

具有 1.8V 逻辑的 TMUX1208-Q1 5V 双向 8:1 多路复用器

1 特性

• 符合面向汽车应用的 AEC-Q100 标准 - 温度等级 1: -40°C 至 125°C, TA

低导通电阻:5Ω

• 宽电源电压范围: 1.08V 至 5.5V

• 轨到轨运行

• 双向信号路径

兼容 1.8V 逻辑电平

• 失效防护逻辑

低电源电流:10nA

• 转换时间:14ns

• 先断后合开关

• ESD 保护 HBM: 2000V

• 小型 QFN 封装

2 应用

• 模拟和数字多路复用/多路信号分离

• 汽车音响主机

• 远程信息处理控制单元

• 紧急呼叫 (eCall)

• 信息娱乐系统

车身控制模块 (BCM)

• 车身电子装置和照明

电池管理系统 (BMS)

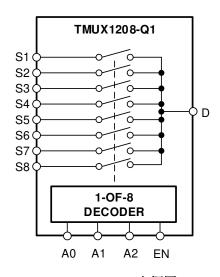
• HVAC 控制器模块

ADAS 域控制器

3 说明

TMUX1208-Q1 是一款通用互补金属氧化物半导体 (CMOS) 多路复用器 (MUX)。TMUX1208-Q1 采用 8:1 多路复用器配置,允许将8个不同的信号路径切换到 公共输出引脚。1.08V至 5.5V的宽工作电源电压范围 使其适用于具有各种电源要求的汽车应用。该器件可在 源极 (Sx) 和漏极 (D) 引脚上支持从 GND 到 V_{DD} 范围 的双向模拟和数字信号。

TMUX1208-Q1 采用小型 QFN 封装,以满足更小的系 统尺寸要求。该器件具有 5Ω 典型值的低导通电阻, 从而在器件未连接至高阻抗信号路径时将失真和信号完 整性问题的影响降至更低。


所有逻辑输入均具有{3}兼容 1.8V 逻辑{4}的阈值,当 器件在有效电源电压范围内运行时,这些阈值可确保 TTL 和 CMOS 逻辑兼容性。{5}失效防护逻辑{6}电路 允许先在控制引脚上施加电压,然后在电源引脚上施加 电压,从而保护器件免受潜在的损害。

器件信息

器件型号 ⁽¹⁾	封装	封装尺寸 (标称值)
TMUX1208-Q1	QFN (16)	2.60mm x 1.80mm

如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

TMUX1208-Q1 方框图

Table of Contents

1 特性 1	7.6 t _{ON(EN)} and t _{OFF(EN)}	15
2 应用 1	7.7 Charge Injection	
3 说明1	7.8 Off Isolation	
4 Revision History	7.9 Crosstalk	
5 Pin Configuration and Functions3	7.10 Bandwidth	. 17
Pin Functions3	8 Detailed Description	.18
6 Specifications4	8.1 Overview	. 18
6.1 Absolute Maximum Ratings4	8.2 Functional Block Diagram	. 18
6.2 ESD Ratings4	8.3 Feature Description	.18
6.3 Recommended Operating Conditions4	9 Power Supply Recommendations	
6.4 Thermal Information4	10 Layout	.22
6.5 Electrical Characteristics (VDD = 5 V ±10 %)5	10.1 Layout Guidelines	
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)7	10.2 Layout Example	
6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)9	11 Device and Documentation Support	
6.8 Electrical Characteristics (VDD = 1.2 V ±10 %) 11	11.1 Third-Party Products Disclaimer	
7 Parameter Measurement Information	11.2 Documentation Support	24
7.1 On-Resistance	11.3 Receiving Notification of Documentation Updates	
7.2 Off-Leakage Current	11.4 Support Resources	24
7.3 On-Leakage Current	11.5 Trademarks	
7.4 Transition Time	12 Electrostatic Discharge Caution	
7.5 Break-Before-Make	13 Glossary	
7.0 Broak Boloro-Wallo	- -	

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

С	hanges from Rev	vision * (Aug	gust, 2019) to Revision A (July, 2020)	Page
•	将数据表发布为	"生产数据"		1

5 Pin Configuration and Functions

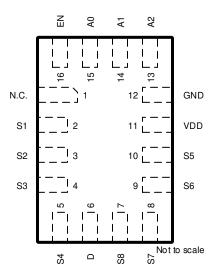


图 5-1. RSV Package 16-Pin QFN Top View

Pin Functions

PIN		TYPE(1)	DESCRIPTION		
NAME	UQFN	ITPE(')	DESCRIPTION		
A0	15	I	Address line 0. Controls the switch configuration as shown in 表 8-1.		
EN	16	I	Active high logic input. When this pin is low, all switches are turned off. When this pin is high, the A[2:0] address inputs determine which switch is turned on.		
N.C.	1	Not Connected	Not Connected		
S1	2	I/O	Source pin 1. Can be an input or output.		
S2	3	I/O	Source pin 2. Can be an input or output.		
S3	4	I/O	Source pin 3. Can be an input or output.		
S4	5	I/O	Source pin 4. Can be an input or output.		
D	6	I/O	Drain pin. Can be an input or output.		
S8	7	I/O	Source pin 8. Can be an input or output.		
S7	8	I/O	Source pin 7. Can be an input or output.		
S6	9	I/O	Source pin 6. Can be an input or output.		
S5	10	I/O	Source pin 5. Can be an input or output.		
VDD	11	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{DD} and GND.		
GND	12	Р	Ground (0 V) reference		
A2	13	1	Address line 2. Controls the switch configuration as shown in 表 8-1.		
A1	14	I	Address line 1. Controls the switch configuration as shown in 表 8-1.		

(1) I = input, O = output, I/O = input and output, P = power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2) (3)

		MIN	MAX	UNIT
V_{DD}	Supply voltage	- 0.3	6	V
V _{LOGIC}	Logic control input pin voltage (EN, A0, A1, A2)	- 0.3	6	V
I _{LOGIC}	Logic control input pin current (EN, A0, A1, A2)	- 30	30	mA
V _S or V _D	Source or drain voltage (Sx, D)	- 0.5	V _{DD} +0.5	V
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)	- 30	30	mA
I _{IK}	Diode clamp current ⁽⁴⁾	- 30	30	mA
T _{stg}	Storage temperature	- 65	150	°C
TJ	Junction temperature		150	°C

- (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) Signal path pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.

6.2 ESD Ratings

			VALUE	UNIT
V Electrostatic	Electrostatic	Human body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 2	±2000	V
V _(ESD)	discharge	Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B	±750	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{DD}	Supply voltage	1.08	5.5	V
V _S or V _D	Signal path input/output voltage (source or drain pin) (Sx, D)	0	V_{DD}	V
V _{LOGIC}	Logic control input pin voltage (EN, A0, A1, A2)	0	5.5	V
T _A	Ambient temperature	- 40	125	°C

6.4 Thermal Information

		TMUX1208-Q1	
	Junction-to-case (top) thermal resistance	RSV (QFN)	UNIT
		16 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	134.6	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	74.3	°C/W
R ₀ JB	Junction-to-board thermal resistance	62.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	4.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	61.1	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics (VDD = 5 V ±10 %)

at T_A = 25°C, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
ANALO	G SWITCH					
		V _S = 0 V to V _{DD}	25°C	5		Ω
R _{ON}	On-resistance	$I_{SD} = 10 \text{ mA}$	- 40°C to +85°C		7	Ω
		Refer to 图 7-1	- 40°C to +125°C		9	Ω
		V _S = 0 V to V _{DD}	25°C	0.15		Ω
ΔR_{ON}	On-resistance matching between channels	I _{SD} = 10 mA	- 40°C to +85°C		1	Ω
	Chambio	Refer to 图 7-1	- 40°C to +125°C		1	Ω
		$V_S = 0 \text{ V to } V_{DD}$	25°C	1.5		Ω
R _{ON} FLAT	On-resistance flatness	I _{SD} = 10 mA	- 40°C to +85°C	2		Ω
FLAI		Refer to 图 7-1	- 40°C to +125°C	3		Ω
		V _{DD} = 5 V	25°C	±75		nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch Off V _D = 4.5 V / 1 V	- 40°C to +85°C	-150	150	nA
·3(OFF)	Source of reality out of	V _S = 1 V / 4.5 V Refer to 图 7-2	- 40°C to +125°C	-175	175	nA
		V _{DD} = 5 V	25°C	±200		nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch Off $V_D = 4.5 \text{ V} / 1 \text{ V}$ $V_S = 1 \text{ V} / 4.5 \text{ V}$ Refer to $\boxed{8}$ 7-2	- 40°C to +85°C	-500	500	nA
·D(OFF)			- 40°C to +125°C	-750	750	nA
		$V_{DD} = 5 \text{ V}$ Switch On $V_{D} = V_{S} = 4.5 \text{ V} / 1 \text{ V}$ Refer to $\boxed{8}$ 7-3	25°C	±200		nA
$I_{D(ON)}$ $I_{S(ON)}$	Channel on leakage current		- 40°C to +85°C	-500	500	nA
·5(ON)			- 40°C to +125°C	-750	750	nA
LOGIC	INPUTS (EN, A0, A1, A2)					
V _{IH}	Input logic high		-40°C to 125°C	1.49	5.5	V
V_{IL}	Input logic low		-40°C to 125°C	0	0.87	٧
I _{IH} I _{IL}	Input leakage current		25°C	±0.005		μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C		±0.10	μΑ
C _{IN}	Logic input capacitance		25°C	1		pF
C _{IN}	Logic input capacitance		- 40°C to +125°C		2	pF
POWER	RSUPPLY					
I _{DD}	V _{DD} supply current	Logic inputs = 0 V or 5.5 V	25°C	0.02		μA
טטי	VDD Supply Current	Logic inputs – 0 v oi 0.0 v	- 40°C to +125°C		2.7	μΑ

at T_A = 25°C, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
DYNAM	IC CHARACTERISTICS		,			•	
		V _S = 3 V	25°C		14		ns
t _{TRAN}	Transition time between channels	R_L = 200 Ω , C_L = 15 pF	- 40°C to +85°C			33	ns
		Refer to 图 7-4	- 40°C to +125°C			33	ns
		V _S = 3 V	25°C		8		ns
t _{OPEN} (BBM)	Break before make time	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C	1			ns
(DDIVI)		Refer to 图 7-5	- 40°C to +125°C	1			ns
		V _S = 3 V	25°C		14		ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200 \Omega, C_L = 15 pF$	- 40°C to +85°C			20	ns
		Refer to 图 7-6	- 40°C to +125°C			20	ns
		V _S = 3 V	25°C		11		ns
t _{OFF(EN)}	Enable turn-off time	R_L = 200 Ω , C_L = 15 pF Refer to $27-6$	- 40°C to +85°C			20	ns
			- 40°C to +125°C			20	ns
Q _C	Charge Injection	$V_S = V_{DD}/2$ $R_S = 0$ Ω, $C_L = 1$ nF Refer to $\[\]$ 7-7	25°C		-8		pC
0	Off Isolation	R_L = 50 Ω , C_L = 5 pF f = 1 MHz Refer to $\boxed{8}$ 7-8	25°C		-62		dB
O _{ISO}		R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to 🖫 7-8	25°C		-42		dB
V	Croostally	$R_L = 50 \Omega$, $C_L = 5 pF$ f = 1 MHz Refer to $\boxed{8}$ 7-9	25°C		-62		dB
X _{TALK}	Crosstalk	R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to 图 7-9	25°C		-42		dB
BW	Bandwidth	R _L = 50 Ω , C _L = 5 pF Refer to \mathbb{R} 7-10	25°C		65		MHz
C _{SOFF}	Source off capacitance	f = 1 MHz	25°C		13		pF
C _{DOFF}	Drain off capacitance	f = 1 MHz	25°C		76		pF
C _{SON} C _{DON}	On capacitance	f = 1 MHz	25°C		85		pF

⁽¹⁾ When V_S is 4.5 V, V_D is 1.5 V or when V_S is 1.5 V, V_D is 4.5 V.

6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)

at T_A = 25°C, V_{DD} = 3.3 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN TYP	MAX	UNIT
ANALO	G SWITCH					
		V _S = 0 V to V _{DD}	25°C	9		Ω
R _{ON}	On-resistance	$I_{SD} = 10 \text{ mA}$	- 40°C to +85°C		15	Ω
		Refer to 图 7-1	- 40°C to +125°C		17	Ω
∆ R _{ON}		V _S = 0 V to V _{DD}	25°C	0.15		Ω
	On-resistance matching between channels	I _{SD} = 10 mA	- 40°C to +85°C		1	Ω
	Chambio	Refer to 图 7-1	- 40°C to +125°C		1	Ω
		$V_S = 0 \text{ V to } V_{DD}$	25°C	3		Ω
R _{ON} FLAT	On-resistance flatness	I _{SD} = 10 mA	- 40°C to +85°C	5		Ω
FLAI		Refer to 图 7-1	- 40°C to +125°C	6		Ω
		V _{DD} = 3.3 V	25°C	±75		nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch Off V _D = 3 V / 1 V	- 40°C to +85°C	-150	150	nA
IS(OFF)	Source on loanage outron	V _S = 1 V / 3 V Refer to 图 7-2	- 40°C to +125°C	-175	175	nA
		V _{DD} = 3.3 V	25°C	±200		nA
I _{D(OFF)}	Drain off leakage current ⁽¹⁾	Switch Off $V_D = 3 \text{ V} / 1 \text{ V}$ $V_S = 1 \text{ V} / 3 \text{ V}$ Refer to $\boxed{8}$ 7-2	- 40°C to +85°C	-500	500	nA
·D(OFF)			- 40°C to +125°C	-750	750	nA
		$V_{DD} = 3.3 \text{ V}$ Switch On $V_{D} = V_{S} = 3 \text{ V} / 1 \text{ V}$ Refer to $\boxed{8}$ 7-3	25°C	±200		nA
$I_{D(ON)}$ $I_{S(ON)}$	Channel on leakage current		- 40°C to +85°C	-500	500	nA
·5(ON)			- 40°C to +125°C	-750	750	nA
LOGIC	INPUTS (EN, A0, A1, A2)					
V _{IH}	Input logic high		-40°C to 125°C	1.35	5.5	V
V_{IL}	Input logic low		-40°C to 125°C	0	0.8	٧
l _{IH} I _{IL}	Input leakage current		25°C	±0.005		μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C		±0.10	μΑ
C _{IN}	Logic input capacitance		25°C	1		pF
C _{IN}	Logic input capacitance		- 40°C to +125°C		2	pF
POWER	RSUPPLY					
I _{DD}	V _{DD} supply current	Logic inputs = 0 V or 5.5 V	25°C	0.01		μA
טטי	VDD Supply Suitcht	20gio iriputo – 0 v oi 0.0 v	- 40°C to +125°C		1.5	μA

at T_A = 25°C, V_{DD} = 3.3 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
DYNAM	IC CHARACTERISTICS						
		V _S = 2 V	25°C		14		ns
t _{TRAN}	Transition time between channels	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C			25	ns
		Refer to 图 7-4	- 40°C to +125°C			25	ns
		V _S = 2 V	25°C		8		ns
t _{open} (BBM)	Break before make time	$R_L = 200 \Omega, C_L = 15 pF$	- 40°C to +85°C	1			ns
(DDIVI)		Refer to 图 7-5	- 40°C to +125°C	1			ns
		V _S = 2 V	25°C		17		ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C			25	ns
		Refer to 图 7-6	- 40°C to +125°C			25	ns
		V _S = 2 V	25°C		7		ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200 \Omega$, $C_L = 15 pF$ Refer to $27-6$	- 40°C to +85°C			13	ns
			- 40°C to +125°C			13	ns
Q _C	Charge Injection	$V_S = V_{DD}/2$ $R_S = 0$ Ω, $C_L = 1$ nF Refer to $\[\]$ 7-7	25°C		±7		рС
0	Off Isolation	R_L = 50 Ω , C_L = 5 pF f = 1 MHz Refer to $\boxed{8}$ 7-8	25°C		-62		dB
O _{ISO}		R_L = 50 $Ω$, C_L = 5 pF f = 10 MHz Refer to $\boxed{8}$ 7-8	25°C		-42		dB
v	Croostally	$R_L = 50 \Omega$, $C_L = 5 pF$ f = 1 MHz Refer to $\boxed{8}$ 7-9	25°C		-62		dB
X _{TALK}	Crosstalk	R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to 🛚 7-9	25°C		-42		dB
BW	Bandwidth	R _L = 50 Ω , C _L = 5 pF Refer to \mathbb{Z} 7-10	25°C		65		MHz
C _{SOFF}	Source off capacitance	f = 1 MHz	25°C		13		pF
C _{DOFF}	Drain off capacitance	f = 1 MHz	25°C		76		pF
C _{SON} C _{DON}	On capacitance	f = 1 MHz	25°C		85		pF

⁽¹⁾ When V_S is 3 V, V_D is 1 V or when V_S is 1 V, V_D is 3 V.

6.7 Electrical Characteristics (VDD = 1.8 V ±10 %)

at T_A = 25°C, V_{DD} = 1.8 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALO	G SWITCH						
		$V_S = 0 V \text{ to } V_{DD}$	25°C		40		Ω
R _{ON}	On-resistance	I _{SD} = 10 mA	- 40°C to +85°C			80	Ω
		Refer to 图 7-1	- 40°C to +125°C			80	Ω
		V _S = 0 V to V _{DD}	25°C		0.15		Ω
ΔR_{ON}	On-resistance matching between channels	I _{SD} = 10 mA	- 40°C to +85°C			1.5	Ω
	ond mole	Refer to 图 7-1	- 40°C to +125°C			1.5	Ω
		V _{DD} = 1.98 V	25°C		±75		nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch Off V _D = 1.8 V / 1 V	- 40°C to +85°C	-150		150	nA
-3(011)	S(OFF)	V _S = 1 V / 1.8 V Refer to 图 7-2	- 40°C to +125°C	-175		175	nA
	Drain off leakage current ⁽¹⁾	V _{DD} = 1.98 V	25°C		±200		nA
I _{D(OFF)}		Switch Off V _D = 1.8 V / 1 V	- 40°C to +85°C	-500		500	nA
'D(OFF)		V _S = 1 V / 1.8 V Refer to 图 7-2	- 40°C to +125°C	-750		750	nA
		V _{DD} = 1.98 V	25°C		±200		nA
$I_{D(ON)}$ $I_{S(ON)}$	Channel on leakage current	Switch On $V_D = V_S = 1.8 \text{ V} / 1 \text{ V}$	- 40°C to +85°C	-500		500	nA
·5(ON)		Refer to 图 7-3	- 40°C to +125°C	-750		750	nA
LOGIC	INPUTS (EN, A0, A1, A2)			•			
V _{IH}	Input logic high		- 40°C to +125°C	1.07		5.5	V
V _{IL}	Input logic low		- 40°C to +125°C	0		0.68	V
I _{IH} I _{IL}	Input leakage current		25°C	±	±0.005		μΑ
I _{IH} I _{IL}	Input leakage current		- 40°C to +125°C			±0.10	μΑ
C _{IN}	Logic input capacitance		25°C		1		pF
OIN	Logio input capacitance		- 40°C to +125°C			2	pF
POWER	SUPPLY						
loo.	V _{DD} supply current	Logic inputs = 0 V or 5.5 V	25°C		0.006		μΑ
I _{DD}	VDD Supply current	Logio iriputo – 0 v oi 3.5 v	- 40°C to +125°C			0.95	μΑ

at $T_A = 25$ °C, $V_{DD} = 1.8 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
DYNAM	IC CHARACTERISTICS						
		V _S = 1 V	25°C		28		ns
t _{TRAN}	Transition time between channels	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C			48	ns
		Refer to 图 7-4	- 40°C to +125°C			48	ns
		V _S = 1 V	25°C		16		ns
t _{open} (BBM)	Break before make time	$R_L = 200 \Omega, C_L = 15 pF$	- 40°C to +85°C	1			ns
(DDIVI)		Refer to 图 7-5	- 40°C to +125°C	1			ns
		V _S = 1 V	25°C		28		ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200 \Omega, C_L = 15 pF$	- 40°C to +85°C			48	ns
		Refer to 图 7-6	- 40°C to +125°C			48	ns
		V _S = 1 V	25°C		16		ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C			27	ns
		Refer to 图 7-6	- 40°C to +125°C			27	ns
Q _C	Charge Injection	$V_S = V_{DD}/2$ $R_S = 0 Ω$, $C_L = 1 nF$ Refer to $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	25°C		-2		рС
0	Off Isolation	R_L = 50 Ω , C_L = 5 pF f = 1 MHz Refer to $\boxed{8}$ 7-8	25°C		-62		dB
O _{ISO}		R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to 🖫 7-8	25°C		-42		dB
v	Craastally	R _L = 50 Ω , C _L = 5 pF f = 1 MHz Refer to $\boxed{8}$ 7-9	25°C		-62		dB
X _{TALK}	Crosstalk	R _L = 50 Ω , C _L = 5 pF f = 10 MHz Refer to $\boxed{8}$ 7-9	25°C		-42		dB
BW	Bandwidth	R _L = 50 Ω , C _L = 5 pF Refer to \mathbb{R} 7-10	25°C		65		MHz
C _{SOFF}	Source off capacitance	f = 1 MHz	25°C		13		pF
C _{DOFF}	Drain off capacitance	f = 1 MHz	25°C		76		pF
C _{SON} C _{DON}	On capacitance	f = 1 MHz	25°C		85		pF

⁽¹⁾ When V_S is 1.8 V, V_D is 1 V or when V_S is 1 V, V_D is 1.8 V.

6.8 Electrical Characteristics (VDD = 1.2 V ±10 %)

at T_A = 25°C, V_{DD} = 1.2 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALO	G SWITCH						
		$V_S = 0 V \text{ to } V_{DD}$	25°C		70		Ω
R _{ON}	On-resistance	I _{SD} = 10 mA	- 40°C to +85°C			105	Ω
		Refer to 图 7-1	- 40°C to +125°C			105	Ω
		V _S = 0 V to V _{DD}	25°C		0.15		Ω
ΔR_{ON}	On-resistance matching between channels	I _{SD} = 10 mA	- 40°C to +85°C			1.5	Ω
	ond moio	Refer to 图 7-1	- 40°C to +125°C			1.5	Ω
		V _{DD} = 1.32 V	25°C		±75		nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch Off V _D = 1.2 V / 1 V	- 40°C to +85°C	-150		150	nA
-3(011)	S(OFF)	V _S = 1 V / 1.2 V Refer to 图 7-2	- 40°C to +125°C	-175		175	nA
	Drain off leakage current ⁽¹⁾	V _{DD} = 1.32 V	25°C	3	±200		nA
I _{D(OFF)}		Switch Off V _D = 1.2 V / 1 V	- 40°C to +85°C	-500		500	nA
·D(OFF)		V _S = 1 V / 1.2 V Refer to 图 7-2	- 40°C to +125°C	-750		750	nA
		V _{DD} = 1.32 V	25°C	3	±200		nA
$I_{D(ON)}$ $I_{S(ON)}$	Channel on leakage current	Switch On V _D = V _S = 1.2 V / 1 V	- 40°C to +85°C	-500		500	nA
·3(ON)		Refer to 图 7-3	- 40°C to +125°C	-750		750	nA
LOGIC	INPUTS (EN, A0, A1, A2)						
V _{IH}	Input logic high		- 40°C to +125°C	0.96		5.5	V
V _{IL}	Input logic low		- 40°C to +125°C	0		0.36	V
I _{IH} I _{IL}	Input leakage current		25°C	±0	.005		μΑ
l _{IH} I _{IL}	Input leakage current		- 40°C to +125°C			±0.10	μΑ
C _{IN}	Logic input capacitance		25°C		1		pF
OIN .	Logic input capacitance		- 40°C to +125°C			2	pF
POWER	SUPPLY						
loo.	V _{DD} supply current	Logic inputs = 0 V or 5.5 V	25°C	0	.005		μΑ
I _{DD}	VDD Supply culterit	Logio iriputo – 0 v oi 3.5 v	- 40°C to +125°C			0.8	μΑ

at T_A = 25°C, V_{DD} = 1.2 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
DYNAM	IC CHARACTERISTICS		,			•	
		V _S = 1 V	25°C		60		ns
t _{TRAN}	Transition time between channels	R_L = 200 Ω , C_L = 15 pF	- 40°C to +85°C			210	ns
		Refer to 图 7-4	- 40°C to +125°C			210	ns
		V _S = 1 V	25°C		32		ns
t _{OPEN} (BBM)	Break before make time	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C	1			ns
(DDIVI)		Refer to 图 7-5	- 40°C to +125°C	1			ns
		V _S = 1 V	25°C		60		ns
t _{ON(EN)}	Enable turn-on time	$R_L = 200 \Omega$, $C_L = 15 pF$	- 40°C to +85°C			190	ns
		Refer to 图 7-6	- 40°C to +125°C			190	ns
		V _S = 1 V	25°C		45		ns
t _{OFF(EN)}	Enable turn-off time	$R_L = 200 \Omega, C_L = 15 pF$	- 40°C to +85°C			150	ns
		Refer to 图 7-6	- 40°C to +125°C			150	ns
Q _C	Charge Injection	$V_S = V_{DD}/2$ $R_S = 0 Ω$, $C_L = 1 nF$ Refer to $\boxed{8}$ 7-7	25°C		-2		pC
0	Off Isolation	R_L = 50 Ω , C_L = 5 pF f = 1 MHz Refer to $\boxed{8}$ 7-8	25°C		-62		dB
O _{ISO}		R_L = 50 $Ω$, C_L = 5 pF f = 10 MHz Refer to $\boxed{8}$ 7-8	25°C		-42		dB
V	Croostally	$R_L = 50 \Omega$, $C_L = 5 pF$ f = 1 MHz Refer to $\boxed{8}$ 7-9	25°C		-62		dB
X _{TALK}	Crosstalk	R _L = 50 Ω, C _L = 5 pF f = 10 MHz Refer to 图 7-9	25°C		-42		dB
BW	Bandwidth	R _L = 50 Ω , C _L = 5 pF Refer to \mathbb{R} 7-10	25°C		65		MHz
C _{SOFF}	Source off capacitance	f = 1 MHz	25°C		13		pF
C _{DOFF}	Drain off capacitance	f = 1 MHz	25°C		76		pF
C _{SON} C _{DON}	On capacitance	f = 1 MHz	25°C		85		pF

⁽¹⁾ When V_S is 1.2 V, V_D is 1 V or when V_S is 1 V, V_D is 1.2 V.

7 Parameter Measurement Information

7.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown below. Voltage (V) and current (I_{SD}) are measured using this setup, and R_{ON} is computed as shown in $\boxed{8}$ 7-1 with R_{ON} = V / I_{SD} :

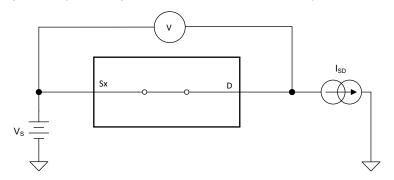


图 7-1. On-Resistance Measurement Setup

7.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- 1. Source off-leakage current
- 2. Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

The setup used to measure both off-leakage currents is shown in \textstyle 7-2.

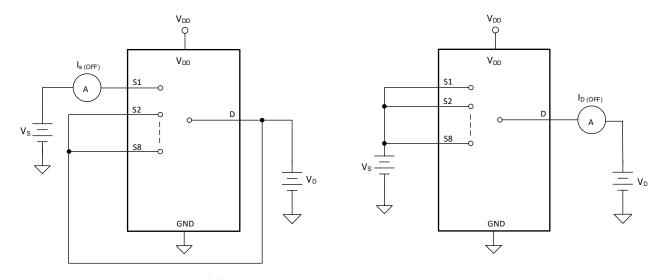


图 7-2. Off-Leakage Measurement Setup

7.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. $\boxed{8}$ 7-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

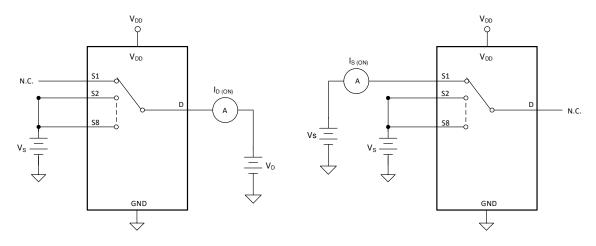


图 7-3. On-Leakage Measurement Setup

7.4 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of the device, system level timing can then account for the time constant added from the load resistance and load capacitance. $\[mathbb{R}\]$ 7-4 shows the setup used to measure transition time, denoted by the symbol treatment of th

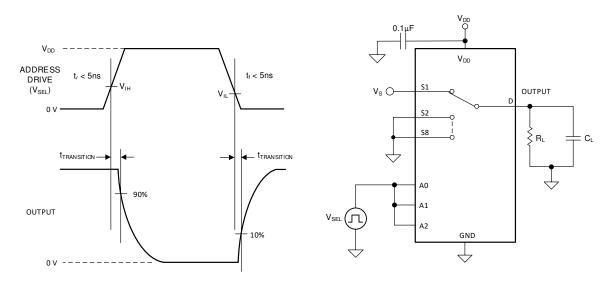


图 7-4. Transition-Time Measurement Setup

7.5 Break-Before-Make

Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay.

7-5 shows the setup used to measure break-before-make delay, denoted by the symbol topen(BBM).

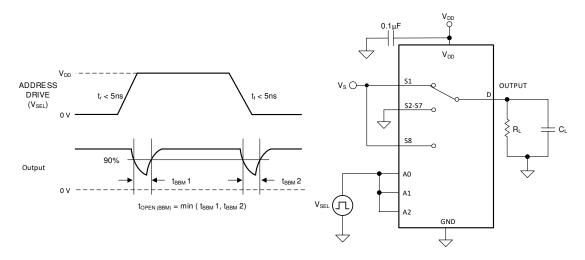


图 7-5. Break-Before-Make Delay Measurement Setup

7.6 t_{ON(EN)} and t_{OFF(EN)}

Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen past the logic threshold. The 10% measurement is utilized to provide the timing of the device, system level timing can then account for the time constant added from the load resistance and load capacitance. $\[mathbb{R}\]$ 7-6 shows the setup used to measure transition time, denoted by the symbol $t_{ON(EN)}$.

Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen past the logic threshold. The 90% measurement is utilized to provide the timing of the device, system level timing can then account for the time constant added from the load resistance and load capacitance. 87-6 shows the setup used to measure transition time, denoted by the symbol $t_{OFF(FN)}$.

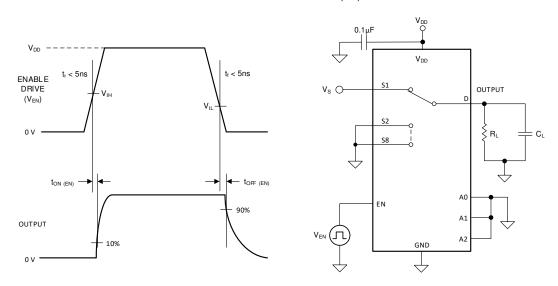


图 7-6. Turn-On and Turn-Off Time Measurement Setup

7.7 Charge Injection

The TMUX1208-Q1 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_C . 87-7 shows the setup used to measure charge injection from source (Sx) to drain (D).

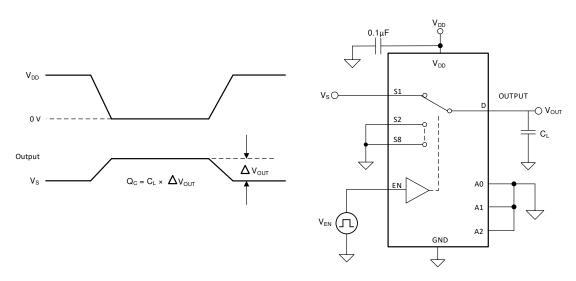


图 7-7. Charge-Injection Measurement Setup

7.8 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. 27-8 shows the setup used to measure, and the equation to compute off isolation.

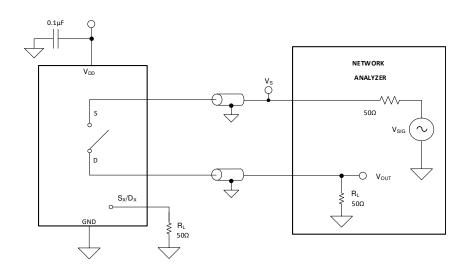


图 7-8. Off Isolation Measurement Setup

Off Isolation =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (1)

7.9 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. 37-9 shows the setup used to measure, and the equation used to compute crosstalk.

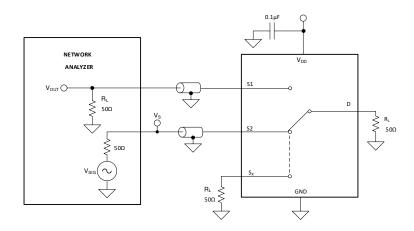


图 7-9. Channel-to-Channel Crosstalk Measurement Setup

Channel-to-Channel Crosstalk =
$$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$
 (2)

7.10 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device.

7-10 shows the setup used to measure bandwidth.

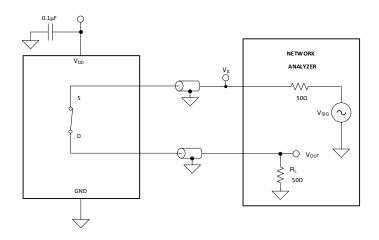
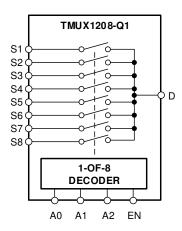


图 7-10. Bandwidth Measurement Setup


Attenuation =
$$20 \cdot \text{Log}\left(\frac{V_2}{V_1}\right)$$
 (3)

8 Detailed Description

8.1 Overview

The TMUX1208-Q1 is an 8:1, single-ended (1-channel), mux. Each channel is turned on or off based on the state of the address lines and enable pin.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Bidirectional Operation

The TMUX1208-Q1 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

8.3.2 Rail to Rail Operation

The valid signal path input/output voltage for TMUX1208-Q1 ranges from GND to V_{DD}.

8.3.3 1.8 V Logic Compatible Inputs

The TMUX1208-Q1 has 1.8-V logic compatible control for all logic control inputs. The logic input thresholds scale with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level inputs allows the multiplexers to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches

8.3.4 Fail-Safe Logic

The TMUX1208-Q1 has Fail-Safe Logic on the control input pins (EN, A0. A1, A2) allowing for operation up to 5.5 V, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the select pins of the TMUX1208-Q1 to be ramped to 5.5 V while $V_{DD} = 0$ V. Additionally, the feature enables operation of the multiplexers with $V_{DD} = 1.2$ V while allowing the select pins to interface with a logic level of another device up to 5.5 V.

8.3.5 Device Functional Modes

When the EN pin of the TMUX1208-Q1 is pulled high, one of the switches is closed based on the state of the address lines. When the EN pin is pulled low, all the switches are in an open state regardless of the state of the address lines.

The TMUX1208-Q1 can be operated without any external components except for the supply decoupling capacitors. Unused logic control pins should be tied to GND or V_{DD} in order to ensure the device does not consume additional current as highlighted in *Implications of Slow or Floating CMOS Inputs*. Unused signal path inputs (Sx or D) should be connected to GND.

8.3.6 Truth Tables

表 8-1 shows the truth tables for the TMUX1208-Q1.

表 8-1. TMUX1208-Q1 Truth Table

EN	A2	A1	A0	Selected Inputs Connected To Drain (D) Pin
0	X ⁽¹⁾	X ⁽¹⁾	X ⁽¹⁾	All channels are off
1	0	0	0	S1
1	0	0	1	S2
1	0	1	0	S3
1	0	1	1	S4
1	1	0	0	S 5
1	1	0	1	S6
1	1	1	0	S7
1	1	1	1	S8

(1) X denotes don't care.

Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TMUX12xx family offers good system performance across a wide operating supply (1.08 V to 5.5 V). These devices include 1.8 V logic compatible control input pins that enable operation in systems with 1.8 V I/O rails. Additionally, the control input pins support Fail-Safe Logic which allows for operation up to 5.5 V, regardless of the state of the supply pin. This protection stops the logic pins from back-powering the supply rail. These features make the TMUX12xx a family of general purpose multiplexers and switches that can reduce system complexity, board size, and overall system cost.

9.2 Typical Application

One useful application to take advantage of the TMUX1208-Q1 features is multiplexing various signals into an ADC that is integrated into a MCU. Using an integrated ADC in a MCU allows a system to minimize cost with a potential tradeoff of system performance when compared to an external ADC. The multiplexer allows for multiple inputs/sensors to be monitored with a single ADC pin of the device, which is critical in systems with limited I/O.

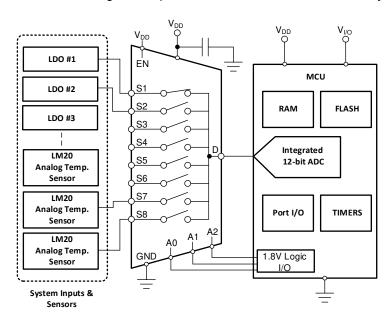


图 9-1. Multiplexing Signals to Integrated ADC

9.3 Design Requirements

For this design example, use the parameters listed in \pm 9-1.

表 9-1. Design Parameters

PARAMETERS	VALUES				
Supply (V _{DD})	5.0 V				
I/O signal range	0 V to V _{DD} (Rail to Rail)				
Control logic thresholds	1.8 V compatible				

9.4 Detailed Design Procedure

The TMUX1208-Q1 can be operated without any external components except for the supply decoupling capacitors. If the parts desired power-up state is disabled, the enable pin should have a weak pull-down resistor and be controlled by the MCU via GPIO. All inputs being muxed to the ADC of the MCU must fall within the recommend operating conditions of the TMUX1208-Q1 including signal range and continuous current. For this design with a supply of 5 V, the signal range can be 0 V to 5 V and the max continuous current can be 30 mA.

9.5 Application Curve

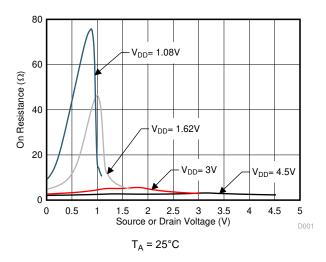
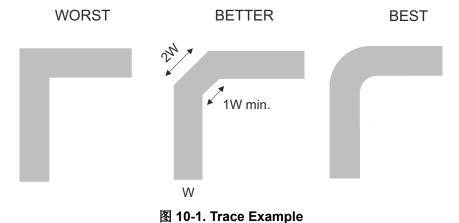


图 9-2. On-Resistance vs Source or Drain Voltage

9 Power Supply Recommendations

The TMUX1208-Q1 operate across a wide supply range of 1.08 V to 5.5 V. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{DD} supply to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F from V_{DD} to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground planes.


10 Layout

10.1 Layout Guidelines

10.1.1 Layout Information

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self – inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners.

10-1 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

10.1.2

☑ 10-2 illustrates an example of a PCB layout with the TMUX1208-Q1. Some key considerations are:

- Decouple the V_{DD} pin with a 0.1- μ F capacitor, placed as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the V_{DD} supply.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

10.2 Layout Example

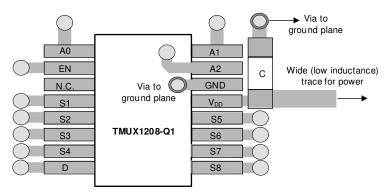


图 10-2. TMUX1208-Q1 Layout Example

11 Device and Documentation Support

11.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Documentation Support

11.2.1 Related Documentation

Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.

Texas Instruments, QFN/SON PCB Attachment.

Texas Instruments, Quad Flatpack No-Lead Logic Packages.

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将独自承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于开发本资源所述的使用 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 () 或 TI.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020,德州仪器 (TI) 公司

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TMUX1208QRSVRQ1	ACTIVE	UQFN	RSV	16	3000	RoHS & Green	(6) NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	208Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

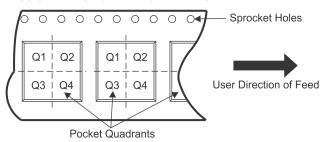
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

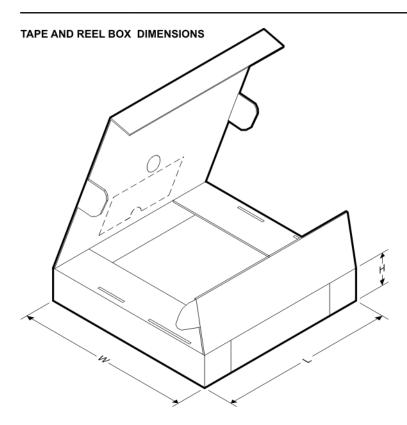
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 25-Aug-2020


TAPE AND REEL INFORMATION

A0	<u> </u>
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

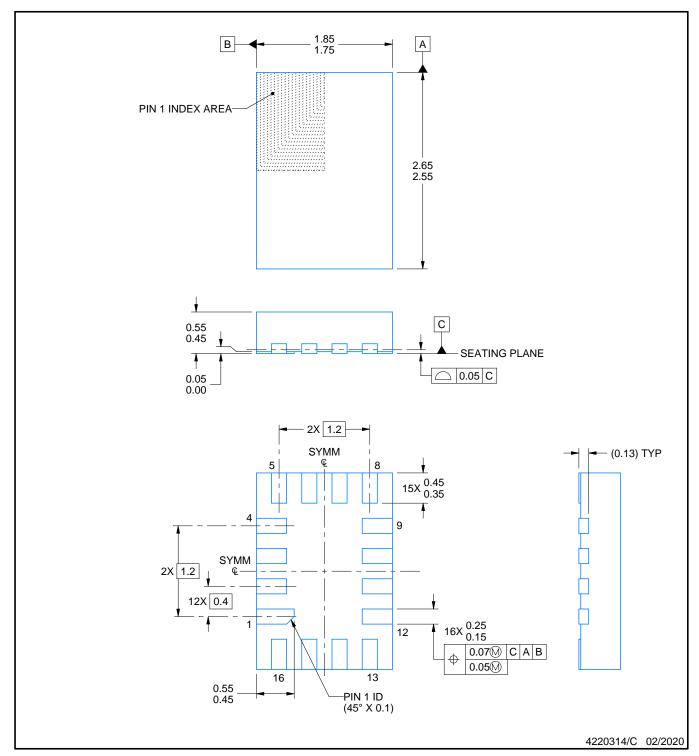


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX1208QRS\	'RQ1 UQFN	RSV	16	3000	178.0	13.5	2.1	2.9	0.75	4.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

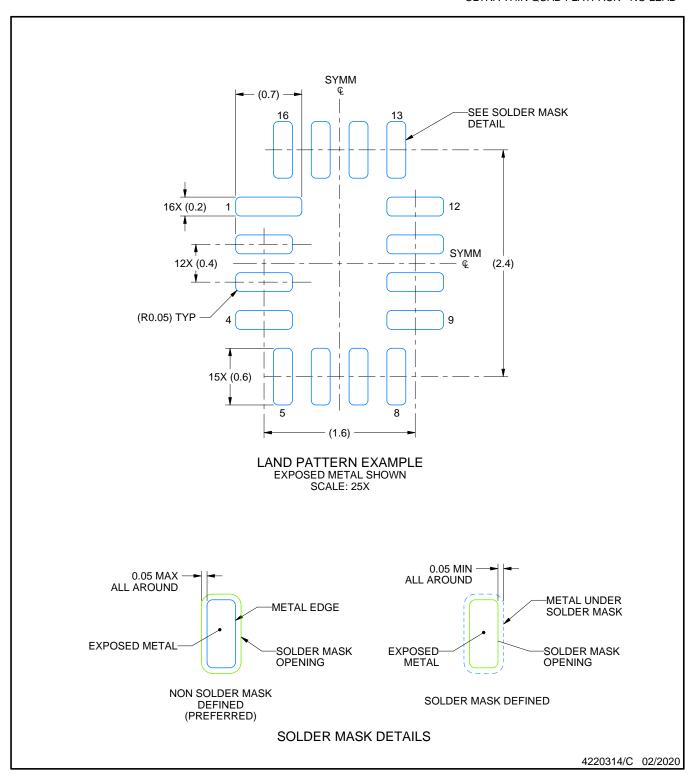
www.ti.com 25-Aug-2020



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX1208QRSVRQ1	UQFN	RSV	16	3000	189.0	185.0	36.0

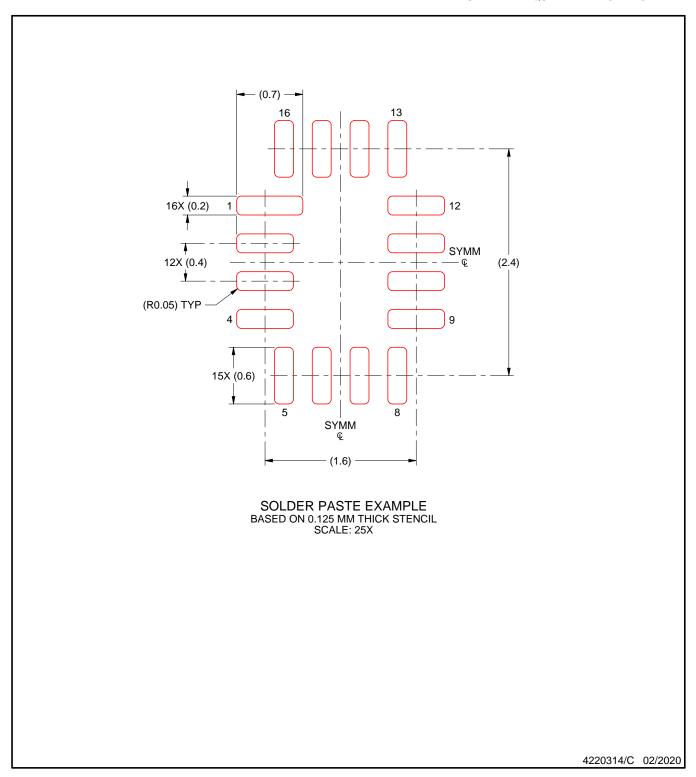
ULTRA THIN QUAD FLATPACK - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.

ULTRA THIN QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

ULTRA THIN QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司

单击下面可查看定价,库存,交付和生命周期等信息

>>TI (德州仪器)