

Grace Inertia Connector System 2.0 EV Series

1. SCOPE

1.1. Content

This specification covers performance, tests, and quality requirements for the Grace Inertia Connector system 2.0 EV.

1.2. Qualification

When tests are performed on the subject product line, procedures specified in Figure 2 shall be used. All inspections shall be performed using the applicable inspection plan and product drawing.

1.3. Qualification Test Results

Successful qualification testing on the subject product line was completed at the Shanghai Electrical Components Test Laboratory. The Qualification Test Report number for this testing is 501-106010.

1.4. Revision Summary

Revisions to this specification include:

- Added qualification test report
- Updated gage tolerance in Figure 6
- Updated wire sizes in Figure 8
- Change temperature Rating from "-30°C to +105°C" to "-40°C to +105°C"

2. APPLICABLE DOCUMENTS AND FORMS

The following documents form a part of this specification to the extent specified herein. Unless otherwise specified, the latest edition of the document applies. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1. TE Connectivity Specifications

114-5425Application Specification – Grace Inertia Connector System 2.0 EV Series501-106010Qualification Test Report

2.2. Reference Documents

109-1 General Requirements for Testing

3. **REQUIREMENTS**

3.1. Design and Construction

Product shall be of the design, construction, materials and physical dimensions specified on the applicable product drawing.

3.2. Materials

Materials used in the construction of this product shall be as specified on the applicable TE drawing.

- A. Housing: 66 Nylon (Glass Filled) UL 94 V-0, UL Level 2 Tracking Index
- B. Contacts: Pre-Tin Copper Alloy or Pre-Tin Phosphor Bronze (Tin Plating: 0.8µm minimum)
- C. Header: 66 Nylon (Glass Filled) UL 94 V-0, UL Level 2 Tracking Index with Copper Alloy Tin Plated Contacts (Tin Plating: 0.8µm minimum)

3.3. Ratings

- A. Voltage Rating: 50VAC
- B. Temperature Rating: –40°C to +105°C
- C. Current Rating: See Figure 1

Wire Size	Current [A]					
24	2.2					
26 2						
28 1.5						
Figure 1						

3.4. Performance Requirements and Test Description

The product should meet the electrical, mechanical and environmental performance requirements specified in Figure 2. All tests shall be performed at ambient environmental conditions otherwise specified.

3.5. Test Requirements and Procedure Summary

Test Description	Requirement	Procedure
Examination of Product	No physical damage or corrosive influence.	Visual Inspection
	Meets requirements of product drawing and application specification.	
	Electrical	
Termination Resistance (Low Level)	Initial: 10 mΩ (maximum)	109-5311-1
	Final: 20 mΩ (maximum)	Measure between mating tab and at point on wire 75 mm from contact. Subtract the bulk resistance of the wire from the measurement. (Protect wire from corrosion during testing.) Test on mated connectors.
		Test current: <100mA
		Voltage: <20mV
		See Figure 3.
Insulation Resistance	Initial: 1000 M Ω (minimum) Final: 500 M Ω (minimum)	109-5302, MIL-STD-202, Method 302, Condition B
		Apply 500 VDC between adjacent contacts. Test between adjacent circuits and between the surface of housing and contact of mated connectors.
Dielectric Withstanding Voltage	No breakdown or flashover. Leakage current: 5.0 mA (maximum)	Apply 1.1 kVAC to adjacent contacts and hold at specified voltage for 1 minute. Test between adjacent circuits and between the surface of housing and contact of mated connectors.

Figure 2 (continued)

Figure 1. Messurement music be taken at a place where there is no influence from air convection. Contacts to be assembled to the contract in the center circuit. See Figure 3. Vibration (Low Frequency) No electrical discontinuity greater than 1 µs. Final LLCR: 20mΩ (maximum) 109-5201 & MIL-STD-202, Method 201A Vibration (Low Frequency) No electrical discontinuity greater than 1 µs. Final LLCR: 20mΩ (maximum) 109-5201 & MIL-STD-202, Method 201A Mechanical No electrical discontinuity greater than 1 µs. Final LLCR: 20mΩ (maximum) 109-5201 & MIL-STD-202, Method 201A Mechanical Shock No electrical discontinuity greater than 1 µs. Final LLCR: 20mΩ (maximum) 109-5208 & MIL-STD-202, Method 213, Condition A Connector Mating Force (2.55 x Pos.) N (maximum) 109-5208 & MIL-STD-202, Method 213, Condition A Connector Mating Force (2.55 x Pos.) N (maximum) Qperation speed: 100 mm/min. Measure the force required to mate connectors of X, Y and Z axis. Total of 18 drops. See Figure 4. Connector Unmating Force 1 st Unmating: (0.12 x Pos.) 9 (minimum) (8 x Pos.) 9 (minimum) (8 x Pos.) 9 (minimum) (8 x Pos.) 9 (minimum) Qperation speed: 100 mm/min. Measure the force required to insert a contect no thor housing. Contact Insertion Force 14.7 N (1.5 kgf) (minimum) (0.5 x Pos.) N (maximum) Qperation speed: 100 mm/min. Apply an axia pull force to the crimped win while the housing is secured. Contact Mating Force <td< th=""><th>Temperature Rise</th><th>30°C (maximum) temp</th><th>perature rise</th><th>109-5310</th></td<>	Temperature Rise	30°C (maximum) temp	perature rise	109-5310			
Vibration (Low Frequency) No electrical discontinuity greater than 1 μs. Final LLCR: 20mΩ (maximum) 109-5201 & ML-STD-202, Method 201A Subject mated connectors to 10-55-10 Hz frequency range traversed in 1 minute at at maplitude of 1.52 mm, Apply for 2 hours in each of 3 mutually perpendicular planes. 100 m a applied electrical load. See Figure 4. Mechanical Shock No electrical discontinuity greater than 1 μs. Final LLCR: 20mΩ (maximum) 109-5208 & ML-STD-202, Method 213, Condition A Mechanical Shock No electrical discontinuity greater than 1 μs. Final LLCR: 20mΩ (maximum) 109-5208 & ML-STD-202, Method 213, Condition A Connector Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Connector Unmating Force 1 ¹⁴ Unmating: (0.12 x Pos.) N (minimum) (8 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to insert a connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Measure the force required to insert a contact into the housing. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wing will be theousing is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wing Ville the housing is secur				ambient created by the energizing current in Figure 1. Measurement must be taken at a place where there is no influence from air convection. Contacts to be assembled in housing with all circuits connected. The thermocouple is to be attached to the contact in the center circuit.			
Final LLCR: 20mΩ (maximum) Subject mated connectors to 10-55-10 Hz frequency range traversed in 1 minute at a miplitude of 1.52 mm, Apply for 2 hours in each of 3 mutually perpendicular planes. 100 mA applied electrical load. See Figure 4. Mechanical Shock No electrical discontinuity greater than 1 μs Final LLCR: 20mΩ (maximum) 109-5208 MIL-STD-202, Method 213, Condition A Subject mated connector to 50G's half-sine shock pulse of 11m cor tor 50G's half-sine to normal and reversed directions of X, Y and 2 axis. Total of 18 drops. See Figure 4. Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Connector Unmating Force 1*1 Unmating: (0.12 x Pos.) N (minimum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Contact Insertion Force 1*1 Unmating: (0.12 x Pos.) N (minimum) (8 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to insert a connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) (8 x Pos.) g (minimum) 109-5211 Measure the force required to insert a contact into the housing. Contact Retention Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped win while the housing is secured. Crimp Tensile Strength Wire Size [mm?] Crimp Tensile [N (kgf)] (min) 0.079 109-5205 Operation speed: 100 mm/min. Apply an axial pull force to the crim		Mech	anical				
Image: A set of a mutually perpendicular planes. applied of 1.52 mm. Apply for 2 hours in amplitude of 1.52 mm. Apply for 2 hours in amplitude of 1.52 mm. Apply for 2 hours in the of a mutually perpendicular planes. 100 mA applied electrical load. See Figure 4. Mechanical Shock No electrical discontinuity greater than 1 µs. Final LLCR: 20mΩ (maximum) 109-5208 & MIL-STD-202, Method 213, Condition A Connector Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Connector Unmating Force 1 st Unmating: (0.12 x Pos.) N (minimum) (12 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to unmate connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Measure the force required to unmate contact ling the torce required to insert a contact ling the torce required to insert a contact ling the torce required to insert a contact ling the torce the crimped win while the housing is secured. Contact Retention Force 14.7 N (1.5 kgf) (minimum) (260 x Pos.) g (maximum) 109-5211 Measure the force required to insert a contact ling the the using is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped win while the housing is secured. Crimp Tensile Strength Wire Size [mm?] Crimp Tensile [N (kgf)] (min) 0.079 109-5205 Operat	Vibration (Low Frequency)	No electrical discontin	uity greater than 1 µs.	109-5201 & MIL-STD-202, Method 201A			
Final LLCR: 20mΩ (maximum) Condition A Subject mated connector to 50G's half-sine shock pulse of 11ms duration. 3 drops ead to normal and reversed directions of X, Y and Z axis. Total of 18 drops. See Figure 4. Connector Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Connector Unmating Force 1st Unmating: (0.12 x Pos.) N (minimum) (12 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to unmate connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact Operation speed: 100 mm/min. Measure the force required to insert a contact into the housing. Contact Retention Force 4.9 N (0.5 kgf) (maximum) (260 x Pos.) g (minimum) 109-5211 Measure the force required to insert a contact into the housing. Contact Retention Force 14.7 N (1.5 kgf) (minimum) (260 x Pos.) g (maximum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wint while the housing is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Measure using gage tab. See Figure 5. Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) 0.079 9.8 (1) 0.14		Final LLCR: 20mΩ (m	aximum)	frequency range traversed in 1 minute at an amplitude of 1.52 mm. Apply for 2 hours in each of 3 mutually perpendicular planes. 100 mA applied electrical load.			
Prima LCCR. 20102 (intakinituit) Subject mated connector to 50G's half-sine shock pulse of 11ms duration. 3 drops ead in to normal and reversed directions of X, Y and Z axis. Total of 18 drops. See Figure 4. Connector Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Connector Unmating Force 1st Unmating: (0.12 x Pos.) N (minimum) (12 x Pos.) g (minimum) (6 th Unmating: (0.08 x Pos.) g (minimum) (8 x Pos.) g (minimum) (8 x Pos.) g (minimum) (8 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to unmate connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Measure the force required to insert a contact into the housing. Contact Retention Force 14.7 N (1.5 kgf) (minimum) (260 x Pos.) g (maximum) 109-5210 Measure the force to the crimped wint while the housing. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5210 Measure the force to the crimped wint while the housing. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wint while the housing is secured. Crimp Tensile Strength Wire Size [mm ²] Crimp Tensile [N (kgf) (mini) Measure using gage tab. See Figure 5. Crimp Tensile Strength Wire Size [mm ²] Crimp Tensile in the tester. Insulation barrel to b	Mechanical Shock	No electrical discontin	uity greater than 1 µs.				
Connector Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Measure the force required to mate connectors without locking latches. Connector Unmating Force 1st Unmating: (0.12 x Pos.) N (minimum) (12 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to unmate connectors without locking latches. Contact Insertion Force 1st Unmating: (0.08 x Pos.) N (minimum) (8 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to unmate connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Measure the force required to insert a contact into the housing. Contact Retention Force 14.7 N (1.5 kgf) (minimum) (260 x Pos.) g (maximum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wire while the housing is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Measure using gage tab. See Figure 5. Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) Operation Speed: 100 mm/min. Measure using gage tab. See Figure 5. Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) Operation Speed: 100 mm/min. Measure using axial pull force to the crimped wire Contact to be secured on the tester. Insulation barrel to be disabled.		Final LLCR: 20mΩ (m	aximum)	Subject mated connector to 50G's half-sine shock pulse of 11ms duration. 3 drops each to normal and reversed directions of X, Y and Z axis. Total of 18 drops.			
(260 x Pos.) g (maximum) Measure the force required to mate connectors without locking latches. Connector Unmating Force 1st Unmating: (0.12 x Pos.) N (minimum) (12 x Pos.) g (minimum) Operation speed: 100 mm/min. 6th Unmating: (0.08 x Pos.) N (minimum) (8 x Pos.) g (minimum) Operation speed: 100 mm/min. Measure the force required to unmate connectors without locking latches. Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Measure the force required to insert a contact into the housing. Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Operation speed: 100 mm/min. Contact Retention Force (2.55 x Pos.) N (maximum) 109-5210 Operation speed: 100 mm/min. Contact Mating Force (2.55 x Pos.) N (maximum) 109-5206 Operation speed: 100 mm/min. Contact Mating Force (2.55 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf]] (min) 109-5205 Orgeration Speed: 100 mm/min. Apply an axial pull force to the crimped wire Contact to be secured on the tester. 109-5205 Oright Tensile 0.079 9.8 (1) 0.9205 Operation Speed: 100 mm/min. 0.14 19.6 (2) 19.4 (2) 109-force t				-			
(12 x Pos.) g (minimum) Measure the force required to unmate connectors without locking latches. 6 th Unmating: (0.08 x Pos.) N (minimum) (12 x Pos.) g (minimum) Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Contact Retention Force (2.55 x Pos.) N (maximum) 109-5210 Contact Mating Force (2.55 x Pos.) N (maximum) 109-5206 Contact Mating Force (2.60 x Pos.) g (maximum) 109-5206 Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) 0.079 9.8 (1) 109-5205 0peration Speed: 100 mm/min. Apply an axial pull force to the crimped wind wind wind wind wind wind wind win	Connector Mating Force		,	Measure the force required to mate			
6 th Unmating: (0.08 x Pos.) N (minimum) (8 x Pos.) g (minimum) 109-5211 Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Contact Retention Force 12.55 x Pos.) N (maximum) 109-5210 Contact Mating Force (2.55 x Pos.) N (maximum) 109-5206 Contact Mating Force (2.55 x Pos.) N (maximum) 109-5206 Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) 0.079 9.8 (1) 109-5205 Operation Speed: 100 mm/min. Apply an axial pull force to the crimped wire wind wind wind wind wind wind wind wind	Connector Unmating Force	(12 x Pe	os.) g (minimum)	Measure the force required to unmate			
Contact Insertion Force 4.9 N (0.5 kgf) (maximum) per contact 109-5211 Measure the force required to insert a contact into the housing. Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wire while the housing is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Measure using gage tab. See Figure 5. Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) 109-5205 Operation Speed: 100 mm/min. Measure using page tab. See Figure 5. Ontact Nating Porce 0.079 9.8 (1) 109-5205 Operation Speed: 100 mm/min. Measure using based based.		J J	, (,				
Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Contact Retention Force 14.7 N (1.5 kgf) (minimum) 109-5210 Operation speed: 100 mm/min. Apply an axial pull force to the crimped wind while the housing is secured. Operation speed: 100 mm/min. Apply an axial pull force to the crimped wind while the housing is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) 109-5205 Crimp 10.079 9.8 (1) 0peration Speed: 100 mm/min. Apply an axial pull force to the crimped wind Contact to be secured on the tester. Insulation barrel to be disabled.	Contact Insertion Force		, ,	109-5211			
Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) Operation speed: 100 mm/min. Apply an axial pull force to the crimped wire while the housing is secured. Contact Mating Force (2.55 x Pos.) N (maximum) (260 x Pos.) g (maximum) 109-5206 Operation speed: 100 mm/min. Measure using gage tab. See Figure 5. Crimp Tensile Strength Wire Size [mm²] Crimp Tensile [N (kgf)] (min) 109-5205 Operation Speed: 100 mm/min. Measure using page tab. See Figure 5. 0.079 9.8 (1) Operation Speed: 100 mm/min. Apply an axial pull force to the crimped wire Contact to be secured on the tester. Insulation barrel to be disabled.				Measure the force required to insert a			
Wire Size [mm²] Crimp Tensile [N (kgf]] (min) Operation speed: 100 mm/min. Measure using gage tab. See Figure 5. 0.079 9.8 (1) Operation Speed: 100 mm/min. Measure using gage tab. See Figure 5. 0.14 19.6 (2) 109-5205 Operation Speed: 100 mm/min. Apply an axial pull force to the crimped wire Contact to be secured on the tester. Insulation barrel to be disabled.	Contact Retention Force	14.7 N (1.5 kgf) (minin	num)	Operation speed: 100 mm/min. Apply an axial pull force to the crimped wire			
Wire Size [mm²] [N (kgf)] (min) Operation Speed: 100 mm/min. 0.079 9.8 (1) Apply an axial pull force to the crimped wire Contact to be secured on the tester. 0.14 19.6 (2) Insulation barrel to be disabled.	Contact Mating Force		,	Operation speed: 100 mm/min.			
0.0799.8 (1)Apply an axial pull force to the crimped wire Contact to be secured on the tester. Insulation barrel to be disabled.	Crimp Tensile Strength	Wire Size [mm ²]					
0.14 19.6 (2) Insulation barrel to be disabled.		0.079	9.8 (1)	Apply an axial pull force to the crimped wire.			
		0.14	19.6 (2)				
0.24 29.4 (3)		0.24	29.4 (3)				

Figure 2 (continued)

Durability	Final LLCR: 20 m Ω (maximum)	Manually mate and un-mate specimens for 6 cycles.
Housing Locking Strength	2P-10P Housings: 19.6 N (2.0 kgf) (minimum)	109-5210 Operating Speed: 100 mm/min. Measure connector locking strength.
Post Retention Force	14.7 N (1.5 kgf) (minimum)	Operating Speed: 100 mm/min Measure post retention force.
	Environmental	
Thermal Shock	Final LLCR: 20mΩ (maximum)	109-5103, Condition A & MIL-STD-202, Method 107-1, Condition A-1 Subject mated specimens to 192 cycles between -55 °C and 85 °C with 30 minute dwell time at temperature extremes. This measurement is taken after specimens are held at ambient room temperature for 3
Temperature-Humidity Cycling	Final LLCR: 20mΩ (maximum) Final Insulation Resistance: 500 MΩ (minimum) Final Dielectric Withstanding Voltage: No breakdown or flashover when 1.1 kVAC applied to adjacent contacts for 1 minute.	hours. 109-5106 MIL-STD-202, Method 106, Condition D Subject mated specimens to 10 cycles between 25°C and 65°C at 80-98% R.H. Measurements to be recorded after specimens are held for 3 hours at ambient temperature and humidity. 1 cycle is 24 hours.
Salt Spray	Final LLCR: 20mΩ (maximum) No corrosive influence on performance	MIL-STD-202, Method 101, Condition B Subject mated connectors to 5±1% salt concentration for 48 hours. Measurement is taken after removing the salt. Specimens dried per the specification.
Heat Aging	Final LLCR: 20mΩ (maximum)	109-5104-3, Condition A Subject mated connector to 105±2°C for a duration of 192 hours. Measurement to be recorded after specimens are held for 3 hours at ambient temperature and humidity.
Resistance to Cold	Final LLCR: 20mΩ (maximum)	109-5108-3, Condition D Subject mated connector to -40±2°C for a duration of 192 hours.
H ₂ S	Final LLCR: $20m\Omega$ (maximum) No corrosive influence on performance	Subject mated connector to 3±1 ppm for 96 hours at 40±2°C.
NH₃ Gas	Final LLCR: $20m\Omega$ (maximum) No corrosive influence on performance	Subject mated connector to 25 ml/l of 3% NH_3 for 7 hours.
Solderability	95% (minimum) wet solder coverage	MIL-STD-202, Method 208 Eutectic Solder: Solder Temperature: 230±5°C Immersion Duration: 3±0.5 seconds Lead-Free Solder: Solder Temperature: 240±5°C Immersion Duration: 3±0.5 seconds

Figure 2 (continued)

Resistance to Soldering Heat	No physical damage shall occur.	109-5204, Condition B & MIL-STD-202, Condition 210
		Solder Temperature: 260±5°C Immersion Duration: 10±0.5 seconds
		Test connector on through hole PCB. In case of manual soldering iron, apply at 360±10°C for 3±0.5 seconds without forcing pressure to affect the tine of contact.

Figure 2 (end)

1	i	1
-	122	

NOTE

Shall meet visual requirements, show no physical damage, and meet requirements of additional tests as specified in the Product Qualification and Requalification Test Sequence shown in Figure 6.

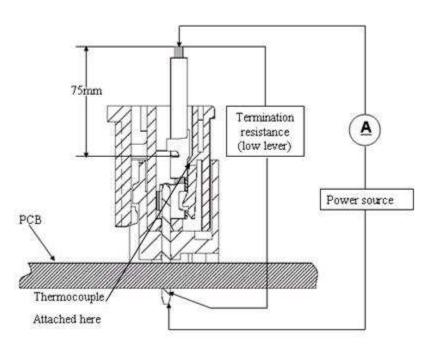


Figure 3: Termination Resistance (Low Level) and Temperature Rise Vs. Current Measurement Set-Up

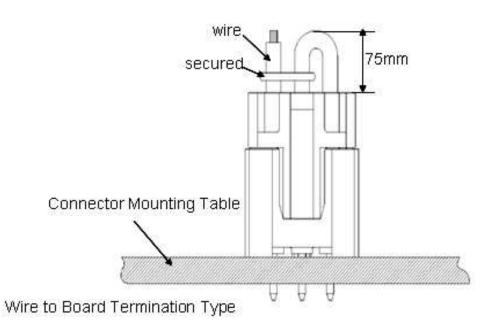
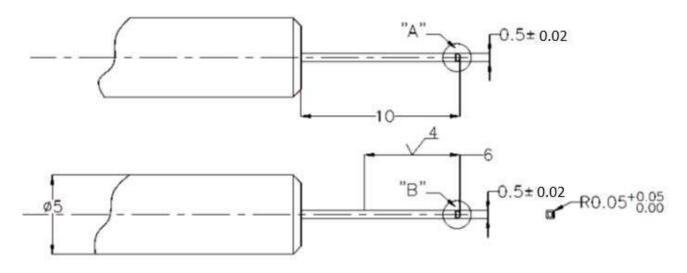



Figure 4: Connector Mounting Method for Lower Frequency Vibration and Physical Shock Tests

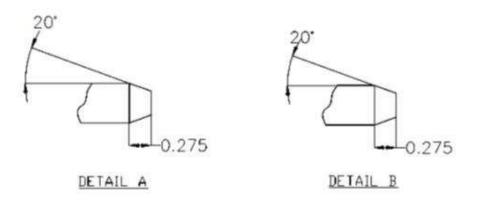


Figure 5: Gage Design for Contact Mating and Contact Unmating Force Tests

3.6.	Produ	uct Qua	alificati	on and	d Requ	alifica	tion Tes											
TEST OR			1	1	T				EST GF				1	T	1	1	1	
EXAMINATION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	TEST SEQUENCE (b)																	
Confirmation of Product	1, 3	1, 4	1, 3	1, 3	1, 3	1, 4	1, 7	1, 7	1, 4	1, 4	1, 4	1, 4	1, 4	1, 4	1, 3	1, 3	1, 3	1, 4
Termination Resistance							2, 4, 6	2, 6	2, 5	2, 5	2, 5	2, 5	2, 5	2, 5				2, 5
Dielectric																		
Withstanding						3				7	7							
Voltage																		
Insulation						_				0	0							
Resistance						2				6	6							
Temperature					_													
Rise					2													
Vibration (Low							_											
Frequency)							5											
Physical Shock							3											
Connector					1									1				
Mating Force								3										
Connector																		
Unmating Force								4										
Contact Insertion																		
Force				2														
Contact Mating																		
Force		2																
Contact																		
Unmating Force		3																
Crimp Tensile	2																	
Durability	_							5										
Housing Locking					1			0						1				
Strength			2															
NH ₃																		3
Humidity-																		5
Temperature										3								
Cycling										0								
H ₂ S														3				
Thermal Shock									3					5				
Salt Spray									5		3							
Resistance to											3							
Cold													3					
Contact					<u> </u>									<u> </u>				
Retention Force						5												
												0						
Heat Aging												3						
Post Retention															2			
Force																_		
Solderability																2		ļ
Resistance to																	2	
Soldering Heat																		<u> </u>

3.6. Product Qualification and Regualification Test Sequence

Figure 6

(a) See paragraph 4.2.(b) Numbers indicate sequence in which tests are performed.

4. QUALITY ASSURANCE PROVISIONS

4.1. Test Conditions

Unless otherwise specified, all the tests shall be performed in any combination of the following test conditions shown in Figure 7.

Temperature	15°C – 35°C
Relative Humidity	45% – 75%
Atmospheric Pressure	86.6 – 106.6 kPa

4.2. Qualification Testing

A. Specimen Selection

Specimens shall be prepared in accordance with applicable instruction sheets and shall be selected at random from current production. The test specimens shall conform to the requirements specified in the applicable product drawings. Crimped contacts shall be prepared in accordance with the requirements of the application specification 114-5425 on wires specified in Figure 8.

Cross-Sectional Area [AWG (mm²)]	Diameter of Conductor (mm)	Number of Conductors	Insulation Outer Diameter (mm)
28 (0.079)	0.127	7	0.98
26 (0.14)	0.127	10	1.3
24 (0.24)	0.160	10	1.58

Figure 8

B. Test Sequence

Qualification inspection shall be verified by testing specimens as specified in Figure 6.

4.3. Requalification Testing

If changes significantly affecting form, fit or function are made to the product or manufacturing process, product assurance shall coordinate requalification testing, consisting of all or part of the original testing sequence as determined by development/product, quality and reliability engineering.

4.4. Acceptance

Acceptance is based on verification that the product meets the requirements in Figure 2. Failures attributed to equipment, test setup or operator deficiencies shall not disqualify the product. If product failure occurs, corrective action shall be taken and specimens resubmitted for qualification. Testing to confirm corrective action is required before resubmittal.

4.5. Quality Conformance Inspection

The applicable quality inspection plan shall specify the sampling acceptable quality level to be used. Dimensional and functional requirements shall be in accordance with the applicable product drawing and this specification.

单击下面可查看定价,库存,交付和生命周期等信息

>>TE Connectivity(泰科)