	6HJ4-2	6609126-1	172
6EJHP	1-6609008-1	154	6HJ4-4	6609126-2	172
6EJHS1	1-6609008-8	154	6IK1	1609973-4	46
6EJHS8	2-6609008-4	154	6J4	6609125-1	172
6EJM1	6609985-3	154	6J4-2	6609125-2	172
6EJM8	1-6609985-5	154	6MV1	6609056-2	54
6EJMS1	6609985-9	154	6RJ11-6L-B	6609213-2	248
6EJMS8	2-6609985-0	154	6VAQ3	6609057-3	12
6EJS1	1-6609006-2	154	6VAQ8F	6609058-3	12
6EJS8	3-6609006-9	154	6VAQ8FS	6609058-4	12
6EJT1	2-6609006-3	163	6VDK1	6609034-5	18
6EJT8	2-6609006-8	163	6VDK3	6609034-6	18
6EL1S	6609121-1	176	6VG1	6609051-1	35
6EL1SC	6609121-2	176	6VJ1	6609124-1	172
6EL1SCM	6609121-3	176	6VJ1-2	6609124-2	172
6EL1SM	6609121-4	176	6VM1	2-6609128-6	184
6EL4	6609121-5	176	6VM1C	2-6609128-7	184
6EL4C	6609121-6	176	6VM1S	2-6609128-8	184
6EL4CM	6609121-7	176	6VM1SC	2-6609128-9	184
6EL4M	6609121-8	176	6VM2	3-6609128-0	184
6EMC1	1-6609037-2	24	6VM2S	3-6609128-1	184
6EMC3	1-6609037-9	24	6VM4	3-6609128-3	184
6EOP	6609064-3	21	6VM4C	3-6609128-4	184
6EP1	6609037-5	27	6VM4S	3-6609128-5	184
6EP3	6609037-6	27	6VM4SC	3-6609128-7	184
6EQ1	6609048-5	58	6VN1	6609052-1	56
6EQ3	6609048-6	58	6VS1	6609042-2	68
6EQ8	6609048-7	58	6VSB1	1-1609034-2	71
6EQ8M	6609048-8	58	6VSK1	6609036-5	75
6ERK1	1-1609036-8	65	6VSK3	6609036-6	75
6ESB1	1-1609034-1	71	6VSK7	6609036-7	75
6ESK1	6609035-5	75	6VSK7M	6609036-8	75
6ESK3	6609035-6	75	6VV1	6609043-2	86
6ESK7	6609035-7	75	7BCF10	1609989-1	113
6ESK7M	6609035-8	75			27
6ESRF-3	1609133-1	201	7EP3 2-6609037-5		27
6ESRFC3	1609133-2	201	-		236
6ESRM-3	1609133-3	201	10AFC6-B	1609990-2	236
6ESRMC2	1609133-4	201	10AYO1	6609066-3	111

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
10CBE1	1609112-1	130	10EH1	6609012-5	169
10CBS1	1609112-2	130	10EH3	6609012-6	169
10CE1	1609112-3	130	10EH4	6609013-5	169
10CFE1	1-6609113-3	3-3 130 10EH4C 6609013-6		6609013-6	169
10CFS1	1-6609113-4	130	10EHG1-2	6609116-4	166
10CHE1	1-6609114-3	130	10EHG8-2	6609116-5	166
10CHS1	1-6609114-4	130	10EHGS1-2	1609116-6	166
10CS1	1609112-8	130	10EHT1	6609053-9	40
10CUFE1	2-1609113-5	134	10EHT3	1-6609053-0	40
10CUFF1	2-1609114-5		10EJH1	6609008-4	154
10CUFS1	2-1609114-0	134	10EJH2	1-6609008-2	154
10DAF1	6609075-8	212	10EJH8	3-6609008-1	154
10DAFP	6609075-7	212	10EJHP	1-6609008-3	154
10DAS1	2-6609075-5	212	10EJHS1	1-6609008-9	154
10DFC6-C	1609992-1	239	10EJHS8	2-6609008-5	154
10EAH1	6609002-5	149	10EJM1	6609985-4	154
10EAS1	6609005-9	149	10EJM8	1-6609985-6	154
10EB1	6609020-9	15	10EJMS1	1-6609985-0	154
10EB3	1-6609020-0	15	10EJMS8	2-6609985-1	154
10EBF1	6609018-7	138	10EJS1	1-6609006-6	154
10EBF4	6609018-8	138	10EJS8	4-6609006-0	154
10EBH1	6609003-4	149	10EJT1	2-6609006-4	163
10EBS1	1-6609005-4	149	10EJT8	2-6609006-9	163
10EC1	1-1609017-3	141	10EK1	1-6609027-3	49
10ED1	1-6609016-6	144	10EK3	1-6609027-4	49
10ED1C	1-6609016-7	144	10EK7	1-6609027-5	49
10EDK1	6609033-7	18	10EK7M	1-6609027-6	49
10EDK3	6609033-8	18	10EMC1	1-6609037-3	24
10EDP	6609065-4	21	10EMC3	2-6609037-0	24
10EEA1	1-6609000-0	149	10EMC6	2-6609037-1	24
10EEA2	1-6609000-1	149	10EOP	6609064-4	21
10EEAP	1-6609000-2	149	10EP1	6609037-7	27
10EEB1	1-6609001-0	149	10EP3	6609037-8	27
10EEB2	1-6609001-1	149	10ER1	1-6609031-3	61
10EEBP	1-6609001-2	149	10ER3	1-6609031-4	61
10EEJ1	1-6609006-3	154	10ER7	1-6609031-5	61
10EEJ2	1-6609006-4	154	10ER7M	1-6609031-6	61
10EEJ8	3-6609006-5	154	10ERK1	2-1609089-5	65
10EEJP	1-6609006-5	154	10ESB1	1-1609034-3	71
10EF1F	6609015-7	160	10ESB6	1-1609034-4	71
10EF1FC	6609015-8	160	10ESK1	6609035-9	75
10EG1	6609050-2	35	10ESK3	1-6609035-0	75
10EGG1-1	3-1609115-4	166	10ESK7	1-6609035-1	75
10EGG1-2	3-1609115-3	166	10ESK7M	1-6609035-2	75
10EGG8-1	3-1609115-5	166	10ET1	6609046-7	80
10EGG8-2	3-1609115-6	166	10ET3	6609046-8	80
10EGS1-1	1609117-7	166	10FFA6-BA	1609991-1	230
10EGS1-2	1609117-8	166	10FFA6-CE	1609991-9	230

278

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
10FFA6-GJ	1-1609991-8	230	15CUE1	2-1609114-7	134
10FFD6-CA	1609993-1	233	15CUFE1	2-1609113-6	134
10FFD6-HE	1609993-7	233	15CUFF1	2-1609114-6	134
10MV1	6609056-3	54	15CUFS1	2-1609114-1	134
10VB1	6609021-9	15	15CUS1	2-1609114-9	134
10VB3	1-6609021-0	15	15DAF1	1-6609075-0	212
10VB6	1-6609021-2	15	15DAFP	6609075-9	212
10VDK1	6609034-7	18	15DAS1	2-6609075-9	212
10VDK3	6609034-8	18	15DCB10	4-6609074-1	218
10VG1	6609051-2	35	15DCB10B	4-6609074-3	218
10VK1	1-6609028-3	49	15DCB10BF	4-6609074-4	218
10VK3	1-6609028-4	49	15DCB10F	4-6609074-2	218
10VK6	1-6609028-8	49	15DCB6	2-6609074-1	218
10VK7	1-6609028-5	49	15DCB6B	2-6609074-3	218
10VK7M	1-6609028-6	49	15DCB6BF	2-6609074-4	218
10VN1	6609052-2	56	15DCB6F	2-6609074-2	218
10VR1	1-6609032-3	61	15DCF10	1-6609074-1	218
10VR3	1-6609032-4	61	15DCF10B	1-6609074-2	218
10VR6	1-6609032-5	61	15DCF6	6609074-1	218
10VR7	1-6609032-6	61	15DCF6B	6609074-2	218
10VR7M	1-6609032-7	61	15ED1	1-6609016-8	144
10VS1	6609042-3	68	15ED8	1-6609016-9	144
10VSB1	1-1609034-5	71	15EEJ1	1-6609006-7	154
10VSB6	1-1609034-6	71	15EEJ2	1-6609006-9	154
10VSK1	6609036-9	75	15EEJ8	3-6609006-6	154
10VSK3	1-6609036-0	75	15EEJP	2-6609006-0	154
10VSK7	1-6609036-1	75	15EF1F	6609015-9	160
10VSK7M	1-6609036-2	75	15EH4	6609013-7	169
10VT1	6609047-1	80	15EHT1	1-6609053-1	40
10VT3	6609047-2	80	15EHT6	1-6609053-2	40
10VV1	6609043-3	86	15EJH1	6609008-5	154
10VW1	6609044-3	86	15EJH2	1-6609008-4	154
12EP1	2-6609037-6	27	15EJH8	3-6609008-2	154
12EP3	2-6609037-7	27	15EJHP	1-6609008-5	154
12FC10	6609069-2	30	15EJHS1	2-6609008-0	154
12FC10B	1609976-3	30	15EJHS8	2-6609008-6	154
12FCD10	6609070-2	119	15EJM1	6609985-5	154
12FCD10B	6609974-4	119	15EJM8	1-6609985-7	154
15CBE1	1-1609112-4	130	15EJMS1	1-6609985-1	154
15CBS1	1-1609112-3	130	15EJMS8	2-6609985-2	154
15CE1	1-1609112-2	130	15EJS1	1-6609006-8	154
15CS1	1-1609112-1	130	15EJS8	4-6609006-1	154
15CU10BS1	1-1609112-7	134	15EJT1	2-6609006-5	163
15CU10S1	1-1609112-6	134	15EJT8	3-6609006-0	163
15CU15BS1	1-1609112-9	134	15EMC1	1-6609037-4	24
15CU15S1	1-1609112-8	134	15EMC3	2-6609037-2	24
15CUBE1	2-1609114-8	134	15EMC6	2-6609037-3	24
15CUBS1	1-1609112-5	134	15ERK1	2-1609089-6	65

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
15ET1	6609046-9	80	15SRBS8-S	3-6609987-0	204
15ET6	1-6609046-0	80	15SRBS8-T	3-6609987-1	204
15SRB1	6609987-9	204	15SRBS8-W	3-6609987-2	204
15SRB1-Q	6609987-1	204	15SRBS8-X	3-6609987-3	204
15SRB1-R	6609987-2	204	15SRBX8	5-1609987-6	204
15SRB1-S	6609987-3	204	15SRBX8-Q	5-1609987-7	204
15SRB1-T	6609987-4	204	15SRBX8-R	5-1609987-8	204
15SRB1-W	6609987-5	204	15SRBX8-S	5-1609987-9	204
15SRB1-X	6609987-6	204	15SRBX8-T	6-1609987-0	204
15SRB1-Y	6609987-7	204	15SRBX8-W	6-1609987-1	204
15SRB1-Z	6609987-8	204	15SRBX8-X	6-1609987-2	204
15SRB2	5-6609987-4	204	15SRBY8	6-1609987-5	204
15SRB2-Q	4-6609987-6	204	15SRBY8-Q	6-1609987-6	204
15SRB2-R	4-6609987-7	204	15SRBY8-R	6-1609987-7	204
15SRB2-S	4-6609987-8	204	15SRBY8-S	6-1609987-8	204
15SRB2-T	4-6609987-9	204	15SRBY8-T	6-1609987-9	204
15SRB2-W	5-6609987-0	204	15SRBY8-W	7-1609987-0	204
15SRB2-X	5-6609987-1	204	15SRBY8-X	7-1609987-1	204
15SRB2-Y	5-6609987-2	204	15VT1	6609047-3	80
15SRB2-Z	5-6609987-3	204	15VT6	6609047-4	80
15SRB8	1-6609987-8	204	16AFC6-B	1609990-3	236
15SRB8-Q	1-6609987-0	204	16AFC6-C	1609990-4	236
15SRB8-R	1-6609987-1	204	16AFC6-G	1609990-5	236
15SRB8-S	1-6609987-2	204	16AFC6-H	1609990-6	236
15SRB8-T	1-6609987-3	204	16AYA10	6609977-1	104
15SRB8-W	1-6609987-4	204	16AYA6	6609068-1	104
15SRB8-X	1-6609987-5	204	16AYA6A	6609068-2	104
15SRBP	4-6609987-5	204	16AYC10B	6609067-1	108
15SRBP-Q	3-6609987-7	204	16BCF10	1609989-2	113
15SRBP-R	3-6609987-8	204	16DFC6-C	1609992-2	239
15SRBP-S	3-6609987-9	204	16DFC6-G	1609992-3	239
15SRBP-T	4-6609987-0	204	16DFC6-H	1609992-4	239
15SRBP-W	4-6609987-1	204	16DFC6-N	1609992-5	239
15SRBP-X	4-6609987-2	204	16FC10	6609069-3	30
15SRBP-Y	4-6609987-3	204	16FC10B	1609976-1	30
15SRBP-Z	4-6609987-4	204	16FCD10	6609070-3	119
15SRBS1	2-6609987-7	204	16FCD10B	6609974-5	119
15SRBS1-Q	1-6609987-9	204	16FFA6-CA	1609991-2	230
15SRBS1-R	2-6609987-0	204	16FFA6-DG	1-1609991-1	230
15SRBS1-S	2-6609987-1	204	16FFA6-HN	1-1609991-9	230
15SRBS1-T	2-6609987-2	204	16FFD6-CA	1609993-2	233
15SRBS1-W	2-6609987-3	204	16FFD6-HE	1609993-8	233
15SRBS1-X	2-6609987-4	204	161K10	6609973-1	46
15SRBS1-Y	2-6609987-5	204	16WGA1	2-6609089-4	89
15SRBS1-Z	2-6609987-6	204	16WGA3	7-6609089-6	89
15SRBS8	3-6609987-6	204	16WGA7	3-1609090-8	89
15SRBS8-Q	2-6609987-8	204	16WGB1	4-6609089-0	89
15SRBS8-R	2-6609987-9	204	16WGB3	7-6609089-7	89

280

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
16WGB7	3-1609090-9	89	20VK6	1-6609028-9	49
16WGC1	4-6609089-1	89	20VP1	6609038-1	27
16WGC3	7-6609089-8	89	20VP6	6609038-2	27
16WGC7	4-1609090-0	89	20VQ1	6609049-5	58
16WGD1	4-6609089-6	89	20VR1	1-6609032-8	61
16WGD3	7-6609089-9	89	20VR6	1-6609032-9	61
16WGD7	4-1609090-1	89	20VS1	6609042-4	68
16WGE1	4-6609089-7	89	20VS6	6609042-5	68
16WGE3	8-6609089-0	89	20VSB1	1-1609034-9	71
16WGE7	4-1609090-2	89	20VSB6	2-1609034-0	71
16WGF1	4-6609089-8	89	20VSK6	1-6609036-3	75
16WGF3	8-6609089-1	89	20VT1	6609047-5	80
16WGF7	4-1609090-3	89	20VT6	6609047-6	80
20AFC6-B	1609990-7	236	20VV1	6609043-4	86
20AYO1	6609066-4	111	20VV6	6609043-5	86
20AYP6C	6609072-1	99	20VW1	6609044-4	86
20AYT6C	6609073-1	99	20VW6	6609044-5	86
20EB1	1-6609020-1	15	25AYA6	6609068-3	104
20EDK1	6609033-9	18	25AYA6A	6609977-2	104
20EEJ1	6609007-3	154	25AYC10B	6609068-4	108
20EEJ8	6609007-6	154	25FC10	6609069-4	30
20EJH1	6609009-4	154	25FC10B	6609976-2	30
20EJH8	6609009-5	154	25FCD10	6609070-4	119
20EJS1	6609007-5	154	25FCD10B	6609974-9	119
20EJS8	6609007-7	154	30AYP6C	6609072-2	99
20EJT1	6609007-8	163	30AYT6C	6609073-2	99
20EJT8	3-6609006-1	163	30BCF10	1609989-3	113
20EK1	1-6609027-7	49	30DCB10	4-6609074-5	218
20EMC1	1-6609037-5	24	30DCB10B	4-6609074-7	218
20EMC6	1-6609037-7	24	30DCB10BF	4-6609074-8	218
20EP1	6609037-9	27	30DCB10F	4-6609074-6	218
20EP6	1-6609037-0	27	30DCB6	2-6609074-5	218
20EQ1	6609048-9	58	30DCB6B	2-6609074-7	218
20ER1	1-6609031-7	61	30DCB6BF	2-6609074-8	218
20ERK1	2-1609089-7	65	30DCB6F	2-6609074-6	218
20ESB1	1-1609034-7	71	30DCF10	1-6609074-3	218
20ESB6	1-1609034-8	71	30DCF10B	1-6609074-4	218
20ESK6	1-6609035-3	75	30DCF6	6609074-3	218
20ESRM-3	4-1609134-7	201	30DCF6B	6609074-4	218
20ESRMC2	4-1609134-8	201	30EMC6	1-6609037-6	24
20ET1	1-6609046-1	80	30ESB6	2-1609034-1	71
20ET6	1-6609046-2	80	30ESK6	1-6609035-4	75
20MV1	6609056-4	54	30ESK6C	1-6609035-5	75
20VB1	1-6609021-1	15	30VB6	1-6609021-4	15
20VB6	1-6609021-3	15			49
20VDK1	6609034-9	18	30VK6C	2-6609028-1	49
20VDK6	1-6609034-0	18	30VSB6	2-1609034-2	71
20VK1	1-6609028-7	49	30VSK6	1-6609036-4	75

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
30VSK6C	1-6609036-5	75	60DBPL9	5-1609075-1	214
32AFC6-B	1609990-8	236	60DBR	5-1609075-6	214
32AFC6-C	1609990-9	236	60DBRL1	6-1609075-4	214
32AFC6-F	1-1609990-1	236	60DBRL3	6-1609075-5	214
32AFC6-G	1-1609990-2	236	60DBX8	4-1609075-7	214
32AFC6-H	1-1609990-3	236	60DCB10	4-6609074-9	218
32DFC6-C	1609992-6	239	60DCB10B	5-6609074-1	218
32DFC6-G	1609992-7	239	60DCB10BF	5-6609074-2	218
32DFC6-H	1609992-8	239	60DCB10F	5-6609074-0	218
32DFC6-N	1609992-9	239	60DCB6	2-6609074-9	218
32FFA6-CA	1609991-3	230	60DCB6B	3-6609074-1	218
32FFA6-DH	1-1609991-2	230	60DCB6BF	3-6609074-2	218
32FFA6-HN	2-1609991-1	230	60DCB6F	3-6609074-0	218
32FFD6-CA	1609993-3	233	60DCF10	1-6609074-5	218
32FFD6-HE	1609993-9	233	60DCF10B	1-6609074-6	218
35IK10	6609973-2	46	60DCF6	6609074-5	218
36AYA10	6609068-6	104	60DCF6B	6609074-6	218
36AYA6	6609068-5	104	60VK6	2-6609028-5	49
36AYA6A	6609977-3	104	60VS6	1609042-6	68
36AYC10B	6609067-2	108	63ADT6	1609071-2	101
36FC10	6609069-5	30	63ADT6S	1609071-1	101
36FC10B	1609976-4	30	63AFC6-C	1-1609990-4	236
36FCD10	6609070-5	119	63AFC6-G	1-1609990-5	236
36FCD10B	1-6609974-1	119	63AFC6-H	1-1609990-6	236
40VK6	2-6609028-3	49	63AYA10	1609977-5	104
40VK6C	2-6609028-4	49	63AYA6A	6609977-8	104
40VSK6	1-6609036-6	75	63AYC10B	6609067-3	108
42BCF10	1609989-4	113	63DFC6-C	1-1609992-1	239
45AYP6C	6609072-3	99	63DFC6-G	1-1609992-2	239
45AYT6C	6609073-3	99	63DFC6-H	1-1609992-3	239
50AYA6	6609068-7	104	63DFC6-N	1-1609992-4	239
50AYA6A	6609068-8	104	63FFA6-GB	1609991-4	230
50FC10	6609069-6	30	63FFA6-JK	1-1609991-3	230
50FC10B	6609069-7	30	63FFA6-NP	2-1609991-2	230
50FCD10	6609070-6	119	63FFD6-HB	1609993-4	233
50FCD10B	1-6609974-3	119	63FFD6-NH	1-1609993-1	233
50FCD10BS	1-6609974-6	119	75BCF10	1609989-6	113
50FCD10BS	1-6609974-6	119	80AYC10B	6609067-4	108
50IK10	1609973-5	46	80FCD10B	6609070-7	119
55BCF10	1609989-5	113	80FCD10BS	1-6609974-7	119
60AYP6C	6609072-4	99	80IK10	6609973-3	46
60AYT6C	6609073-4	99	100ADT6	1609071-4	101
60DB8	4-1609075-4	214	100ADT6S	1609071-3	101
60DBF8	4-1609075-5	214	100AFC6-H	1-1609990-8	236
60DBJ8	4-1609075-6	214	100AFC6-H	1-1609990-8	236
60DBP	5-1609075-7	214	100AFC6-K	1-1609990-9	236
60DBPL1	4-1609075-9	214	100AFC6-N	2-1609990-1	236
60DBPL3	5-1609075-0	214	100AYA6A	6609977-7	104

282

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
100BCF10	1609989-7	113	180FCD10B	1-6609070-0	119
100DCB10	5-6609074-3	218	180FCD10BS	2-6609974-1	119
100DCB10B	5-6609074-5	218	200ADT6	1609071-8	101
100DCB10BF	5-6609074-6	218	200ADT6S	1609071-7	101
100DCB10F	5-6609074-4	218	200AFC6-H	2-1609990-2	236
100DCB6	3-6609074-3	218	200AFC6-K	2-1609990-3	236
100DCB6B	3-6609074-5	218	200AFC6-N	2-1609990-4	236
100DCB6BF	3-6609074-6	218	200AFC6-P	2-1609990-5	236
100DCB6F	3-6609074-4	218	200AYC10B	1609067-8	108
100DCF10	1-6609074-7	218	200DFC6-H	1-1609992-9	239
100DCF10B	1-6609074-8	218	200DFC6-N	2-1609992-1	239
100DCF6	6609074-7	218	200DFC6-P	2-1609992-2	239
100DCF6B	6609074-8	218	200DFC6-R	2-1609992-3	239
100DFC6-G	1-1609992-5	239	200FFA6-HD	1609991-6	230
100DFC6-H	1-1609992-6	239	200FFA6-NP	1-1609991-5	230
100DFC6-N	1-1609992-7	239	200FFA6-PP	2-1609991-4	230
100DFC6-P	1-1609992-8	239	200FFD6-ND	1609993-6	233
100FFA6-HC	1609991-5	230	200FFD6-RP	1-1609993-3	233
100FFA6-NP	1-1609991-4	230	230FCD10B	1-6609070-2	119
100FFA6-PP	2-1609991-3	230	230FCD10BS	3-6609974-6	119
100FFD6-NC	1609993-5	233	250AFC6-H	2-1609990-6	236
100FFD6-PK	1-1609993-2	233	250AFC6-K	2-1609990-7	236
110AYC10B	6609067-5	108	250AFC6-N	2-1609990-8	236
110FCD10B	6609070-8	119	250AFC6-P	2-1609990-9	236
110FCD10BS	1-6609974-8	119	250DFC6-P	2-1609992-4	239
125DCB10	5-6609074-7	218	250DFC6-Q	2-1609992-5	239
125DCB10B	5-6609074-9	218	250DFC6-T	2-1609992-6	239
125DCB10BF	6-6609074-0	218	250FFA6-HF	1609991-7	230
125DCB10F	5-6609074-8	218	250FFA6-NP	1-1609991-6	230
125DCB6	3-6609074-7	218	250FFA6-PP	2-1609991-5	230
125DCB6B	3-6609074-9	218	300AFC6-H	3-1609990-1	236
125DCB6BF	4-1609074-0	218	300AFC6-K	3-1609990-2	236
125DCB6F	3-6609074-8	218	300AFC6-N	3-1609990-3	236
125DCF10	1-6609074-9	218	300AFC6-P	3-1609990-4	236
125DCF10B	2-6609074-0	218	300CFN12	1609978-1	116
125DCF6	6609074-9	218	300DFC6-P	2-1609992-7	239
125DCF6B	1-6609074-0	218	300DFC6-Q	2-1609992-8	239
130BCF10	1609989-8	113	300DFC6-T	2-1609992-9	239
150AYC10B	6609067-6	108	300FFA6-HF	1609991-8	230
150AYC10B-95	1609067-7	108	300FFA6-NP	1-1609991-7	230
150FCD10B	6609070-9	119	300FFA6-PP	2-1609991-6	230
150FCD10B-95	3-6609974-3	119	400CFN12	1-1609979-7	116
150FCD10BS	2-6609974-0	119	500CFN12	6609978-3	116
150FCD10BS-95	1-6609974-9	119	600CFN12	6609978-4	116
160ADT6	1609071-6	101	PE000DD3D	6609110-1	223
160ADT6S	1609071-5	101	PE000DD6D	6609110-3	223
180AYC10B	6609977-6	108	PE000DDXD	6609110-5	223
180BCF10	1609989-9	113	PE000SD3D	6609110-2	223

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Catalog Number	TE Ordering Number	Page Number	Catalog Number	TE Ordering Number	Page Number
PE000SD6D	6609110-4	223	RJ45-6L1-B	5-6609208-0	247
PEOOOSDXD	6609110-6	223	RJ45-6L1-S	4-6609208-9	247
PS000DD3D	6609111-3	223	RJ45-6L2-B	5-6609208-2	247
PS000DD6D	6609111-5	223	RJ45-6L2-S	5-6609208-1	247
PSOOODDXD	6609111-7	223	RJ45-6L-B	4-6609208-8	247
PS000SD3D	6609111-4	223	RJ45-6LC1-B	2-6609209-7	249
PS000SD6D	6609111-6	223	RJ45-6LC1-S	2-6609209-6	249
PSOOOSDXD	6609111-8	223	RJ45-6LC2-B	2-6609209-9	249
RJ11-2L2-B	1-1609208-2	247	RJ45-6LC2-S	2-6609209-8	249
RJ11-2L-B	6609208-4	247	RJ45-6L-S	4-6609208-7	247
RJ11-2LC1-B	6609209-2	249	RJ45-6X	1-6609214-0	252
RJ11-2LC1-S	6609209-1	249	RJ45-8L1-B	5-6609208-7	247
RJ11-2LC2-B	6609209-4	249	RJ45-8L1-S	5-6609208-5	247
RJ11-2LC2-S	6609209-3	249	RJ45-8L2-B	6-6609208-0	247
RJ11-2L-S	6609208-1	247	RJ45-8L2-S	5-6609208-9	247
RJ11-2X	6609214-1	252	RJ45-8L-B	5-6609208-4	247
RJ11-4L1-B	2-1609208-2	247	RJ45-8LC1-B	3-6609209-3	249
RJ11-4L1-S	2-6609208-1	247	RJ45-8LC1-S	3-6609209-0	249
RJ11-4L2-B	2-6609208-7	247	RJ45-8LC2-B	4-6609209-1	249
RJ11-4L2-S	2-6609208-5	247	RJ45-8LC2-S	3-6609209-6	249
RJ11-4L-B	1-6609208-7	247	RJ45-8LCT1-B	1-6609211-1	250
RJ11-4LC1-B	6609209-8	249	RJ45-8LCT1-S	1-6609211-0	250
RJ11-4LC1-S	6609209-6	249	RJ45-8LCT2-B	1-6609211-3	250
RJ11-4LC2-B	1-6609209-3	249	RJ45-8LCT2-S	1-6609211-2	250
RJ11-4LC2-S	1-6609209-0	249	RJ45-8L-S	5-6609208-3	247
RJ11-4L-S	1-6609208-5	247	RJ45-8N3-B	1-6609212-3	251
RJ11-4X	6609214-3	252	RJ45-8N3-S	1-6609212-4	251
RJ11-6L1-B	4-6609208-0	247	RJ45-8N4-B	1-6609212-5	251
RJ11-6L1-S	3-6609208-8	247	RJ45-8N4-S	1-6609212-6	251
RJ11-6L2-B	4-6609208-5	247	RJ45-8N-B	1-6609212-0	251
RJ11-6L2-S	4-6609208-3	247	RJ45-8N-S	1-6609212-2	251
RJ11-6L-B	3-6609208-1	247	RJ45-8X	1-6609214-1	252
RJ11-6LC1-B	1-6609209-8	249	RJ45-8X1	1-6609210-4	252
RJ11-6LC1-S	1-6609209-6	249	RJ45-8X2	1-6609214-3	252
RJ11-6LC2-B	2-6609209-1	249	RJ45-8Z	6609215-4	253
RJ11-6LC2-S	2-6609209-0	249	RJ45-8Z3	6609215-5	253
RJ11-6LCT1-B	6609211-4	250	RJ45-8Z4	6609215-6	253
RJ11-6LCT1-S	6609211-1	250	RJH-4L-B	6-6609208-1	247
RJ11-6LCT2-B	6609211-8	250			
RJ11-6LCT2-S	6609211-6	250			
RJ11-6L-S	2-6609208-9	247			
RJ11-6N3-B	6609212-6	251			
RJ11-6N4-B	6609212-8	251			
RJ11-6N-B	6609212-4	251			
RJ11-6X	6609214-5	252			
RJ11-6Z	6609215-1	253			
RJ11-6Z3	6609215-2	253			
RJ11-6Z4	6609215-3	253			
	0000210 0	200			

284

Engineering Notes

						_						-	-																	
			-							-		+				-		-				-						_	_	+
			_					_		_					_	_		_				_			_	_				
		 $\left \right $	_					_	_	-		+	_		_	-	$\left \right $	_	_			_		_	-	_				
			-			_		-				+			-	-	$\left \right $													
			-	+						-		+				-														+
										_						_						_			_	_				
			_		_	_		_	_	_		+	_		_	_		_				_		_	_	_				
		 	_			_		-		-		+			-	-		_				_			-	_		_		
			-					-			+-+-	+			-	-									-		+			
												1																		
	\square					_	\square	_	++	_		_	_		_	_		_				_		+					\rightarrow	
	$\left - \right $	$\left \cdot \right $	_			_	$\left \cdot \right $	_	++	-	+	+		$\left \cdot \right $	+	-	$\left \cdot \right $				$\left - \right $	-			_	_	$\left \cdot \right $		+	
\vdash	+	+	-	++-	+		\vdash	-	++	-	++	+		\vdash	+	-	\vdash	-	+	\vdash	$\left \cdot \right $	-	\vdash	+	+	-	++	+	+	++
	\square	+	-			-	\vdash	-	++	-	+	+	-		+	-	$\left \right $		+		+	-			+	-	+		-	
							\square		\square	_		_	_	\square	_			_				_			_					\square
	\vdash	$\left \cdot \right $	_		+	_	\vdash	_	++	_	+	+	_	\square	_	_	$\left \cdot \right $	_			$\left \cdot \right $	_		+	_	_	$\left \cdot \right $		+	
			-			_	$\left \right $	-		-		+				-	$\left \right $							_				_		
			-					-		-		+	-		-	-									-	-			_	
			_		_			_	_	_		_			_	_		_				_		_		_				
		$\left \right $	-			_	$\left \right $	-		-		+				-	$\left \right $	_						_				_		
			-					-		-		+	-		-	-									-	-			_	
										-																				
										_						_						_			_	_				
			_			_		_		_		_	_		_	_		_				_			_	_		_		
		$\left \right $	-			_	$\left \right $	-		-		+				-	$\left \right $	_						_				_		
			-					-		-		+	-		-	-									-	-			_	
						_	\square		++	_		_	_		_	_		_				_							+	
	\vdash	$\left \cdot \right $	_		++	_	\vdash	_	++	_	++	+	_	\vdash	+	_	\square	_		 \vdash	$\left \cdot \right $	_	\vdash	+	_	_	$\left \cdot \right $	+	+	
	\vdash	+	-		+	-	\vdash	-	++	-	++	+	-	\vdash	+	-	$\left \cdot \right $	-	+	\vdash	$\left \cdot \right $	-	\vdash	+	+	-	++	+	+	++
		+					\vdash		++	-		+	-	\vdash	+	-	\square	-			+	-			+				-	+
												T																		
	\square		_		+		\square	_	++	_		_		\square	_	_	\square	_				_		+		_			_	
	\vdash		_			_	\vdash	_	++	_		+	-	\vdash	-	_		_	+		$\left \cdot \right $	_	\vdash	+	-	_	$\left \cdot \right $		+	++
\vdash	+	+		++-	+		\vdash		++	+	++	+		$\left \cdot \right $	+	-	$\left \cdot \right $		+		$\left - \right $	+-	\vdash	+	+	-	$\left \cdot \right $		+	+
\vdash		+					\vdash		++	-		+	-	\vdash	+	-	\square	-			+	-			+				-	+
												Ţ			Ţ															
						_	\square	_	+	_		_	_	\square	_	_	\square	_				_							_	
	$\left - \right $	$\left \cdot \right $	_		+	_	\vdash	_	++	-	+	+	_	$\left \cdot \right $	+	-	$\left \cdot \right $	_			$\left \cdot \right $	-	$\left - \right $		_	_	$\left \cdot \right $		_	
																													_	
							\square		\square	_		_	_	\square	_			_				_			_					\square
$\left - \right $	\vdash	$\left \cdot \right $			+	_	\vdash	_	++	_	+	+	_		_	_	$\left \cdot \right $	_			$\left \cdot \right $	_		+	_	_	$\left \cdot \right $		+	
	+	+			++		\vdash		++	-	+	+		$\left - \right $		-	$\left \cdot \right $	-		- -	$\left \cdot \right $	-	\vdash	+	+		$\left \cdot \right $		+	+
	\square	+	-			-	\vdash	-	++	-	+	+	-		+	-	$\left \right $		+		+	-			+	-	+		-	
		 								_	 	1				-	<u>, </u>	_		 		_								

Dimensions are in inches and millimeters unless otherwise specified. Values in italics are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

North American Sales Representatives

ALABAMA			IDAHO		
CARTWRIGHT & BEAN, INC.	HUNTSVILLE, AL	800-242-5876	HALBAR-RTS, INC.	KIRKLAND, WA	425-893-8400
ALASKA			INDIANA		
TE CONNECTIVITY	MUNDELEIN, IL	847-573-6504	RATHSBURG ASSOCIATES	CARMEL, IN	317-818-7055
ARIZONA			IOWA		
LUSCOMBE ENGINEERING	PHOENIX, AZ	602-678-1955	RATHSBURG ASSOCIATES	BLOOMINGTON, MN	952-893-1400
ARKANSAS			KANSAS		
ELECTRA REPS	PLANO, TX	972-599-2130	RATHSBURG ASSOCIATES	OLATHE, KS	913-829-2800
CALIFORNIA			KENTUCKY		
LUSCOMBE ENGINEERING (SOUTH)	CAMARILLO, CA	805-987-4880	RATHSBURG ASSOCIATES	EASTERN	248-615-4000
LUSCOMBE ENGINEERING (SOUTH)	COSTA MESA, CA	714-546-4880	RATHSBURG ASSOCIATES	WESTERN	317-818-7055
LUSCOMBE ENGINEERING (SOUTH) STRAUBE ASSOCIATES (NORTH)	SAN DIEGO, CA MOUNTAIN VIEW, CA	858-385-2655 650-969-6060	LOUISIANA		
	100NTAIN VIEW, CA	000-909-0000	ELECTRA REPS	PLANO, TX	972-599-2130
CANADA					
WEISS COMPANY	MONTREAL	514-337-6769	MAINE		
WEISS COMPANY	OTTAWA	613-599-8787	CONTI-YOUNGER ASSOCIATES	MARLBORO, MA	508-485-7204
WEISS COMPANY	TORONTO	905-238-9548	MARYLAND		
WEISS COMPANY	VANCOUVER	604-276-8735	ASTROREP MID-ATLANTIC, INC.	DOYLESTOWN, PA	267-880-6321
COLORADO				·	207 000 0321
STRAUBE ASSOCIATES ROCKY			MASSACHUSETTS		
MOUNTAINS, INC.	WESTMINSTER, CO	303-426-0890	CONTI-YOUNGER ASSOCIATES	MARLBORO, MA	508-485-7204
CONNECTICUT			MEXICO		
CONTI-YOUNGER ASSOCIATES	MARLBORO, MA	508-485-7204	TE CONNECTIVITY	MUNDELEIN, IL	847-573-6504
DELAWARE			MICHIGAN		
ASTROREP MID-ATLANTIC, INC.	DOYLESTOWN, PA	267-880-6321	RATHSBURG ASSOCIATES	NOVI, MI	248-615-4000
DISTRICT OF COLU	MBIA		MINNESOTA		
ASTROREP MID-ATLANTIC, INC.	DOYLESTOWN, PA	267-880-6321	RATHSBURG ASSOCIATES	BLOOMINGTON, MN	952-893-1400
FLORIDA			MISSISSIPPI		
CBX ELECTRONICS	CASSELBERRY, FL	407-774-9100	CARTWRIGHT & BEAN, INC.	HUNTSVILLE, AL	800-242-5876
GEORGIA			MISSOURI		
CARTWRIGHT & BEAN, INC.	NORCROSS, GA	800-242-5876	RATHSBURG ASSOCIATES	ST. LOUIS, MO	636-946-1001
ILLINOIS			MONTANA		
RATHSBURG ASSOCIATES (NORTH) RATHSBURG ASSOCIATES (SOUTH)	ITASCA, IL ST. LOUIS, MO	630-625-5100 636-946-1001	HALBAR-RTS, INC.	KIRKLAND, WA	425-893-8400

North American Sales Representatives

NEBRASKA		SOUTH CAROLINA		
RATHSBURG ASSOCIATES OLATHE, KS	913-829-2800	CARTWRIGHT & BEAN, INC.	CHARLOTTE, NC	800-242-5876
NEVADA		SOUTH DAKOTA		
STRAUBE ASSOCIATES MOUNTAIN VIEW, CA	650-969-6060	RATHSBURG ASSOCIATES	BLOOMINGTON, MN	952-893-1400
LUSCOMBE ENGINEERING (LAS VEGAS) PHOENIX, AZ	602-678-1955	TENNESSEE		
NEW HAMPSHIRE		CARTWRIGHT & BEAN (EAST)	NORCROSS, GA	800-242-5876
CONTI-YOUNGER ASSOCIATES MARLBORO, MA	508-485-7204	CARTWRIGHT & BEAN (WEST)	HUNTSVILLE, AL	800-242-5876
NEW JERSEY		TEXAS		
ASTROREP MID-ATLANTIC, INC.		ELECTRA REPS	PLANO, TX	972-599-2130
(SOUTH) DOYLESTOWN, PA	267-880-6321	ELECTRA REPS	AUSTIN	512-249-1101
ASTROREP, INC. (NORTH) BABYLON, NY	631-422-2500	ELECTRA REPS	HOUSTON	281-516-1122
NEW MEXICO		LUSCOMBE ENGINEERING (EL PASO)	EL PASO, TX	602-678-1955
LUSCOMBE ENGINEERING PHOENIX, AZ	602-678-1955	UTAH		
NEW YORK		STRAUBE ASSOCIATES ROCKY MOUNTAINS, INC.	WESTMINSTER, CO	303-426-0890
EMPIRE TECHNICAL ASSOCIATES			WESTPHINSTER, CO	505 420 0050
(UPSTATE) SKANEATELES, NY	315-685-5703	VERMONT		
ASTROREP INC. BABYLON, NY	631-422-2500	CONTI-YOUNGER ASSOCIATES	MARLBORO, MA	508-485-7204
NORTH CAROLINA		VIRGINIA		
CARTWRIGHT & BEAN, INC. (WEST) CHARLOTTE, NC	800-242-5876	ASTROREP MID-ATLANTIC, INC.	DOYLESTOWN, PA	267-880-6321
CARTWRIGHT & BEAN, INC. (EAST) RALEIGH, NC	800-242-5876	WASHINGTON		
NORTH DAKOTA		HALBAR-RTS, INC.	KIRKLAND, WA	425-893-8400
RATHSBURG ASSOCIATES BLOOMINGTON, MN	952-893-1400	WEST VIRGINIA	,	
ОНІО			COLUMBUS, OH	248-615-4000
RATHSBURG ASSOCIATES COLUMBUS, OH	248-615-4000		COLUMDUS, UN	240-013-4000
OKLAHOMA		WISCONSIN		
ELECTRA REPS PLANO, TX	972-599-2130	RATHSBURG ASSOCIATES RATHSBURG ASSOCIATES	MUSKEGO, WI HARTFORD, WI	262-679-8250 262-670-6513
	912-399-2130		HARIFURD, WI	202-070-0313
OREGON		WYOMING		
HALBAR-RTS, INC. BEAVERTON, OR	503-624-5741	STRAUBE ASSOCIATES ROCKY		
PENNSYLVANIA		MOUNTAINS, INC.	WESTMINSTER, CO	303-426-0890
ASTROREP MID-ATLANTIC, INC. (EAST) DOYLESTOWN, PA	267-880-6321			
RATHSBURG ASSOCIATES (WEST) PITTSBURGH, PA	248-615-4000			
PUERTO RICO				
CBX ELECTRONICS ALTAMONTE SPRINGS, FL	407-774-9100			
RHODE ISLAND				
CONTI-YOUNGER ASSOCIATES MARLBORO, MA	508-485-7204			

Authorized Corcom Product Distributors and Resellers

All American	Hammond Electronics
www.allamerican.com	www.hammondelec.com
1-800-573-ASAP	1-800-929-2677
Allied Electronics, Inc.	Heilind Electronics
www.alliedelec.com	www.heilind.com
1-800-433-5700	1-800-400-7041
Arrow Electronics	Marsh Electronics
www.arrow.com	www.marshelectronics.com
1-800-777-2776	1-800-236-8327
Avnet	Master Distributors
www.avnet.com	www.masterdistributors.com
US: 1-800-332-8638	1-888-473-5297
Carlton Bates Company	Mouser Electronics
www.carlton-bates.com	www.mouser.com
1-866-600-6040	1-800-346-6873
Digi-Key Corporation	Newark Electronics
www.digikey.com	www.newark.com
1-800-344-4539	1-800-463-9275
Electro Sonic	Norvell Electronics
www.e-sonic.com	www.norvell.com
1-800-567-6642	1-800-893-0593
Future Electronics	Sager Electronics
www.futureelectronics.com	www.sager.com
US & Canada: 1-800-FUTURE-1 (388-8731)	1-800-SAGER-800
Genie Group	Simcona Electronics
www.geniegroup.com	www.simcona.com
1-615-771-9412	US: 1-800-274-6266 Canada: 1-519-652-1130
Gopher Electronics	TTI Inc.
www.gopherelectronics.com	www.ttiinc.com
1-800-592-9519	1-800-CALL-TTI

Americas

Argentina - Buenos Aires Phone: +54-11-4733-2200 Fax: +54-11-4733-2211

Brasil - São Paulo Phone: +55-11-2103-6000 Fax: +55-11-2103-6030

Chile – Santiago Phone: +56-2-345-0361 Fax: +56-2-223-1477

Asia/Pacific

Australia - Sydney Phone: +61-2-9554-2600 Fax: +61-2-9502-2556 Product Information Center: Phone: +61-2-9840-8200 Fax: +61-2-9634-6188

India - Bangalore Phone: +91-80-285-40800 Fax: +91-80-285-40820

Indonesia - Jakarta Phone: +65-6482-0311 Fax: +65-6482-1012 **Canada** - Toronto Phone: +905-475-6222

Fax: +905-474-5520 Product Information Center: Phone: +905-470-4425 Fax: +905-474-5525

Japan - Kawasaki, Kanagawa

Product Information Center:

Phone: +81-44-844-8111

Phone: +81-44-844-8013

Phone: +82-2-3415-4500

Phone: +60-3-7805-3055

Fax: +60-3-7805-3066

Fax: +81-44-812-3207

Fax: +81-44-812-3200

Fax: +82-2-3486-3810

Malaysia - Selangor

Korea - Seoul

Colombia - Bogota Phone: +57-1-319-8959 Fax: +57-1-319-8960 Mexico - Mexico City Phone: +52-55-1106-0800 +01-800-733-8926 Fax: +52-55-1106-0901

Global Contacts

For Latin/South American Countries not shown Phone: +54-11-4733-2015 Fax: +54-11-4733-2083

New Zealand - Auckland Phone: +64-9-634-4580 Fax: +64-9-634-4586

Philippines – Makati City Phone: +632-848-0171 Fax: +632-867-8661

People's Republic of China Hong Kong Phone: +852-2735-1628 Fax: +852-2735-0243

Shanghai Phone: +86-21-2407-1588 Fax: +86-21-2407-1599

Europe/Middle East/Africa

Austria - Vienna Phone: +43-1-905-60-0 Fax: +43-1-905-60-1333 Product Information Center: Phone: +43-1-905-60-1228 Fax: +43-1-905-60-1333

Belarus - Minsk Phone: +375 17 237 47 94 Fax: +375 17 237 47 94

Belgium - Kessel-Lo Phone: +32-16-352-300 Fax: +32-16-352-355

Bulgaria – Sofia Phone: +359-2-971-2152 Fax: +359-2-971-2153

Czech Republic and Slovakia Czech Republic - Kurim Phone: +420-541-162-111 Fax: +420-541-162-223 Product Information Center: Phone: +420-541-162-113 Fax: +420-541-162-104

Denmark - Glostrup Phone: +45-43-48-04-00 Fax: +45-43-44-14-14

Egypt - Cairo Phone: +202-419-2334 Fax: +202-417-7647

Estonia - Tartu Phone: +372-5138-274 Fax: +372-7400-779

Finland - Helsinki Phone: +358-95-12-34-20 Fax: +358-95-12-34-250 France - Cergy-Pontoise Cedex Phone: +33-1-3420-8888 Fax: +33-1-3420-8600 Product Information Center: Phone: +33-1-3420-8686 Fax: +33-1-3420-8623

France Export Divisions -Cergy-Pontoise Cedex Phone: +33-1-3420-8804 Fax: +33-1-3420-8699

Germany - Bensheim Phone: +49-6251-133-0 Fax: +49-6251-133-1600 Product Information Center: Phone: +49-6251-133-1999 Fax: +49-6251-133-1988

Greece - Athens Phone: +30-210-9370-396/397 Fax: +30-210-9370-655

Hungary - Budapest Phone: +36-1-289-1000 Fax: +36-1-289-1010 Product Information Center: Phone: +36-1-289-1016 Fax: +36-1-289-1017

Ireland - Dublin Phone: +353-1-866-5612 Fax: +353-1-866-5714

Israel – Petach-Tikva Phone: +972-3-929-0999 Fax: +972-3-919-1088

Italy - Collegno (Torino) Phone: +39-011-4012-111 Fax: +39-011-4031-116 Product Information Center: Phone: +39-011-4012-632 Fax: +39-011-40-287-632 Lithuania and Latvia

Lithuania - Vilnius Phone: +370-5-213-1402 Fax: +370-5-213-1403 Product Information Center: Phone: +370-5-211-3016 Fax: +370-5-213-1403

Netherlands -'s-Hertogenbosch Phone: +31-73-6246-246 Fax: +31-73-6212-365 Product Information Center: Phone: +31-73-6246-999 Fax: +31-73-6246-998

Norway - Nesbru Phone: +47-66-77-88-50 Fax: +47-66-77-88-55

Poland - Warsaw Phone: +48-22-4576-700 Fax: +48-22-4576-720 Product Information Center: Phone: +48-22-4576-704 Fax: +48-22-4576-720

Romania - Bucharest Phone: +40-21-311-3479/3596 Fax: +40-21-312-0574 Russia - Moscow Phone: +7-495-790-7902 Fax: +7-495-721-1893 Product Information Center: Phone: +7-495-790-7902-404 Fax: +7-495-790-7902-401

Russia - St. Petersburg Phone: +7-812-718-8192 Fax: +7-812-718-8193

United States

Harrisburg, PA Phone: +1-717-564-0100 Fax: +1-717-986-7575 Product Information Center: Phone: +1-800-522-6752 Fax: +1-717-986-7575 Mundelein, IL Phone: +1-847-680-7400 Fax: +1-847-680-8169

Singapore - Singapore Phone: +65-6482-0311 Fax: +65-6482-1012

Taiwan - Taipei Phone: +886-2-8768-2788 Fax: +886-2-8768-2268

Thailand - Bangkok Phone: +66-2-955-0500 Fax: +66-2-955-0505

Vietnam - Ho Chi Minh City Phone: +84-8-930-5546 Fax: +84-8-930-3443

Slovenia – Ljubljana Phone: +386-1561-3270 Fax: +386-1561-3240

South Africa – Port Elizabeth Phone: +27-41-503-4500 Fax: +27-41-581-0440

Spain - Barcelona Phone: +34-93-291-0330 Fax: +34-93-201-7879

Sweden – Upplands Väsby Phone: +46-8-50-72-50-00 Fax: +46-8-50-72-50-01

Switzerland – Steinach Phone: +41-71-447-0447 Fax: +41-71-447-0444

Turkey - Istanbul Phone: +90-212-281-8181/2/3 +90-212-282-5130/5430 Fax: +90-212-281-8184

Ukraine - Kiev Phone: +380-44-206-2265 Fax: +380-44-206-2264 Product Information Center: Phone: +380-44-206-2265 Fax: +380-44-206-2264

United Kingdom -

Stanmore, Middlesex Phone: +44-8706-080208 Fax: +44-208-954-6234 Product Information Center: Freephone (UK only): +0800-267-666 Phone: +44-8706-080208 Fax: +44-208-420-8095

单击下面可查看定价,库存,交付和生命周期等信息

>>TE Connectivity(泰科)