

TPS65994AD

ZHCSLY5A - AUGUST 2020 - REVISED JULY 2021

具有集成电源开关、支持 USB4 和交替模式的 USB Type-TPS65994AD 双端口、 C[®]和 USB PD 控制器

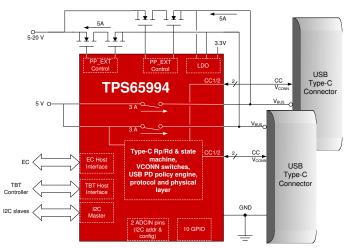
1 特性

TEXAS

INSTRUMENTS

- 该器件由 USB-IF 进行了 PD3.0 认证
 - 认证新的 USB PD 设计时需使用 PD3.0 器件
 - TID# : 3495
 - 有关 PD2.0 与 PD3.0 的文章
- TPS65994AD 是完全可配置的双端口 USB4 和 Thunderbolt 4 (TBT4) PD3.0 控制器
 - 此器件可用于 USB4 主机和器件设计
 - 支持工业工作温度范围
 - 用于为各种应用轻松配置 TPS65994AD 的 GUI 工具
 - 支持 DisplayPort 拉电流、Thunderbolt 和用户 可配置交替模式
 - 有关更详尽的选择指南和入门信息,请参阅 www.ti.com/usb-c 和 E2E 指南
- 完全管理的集成电源路径:
 - 集成两个 5V、3A、38m Ω 电源开关
 - UL2367 认证编号: E169910
 - IEC62368-1 认证编号: US-34737-M3-UL
- 集成强大的电源路径保护
 - 为拉电流路径集成了过压保护、欠压保护、反向 电流保护和可调节限流功能
 - 为灌电流路径集成了过压保护、欠压保护和反向 电流保护
- USB Type-C[®] 功率传输 (PD) 控制器
 - 10 个可配置 GPIO
 - 符合 USB PD 3.0 标准
 - 符合 USB Type-C 规范
 - 线缆连接和方向检测
 - 集成式 VCONN 开关
 - 集成式无电电池 Rd
 - 物理层和策略引擎
 - 3.3V LDO 输出,在电池电量耗尽时提供支持
 - 通过 3.3V 或 VBUS 源供电
 - 1个 I2C 主端口
 - 2个 I2C 次级端口

2 应用


- PC 和笔记本电脑
- 耐用 PC 和笔记本电脑
- 单板计算机
- 集线站
- 平板监视器

3 说明

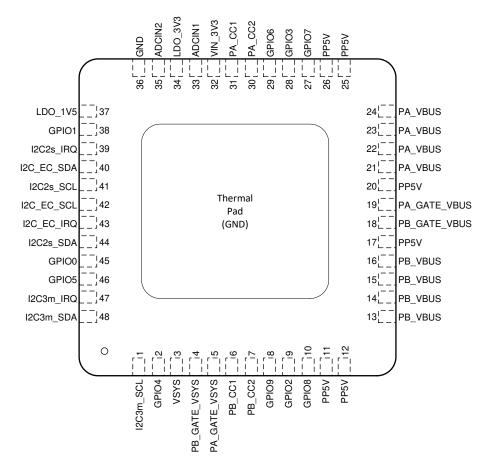
TPS65994AD 是一款高度集成的独立式双端口 USB Type-C 和电力输送 (PD) 控制器,针对 PC 和笔记本 电脑应用进行了优化。TPS65994AD 集成了完全管理 的电源路径与强大的保护功能,可提供完整的 USB-C PD 解决方案。 TPS65994AD Intel 和 AMD 的 PC 和 笔记本电脑终端设备参考设计使用了此器件,确保 PD 控制器在这类设计中提供适当的系统级交互。此功能显 著降低系统设计的复杂性,并缩短上市时间。

	器件信息	
器件型号 ⁽¹⁾	封装	封装尺寸(标称值)
TPS65994AD	QFN (RSL)	6.0mm × 6.0mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1) 录。

Table of Contents

1	特性1	
	应用1	
3	说明1	
4	Revision History2	
5	Pin Configuration and Functions3	
6	Specifications5	
	6.1 Absolute Maximum Ratings5	
	6.2 ESD Ratings5	
	6.3 Recommended Operating Conditions6	
	6.4 Recommended Capacitance6	
	6.5 Thermal Information6	
	6.6 Power Supply Characteristics	
	6.7 Power Consumption	
	6.8 PP_5V Power Switch Characteristics	
	6.9 PP_EXT Power Switch Characteristics	
	6.10 Power Path Supervisory	
	6.11 CC Cable Detection Parameters	
	6.12 CC VCONN Parameters 12 6.13 CC PHY Parameters 12	
	6.14 Thermal Shutdown Characteristics	
	6.15 ADC Characteristics	
	6.16 Input/Output (I/O) Characteristics	
	6.17 I2C Requirements and Characteristics	
	6.18 Typical Characteristics	
7	Parameter Measurement Information	
-	Detailed Description	
č	8.1 Overview	


8.2 Functional Block Diagram	19
8.3 Feature Description.	
8.4 Device Functional Modes	
9 Application and Implementation	42
9.1 Application Information	
9.2 Typical Application	
10 Power Supply Recommendations	49
10.1 3.3-V Power	
10.2 1.5-V Power	
10.3 Recommended Supply Load Capacitance	49
11 Layout	50
11.1 Layout Guidelines	
11.2 Layout Example	50
11.3 Component Placement	50
11.4 Routing PP_5V, VBUS, VIN_3V3, LDO_3V3,	
LDO_1V5	52
11.5 Routing CC and GPIO	54
12 Device and Documentation Support	56
12.1 Device Support	56
12.2 Documentation Support	<mark>56</mark>
12.3 支持资源	56
12.4 Trademarks	56
12.5 Electrostatic Discharge Caution	<mark>56</mark>
12.6 术语表	56
13 Mechanical, Packaging, and Orderable	
Information	56
13.1 Package Option Addendum	57
. .	

4 Revision History

Cł	hanges from Revision * (August 2020) to Revision A (July 2021)	Page
•	更改了 <i>特性</i> 列表	1
•	更新了 <i>应用</i> 部分	1
•	更新了 <i>说明</i> 部分	1

5 Pin Configuration and Functions

图 5-1. RSL Package 48-pin QFN Top View

表 5-1. Pin Functions

PIN				Description
NAME	NO.		RESET	Description
ADCIN1	33	I	Hi-Z	Configuration input. Connect to a resistor divider to LDO_3V3.
ADCIN2	35	I	Hi-Z	Configuration input. Connect to a resistor divider to LDO_3V3.
GND	36	_	—	Ground. Connect to ground plane.
GPIO0	45	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused. May be used as DisplayPort HPD signal for Port B.
GPIO1	38	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused. May be used as DisplayPort HPD signal for Port A.
GPIO2	9	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused.
GPIO3	28	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused.
GPIO4	2	I/O	Hi-Z	General purpose digital I/O. May be used as an ADC input. Tie to PP5V or ground when unused.
GPIO5	46	I/O	Hi-Z	General purpose digital I/O. May be used as an ADC input. Tie to PP5V or ground when unused.
GPIO6	29	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused.
GPIO7	27	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused.
GPIO8	10	I/O	Hi-Z	General purpose digital I/O. Tie to PP5V or ground when unused.

	表 5-1. Pin Functions (continued)						
PI	N	TYPE RESET	RESET	Description			
NAME	NO.			Description			
GPIO9	8	0	Hi-Z	General purpose digital output. Tie to PP5V or ground when unused.			
I2C_EC_SCL	42	I	Hi-Z	I2C slave serial clock input. Tie to pullup voltage through a resistor. May be grounded if unused. Connect to Embedded Controller (EC).			
I2C_EC_SDA	40	I/O	Hi-Z	I2C slave serial data. Open-drain input/output. Tie to pullup voltage through a resistor. May be grounded if unused. Connect to Embedded Controller (EC).			
I2C_EC_IRQ	43	0	Hi-Z	I2C slave interrupt. Active low. Connect to external voltage through a pull-up resistor. Connect to Embedded Controller (EC). This can be re-configured to GPIO10. May be grounded if unused.			
I2C2s_SCL	41	I	Hi-Z	I2C slave serial clock input. Tie to pull-up voltage through a resistor. May be grounded if unused.			
I2C2s_SDA	44	I/O	Hi-Z	I2C slave serial data. Open-drain input/output. Tie to pullup voltage through a resistor. May be grounded if unused.			
I2C2s_IRQ	39	0	Hi-Z	I2C slave interrupt. Active low. Connect to external voltage through a pull-up resistor. Tie to PP5V or ground when unused. This can be re-configured to GPIO11.			
I2C3m_SCL	1	0	Hi-Z	I2C master serial clock. Open-drain output. Tie to pullup voltage through a resistor when used or unused.			
I2C3m_SDA	48	I/O	Hi-Z	I2C master serial data. Open-drain input/output. Tie to pullup voltage through a resistor when used or unused.			
l2C3m_IRQ	47	I	Hi-Z	I2C master interrupt. Active low. Connect to external voltage through a pull-up resistor. Tie to PP5V or ground when unused. This can be re-configured to GPIO12.			
LDO_1V5	37	0	_	Output of the CORE LDO. Bypass with capacitance C_{LDO_1V5} to GND. This pin cannot source current to external circuits.			
LDO_3V3	34	0	_	Output of supply switched from VIN_3V3 or VBUS LDO. Bypass with capacitance C _{LDO_3V3} to GND.			
PA_CC1	31	I/O	Hi-Z	I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to GND (C_{Px_CCy}).			
PA_CC2	30	I/O	Hi-Z	I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to GND (C_{Px_CCy}).			
PA_GATE_VSYS	5	0	Hi-Z	Connect to the PortA N-ch MOSFET that has source tied to VSYS.			
PA_GATE_VBUS	19	0	Hi-Z	Connect to the N-ch MOSFET that has source tied to PA_VBUS.			
PA_VBUS	21,22,23,24	I/O	_	5-V to 20-V input or 5-V output from PP5V. Bypass with capacitance C_{VBUS} to GND.			
PB_CC1	6	I/O	Hi-Z	I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to GND (C_{Px_CCy}).			
PB_CC2	7	I/O	Hi-Z	I/O for USB Type-C and USB PD. Filter noise with recommended capacitor to GND ($C_{Px CCV}$).			
PB_GATE_VSYS	4	0	Hi-Z	Connect to the Port B N-ch MOSFET that has source tied to VSYS.			
PB_GATE_VBUS	18	0	Hi-Z	Connect to the N-ch MOSFET that has source tied to PB_VBUS.			
PB_VBUS	13,14,15,16	I/O	-	5-V to 20-V input or 5-V output from PP5V. Bypass with capacitance C_{VBUS} to GND.			
PP5V	11,12,17,20,25, 26	I	_	5-V System Supply to VBUS, supply for Px_CCy pins as VCONN.			
VSYS	3	I	_	High-voltage sinking node in the system. It is used to implement reverse- current-protection (RCP) for the external sinking paths controlled by PA_GATE_VSYS and PB_GATE_VSYS.			
VIN_3V3	32	I	_	Supply for core circuitry and I/O. Bypass with capacitance C_{VIN_3V3} to GND.			

表 5-1. Pin Functions (continued)

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
	PP5V	- 0.3	6		
	VIN_3V3	- 0.3	4	V	
	ADCIN1, ADCIN2	- 0.3	4		
	VSYS, PA_VBUS, PB_VBUS ⁽⁴⁾	- 0.3	28		
Input voltage range ⁽²⁾	PA_CC1, PA_CC2, PB_CC1, PB_CC2	- 0.5	6		
	GPIO0-GPIO9, I2C_EC_IRQ, I2C2s_IRQ, I2C3m_IRQ	-0.3	6	V	
	I2C_EC_SDA, I2C_EC_SCL,I2C2s_SDA, I2C2s_SCL, I2C3m_SDA, I2C3m_SCL	- 0.3	4		
Q (2)	LDO_1V5 ⁽³⁾	- 0.3	2		
Output voltage range ⁽²⁾	LDO_3V3 ⁽³⁾	- 0.3	4	V	
Output voltage range ⁽²⁾	PA_GATE_VBUS, PA_GATE_VSYS, PB_GATE_VBUS, PB_GATE_VSYS ⁽³⁾	- 0.3	40	V	
V _{GS}	V _{Px_GATE_VBUS} - V _{Px_VBUS} , V _{Px_GATE_SYS} - V _{VSYS}	- 0.5	12	V	
	Source or sink current PA_VBUS, PB_VBUS	internally limited			
	Positive source current on PA_CC1, PA_CC2, PB_CC1, PB_CC2		1		
Source current	Positive sink current on PA_CC1, PA_CC2, PB_CC1, PB_CC2 while VCONN switch is enabled	1		A	
	GPIO0-GPIO9		0.005		
	positive sink current for I2C_EC_SDA, I2C_EC_SCL, I2C2s_SDA, I2C2s_SCL, I2C3m_SDA, I2C3m_SCL,	internally limited			
	positive source current for LDO_3V3, LDO_1V5	inter	nally limited		
T _J Operating junction tempe	erature	- 40	175	°C	
T _{STG} Storage temperature		- 55	150	°C	

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network GND. Connect the GND pin directly to the GND plane of the board.

(3) Do not apply voltage to these pins.

(4) For Px_VBUS a TVS with a break down voltage falling between the Recommended max and the Abs max value is recommended such as TVS2200. For Px_VBUS a Schottky diode is recommended to ensure the MIN voltage is not violated.

6.2 ESD Ratings

	PARAMETER	TEST CONDITIONS	VALUE	UNIT
		Human body model (HBM), per ANSI/ ESDA/JEDEC JS-001, all pins ⁽¹⁾	±1000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specificationJESD22-C101, all pins ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
		VIN_3V3	3.0	3.6	
VI	Input voltage range ⁽¹⁾	PP5V ⁽²⁾	4.9	5.5	V
		PA_VBUS, PB_VBUS ⁽³⁾	4	22	
VI	Input voltage range ⁽¹⁾	VSYS	0	22	V
V _{IO}		I2Cx_SDA, I2Cx_SCL, ADCIN1, ADCIN2	0	3.6	
	I/O voltage range ⁽¹⁾	GPIOx, I2C_EC_IRQ, I2C2s_IRQ, I2C3m_IRQ	0	5.5	V
		PA_CC1, PA_CC2, PB_CC1, PB_CC2	0	5.5	
		PA_VBUS, PB_VBUS		3	А
lo	Output current (from PP5V)	PA_CC1, PA_CC2, PB_CC1, PB_CC2		315	mA
I _O	Output current (from LDO_3V3)	GPIOx		1	mA
Io	Output current (from VBUS LDO)	sum of current from LDO_3V3 and GPIO0-9.		5	mA
T _A	Ambient operating temperature	$\label{eq:IPP_5Vx} \begin{split} I_{\text{PP}_5\text{Vx}} &\leqslant 1.5 \text{ A}, \ I_{\text{PP}_5\text{Vy}} &\leqslant 3.0 \text{ A}, \\ I_{\text{PP}_CABLEx} &\leqslant 315 \text{ mA} \end{split}$	- 40	105	°C
		$I_{PP_5Vx} \leqslant 3.0$ A, $I_{PP_CABLEx} \leqslant 315$ mA	- 40	85	0
TJ	Operating junction temperature		- 40	125	°C

(1) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board.

(2) Maximum current sourced from PP5V to PA_VBUS or PB_VBUS. Resistance from Px_VBUS to Type-C connector less than or equal 30 mΩ. Short all PP5V bumps together.

(3) All PA_VBUS bumps should be shorted together. All PB_VBUS bumps should be shorted together.

6.4 Recommended Capacitance

over operating free-air temperature range (unless otherwise noted)

	PARAMETER ⁽¹⁾	VOLTAGE RATING	MIN	NOM	MAX	UNIT
C _{VIN_3V3}	Capacitance on VIN_3V3	6.3 V	5	10		μF
C _{LDO_3V3}	Capacitance on LDO_3V3	6.3 V	5	10	25	μF
C _{LDO_1V5}	Capacitance on LDO_1V5	4 V	4.5		12	μF
C _{Px_VBUS}	Capacitance on VBUS ⁽⁴⁾	25 V	1	4.7	10	μF
C _{PP5V}	Capacitance on PP5V	10 V	120 ⁽²⁾			μF
C _{VSYS}	Capacitance on VSYS Sink from VBUS	25 V		47	100	μF
C _{Px_CCy}	Capacitance on Px_CCy pins ⁽³⁾	6.3 V	200	320	480	pF

(1) Capacitance values do not include any derating factors. For example, if 5.0 μF is required and the external capacitor value reduces by 50% at the required operating voltage, then the required external capacitor value would be 10 μF.

(2) This is a requirement from USB PD (cSrcBulkShared). Keep at least 10 µF tied directly to PP5V.

(3) This includes all capacitance to the Type-C receptacle.

(4) The device can be configured to quickly disable PP_EXT upon certain events. When such a configuration is used, a capacitance on the higher side of this range is recommended.

6.5 Thermal Information

		DEVICE	
т	HERMAL METRIC	QFN (RSL)	UNIT
		48 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	26.8	°C/W
R _{θ JC} (top)	Junction-to-case (top) thermal resistance	15.4	°C/W

6 Submit Document Feedback

6.5 Thermal Information (continued)

		DEVICE	
THERM	AL METRIC	QFN (RSL)	UNIT
		48 PINS	1
R _{θ JB}	Junction-to-board thermal resistance	8.5	°C/W
ΨJT	Junction-to-top characterization parameter	0.2	°C/W
ψ _{JB}	Junction-to-board characterization parameter	8.5	°C/W
R _{θ JC} (bottom)	Junction-to-case (bottom GND pad) thermal resistance	1.8	°C/W

6.6 Power Supply Characteristics

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIN_3V3, Px_VBUS						
V _{VIN3V3_UVLO}	voltage required on VIN_3V3 for power on	rising, $V_{Px_VBUS}=0$	2.56	2.66	2.76	
		falling, V _{Px_VBUS} =0	2.44	2.54	2.64	V
		hysteresis		0.12		
V _{VBUS_UVLO}		rising	3.6		3.9	
	UVLO comparator for Px_VBUS	falling	3.5		3.8	V
		hysteresis		0.1		
LDO_3V3, LDO_1V5	·					
V _{LDO_3V3}	voltage on LDO_3V3	$ \begin{array}{l} V_{VIN_3V3} = 0 \text{V}, \ \text{I}_{\text{LDO}_3V3} \leqslant 5 \ \text{mA}, \\ V_{\text{PA}_VBUS} \geqslant 3.9 \text{V} \ \text{or} \ \text{V}_{\text{PB}_VBUS} \geqslant \\ 3.9 \text{V} \end{array} $	2.7	3.4	3.6	V
R _{LDO_3V3}	Rdson of VIN_3V3 to LDO_3V3	I _{LDO_3V3} =50mA			1.5	Ω
V _{LDO_1V5}	Output voltage of LDO_1V5	up to maximum internal loading condition.		1.55		V

6.7 Power Consumption

Operating under these conditions unless otherwise noted: 3.0 V \leqslant V_{VIN 3V3} \leqslant 3.6 V, no loading on GPIO pins

P	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{VIN_3V3,ActSrc}	current into VIN_3V3	Active Source mode: V _{PP5V} =5.0V, V _{VIN_3V3} =3.3V		4.5	12	mA
I _{VIN_3V3,ActSnk}	current into VIN_3V3	$ \begin{array}{l} \mbox{Active Sink mode: } 22V \geqslant V_{PA_VBUS} \geqslant 4.0V, 22V \geqslant \\ V_{PB_VBUS} \geqslant 4.0V, V_{VIN_3V3} = 3.3V \end{array} $		4.8	12	mA
I _{VSYS}	current into VSYS			10		μA
I _{VIN_3V3,IdlSrc}	current into VIN_3V3	Idle Source mode: V_{PA_VBUS} =5.0V, V_{PB_VBUS} =5.0V, V_{VIN_3V3} =3.3V		1.1		mA
I _{VIN_3V3,IdlSnk}	current into VIN_3V3	$ Idle \; Sink \; mode: \; 22V \geqslant V_{PA_VBUS} \geqslant 4.0V, \; 22V \geqslant V_{PB_VBUS} \\ \geqslant 4.0V, \; V_{VIN_3V3} \text{=} \; 3.3V $		1.1		mA
P _{MstbySnk}	Power drawn into PP5V and VIN_3V3 in Modern Standby Sink Mode	Modern Standby Sink Mode: $V_{PP5V} = 5V$, $V_{VIN_{3V3}}=3.3V$, $V_{PA_{VBUS}}=5.0V$, $V_{PB_{VBUS}}=0V$		3.7		mW
P _{MstbySrc}	Power drawn into PP5V and VIN_3V3 in Modern Standby Source Mode	Modern Standby Source Mode: V_{PP5V} = 5V, $V_{VIN_{3V3}}$ =3.3V, $I_{Px_{VBUS}}$ =0		4.5		mW
I _{VIN_3V3,Sleep}	current into VIN_3V3	Sleep mode: V_{PA_VBUS}=0V, V_{PB_VBUS}=0V, V_{VIN_3V3}=3.3V, T_J $\leqslant 25~^{o}\text{C}$		67		μA

6.8 PP_5V Power Switch Characteristics

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I _{LOAD} = 3 A, T _J ≤25°C		37.7	41.5	
R _{PP_5V}	Resistance from PP5V to Px_VBUS	I _{LOAD} = 3 A, T _J ≤125°C		37.7	57	mΩ
PP5V_REV	Px_VBUS to PP5V leakage current	$V_{PP5V} = 0V, V_{Px_VBUS} = 5.5V, PP_5V disabled, T_J \leq 85^{\circ}C, measure I_{PP5V}$		0	3	μA
PP5V_FWD	PP5V to Px_VBUS leakage current	$V_{PP5V} = 5.5V, V_{Px_VBUS} = 0V, PP_5V disabled, T_J \leq 85^{\circ}C, measure I_{Px_VBUS}$		0	15	μA
LIM5V	Current limit setting	Configure to setting 0	1.15		1.36	А
LIM5V	Current limit setting	configure to setting 1	1.61		1.90	А
LIM5V	Current limit setting	configure to setting 2	2.3		2.70	А
LIM5V	Current limit setting	configure to setting 3	3.04		3.58	А
LIM5V	Current limit setting	configure to setting 4	3.22		3.78	А
Px_VBUS	PP5V to Px_VBUS current sense accuracy	$\begin{array}{l} 3.0A \geqslant I_{Px_VBUS} \geqslant 1A, \\ V_{VIN_3V3} = 3.3V \end{array}$	2.8	3.4	4.1	A/V
Vpp_5v_rcp	$\begin{array}{c c} RCP \ clears \ and \ PP_5Vx \ starts \\ turning \ on \ when \ V_{Px_VBUS} \ ^- \ V_{PP5V} < \\ V_{PP_5V_RCP}. \ Measure \ V_{Px_VBUS} \ ^- \\ V_{PP5V} \end{array}$		10	15	20	mV
tiOS_PP_5V	response time to VBUS short circuit	Px_VBUS to GND through $10m \Omega$, C _{Px_VBUS} =0		1.15		μs
tPP_5V_ovp	response time to V _{Px_VBUS} > V _{OVP4RCP}	Enable PP_5Vx, ramp V _{Px_VBUS} from 4V to 20V at 100 V/ms		4.5		μs
tPP_5V_uvlo	response time to V_{PP5V} < V_{PP5V_UVLO} , PP_VBUS is deemed off when V_{Px_VBUS} < 0.8V	R _L = 100 Ω, no external capacitance on Px_VBUS		4		μs
PP_5V_rcp	response time to V _{PP5V} < V _{Px_VBUS} +V _{PP_5V_RCP}	V _{PP5V} =5.5V,enable PP_5Vx, ramp V _{Px_VBUS} from 4V to 21.5V at 10 V/µs		0.7		μs
^t FRS_on	Time allowed to enable the pass FET in PP_5Vx with 3A current limit.	$\begin{array}{l} \mbox{Initial $V_{Px_VBUS} = 0V$, $2\mu F$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$		54	150	μs
^t ILIM	Current clamping deglitch time			5		ms
ton	from enable signal to Px_VBUS at 90% of final value	$R_L = 100 \Omega$, $V_{PP5V} = 5V$, $C_L=0$	2.6	3.5	4.4	ms
t _{OFF}	from disable signal to Px_VBUS at 10% of final value	$R_L = 100 \Omega$, $V_{PP5V} = 5V$, $C_L=0$	0.30	0.45	0.6	ms
IRISE	Px_VBUS from 10% to 90% of final value	$R_L = 100 \Omega$, $V_{PP5V} = 5V$, $C_L=0$	1.2	1.7	2.2	ms
FALL	Px_VBUS from 90% to 10% of initial value	R _L = 100 Ω , V _{PP5V} = 5V, C _L =0	0.06	0.1	0.14	ms

6.9 PP_EXT Power Switch Characteristics

Operating under these	conditions unloss	othonwico notod	301/	< M	< 3.6.1/
Operating under these	conditions unless	s otherwise noted.	. 3.U V		3V3 ≪ 3.0 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Cate driver coursing current	$\begin{array}{l} 0 \leqslant V_{Px_GATE_VSYS} - V_{VSYS} \\ \leqslant 6 \ V, \ 0 \ V \leqslant V_{VSYS} \leqslant 22 \\ V, \ V_{Px_VBUS} > 4 \ V, \ measure \\ I_{Px_GATE_VSYS} \end{array}$	8.5	10	11.5	μA
Px_GATE_ON	Gate driver sourcing current	$\begin{array}{l} 0 \leqslant V_{Px_GATE_VBUS} \\ V_{Px_VBUS} \leqslant 6 \text{ V}, 4 \text{ V} \leqslant \\ V_{Px_VBUS} \leqslant 22 \text{ V}, \text{measure} \\ I_{Px_GATE_VBUS} \end{array}$	8.5	10	11.5	μΑ
V _{Px_GATE_ON} sourcing voltage (ON)		$\begin{array}{l} 0 \leqslant V_{VSYS} \leqslant 22 \text{ V}, \\ I_{Px_GATE_VSYS} < 4 \ \mu\text{A}, \\ \text{measure } V_{Px_GATE_VSYS} \ ^- \\ V_{VSYS}, V_{Px_VBUS} > 4 \ \text{V}. \end{array}$	6		12	V
	$\begin{array}{l} 4 \; V \leqslant V_{Px_VBUS} \leqslant 22 \; V, \\ I_{Px_GATE_VBUS} < 4 \; \mu A, \\ measure \; V_{Px_GATE_VBUS} \; ^{-} \\ V_{Px_VBUS}. \end{array}$	6		12	V	
V _{RCP}	comparator mode RCP threshold,	$\begin{array}{l} \text{setting 0, 4 V} \leqslant \\ V_{\text{Px_VBUS}} \leqslant 22 \text{ V,} \\ V_{\text{VIN_3V3}} \leqslant 3.63 \text{ V} \end{array}$	2	6	10	mV
		$\begin{array}{l} \mbox{setting 1, 4 V } \leqslant \\ V_{Px_VBUS} \leqslant 22 \ V, \\ V_{VIN_3V3} \leqslant 3.63 \ V \end{array}$	4	8	12	mV
	V _{VSYS} - V _{Px_VBUS} .	$\begin{array}{l} \text{setting 2, 4 V} \leqslant \\ V_{\text{Px_VBUS}} \leqslant 22 \text{ V,} \\ V_{\text{VIN_3V3}} \leqslant 3.63 \text{ V} \end{array}$	6	10	14	mV
		$\begin{array}{l} \text{setting 3, 4 V} \leqslant \\ V_{\text{Px_VBUS}} \leqslant 22 \text{ V,} \\ V_{\text{VIN_3V3}} \leqslant 3.63 \text{ V} \end{array}$	8	12	16	mV
		normal turnoff: $V_{VSYS} = 5V$, $V_{Px_{GATE_VSYS}}=6V$	13			μA
Px_GATE_OFF	Sinking strength	normal turnoff: V_{Px_VBUS} = 5V, $V_{Px_GATE_VBUS}$ =6V, V_{VSYS} =5V	13			μA
		fast turnoff: V_{VSYS} = 5V, $V_{Px_{GATE_VSYS}}$ =6V,			85	Ω
R _{Px_GATE_FSD}	Sinking strength	fast turnoff: $V_{Px_VBUS} = 5V$, $V_{Px_GATE_VBUS} = 6V$, $V_{VSYS} = 5V$			85	Ω
RPx_GATE_OFF_UVLO	Sinking strength in UVLO (safety)	V _{VIN_3V3} =0V, V _{Px_VBUS} =3.0V, V _{Px_GATE_VSYS} =0.1V			1.5	MΩ
	soft start slew rate for Px_GATE_VSYS, setting 0		0.35		0.47	
29	soft start slew rate for Px_GATE_VSYS, setting 1	4 V \leq V _{Px_VBUS} \leq 22 V, 500pF < C _{Px_GATE_VSYS} <	0.67		0.91	V/ms
SS	soft start slew rate for Px_GATE_VSYS, setting 2	- 16 nF, measure slope from - 10% to 90% of final Px_GATE_VSYS value,	1.33		1.83	v/ms
	soft start slew rate for Px_GATE_VSYS, setting 3		2.88		3.90	
tpx_gate_vbus_off	Time allowed to disable the external FET via Px_GATE_VBUS in normal shutdown mode. ⁽¹⁾	V_{Px_VBUS} =20V, Gate is off when V_{GS} < 1 V		260		μs

6.9 PP_EXT Power Switch Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{Px_GATE_VBUS_OVP}	Time allowed to disable the external FET via Px_GATE_VBUS in fast shutdown mode (V _{OVP4RCP} exceeded). ⁽¹⁾	$\begin{array}{l} \text{OVP: } V_{\text{OVP4RCP}} \text{= setting} \\ \text{57, } V_{\text{Px_VBUS}} \text{=} 20\text{V} \text{ initially,} \\ \text{then raised to } 23\text{V} \text{ in } 50\text{ns,} \\ \text{Gate is off when } V_{\text{GS}} \text{< } 1\text{ V} \end{array}$		3		μs
t _{Px_GATE_VBUS_RCP}	Time allowed to disable the external FET via Px_GATE_VBUS in fast shutdown mode (V _{RCP} exceeded). ⁽¹⁾	$\begin{array}{l} \text{RCP: } V_{\text{RCP}}\text{=} \text{ setting 0,} \\ V_{\text{Px}} \ _{\text{VBUS}}\text{=}5V, \ V_{\text{VSYS}}\text{=}5V \\ \text{initially, then raised to 5.5V} \\ \text{in 50ns, Gate is off when} \\ V_{\text{GS}}\text{<}1V \end{array}$		1.2		μs
t _{Px_GATE_VSYS_OFF}	Time allowed to disable the external FET via Px_GATE_VSYS in normal shutdown mode ⁽¹⁾	V _{VSYS} =20V, Gate is off when V _{GS} < 1 V		0.25		ms
t _{Px_GATE_VSYS_FSD}	Time allowed to disable the external FET via Px_GATE_VSYS in fast shutdown mode (OVP or FRS) ⁽¹⁾	$\begin{array}{l} V_{VSYS} = V_{VBUS} = 20V \text{ initially,} \\ \text{then } V_{VBUS} \text{ raised to } 23V \text{ in} \\ 50\text{ns, Gate is off when} \\ V_{GS} < 1 \text{ V} \end{array}$		0.25		μs
t _{Px_GATE_VBUS_ON}	time to enable Px_GATE_VBUS ⁽¹⁾	measure time from when V _{GS} =0V until V _{GS} >3V		0.25		ms

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN_3V3} \leq 3.6 V

(1) These values depend upon the characteristics of the external N-ch MOSFET. The typical values were measured when Px_GATE_VSYS and Px_GATE_VBUS were used to drive two CSD17571Q2 in common drain back-to-back configuration.

6.10 Power Path Supervisory

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN-3V3} \leq 3.6 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OVP4RCP}	VBUS over voltage protection typical threshold for RCP programmable range (setting 0 to setting 63).	OVP detected when V _{Px_VBUS} > V _{OVP4RCP}	5.25		22.9	V
	Tolernance of V _{OVP4RCP} threshold		-5		5	%
V _{OVPLSB}	VBUS over voltage protection range for RCP			280		mV
V _{OVP4RCPH}	hysteresis		1.75	2	2.25	%
Configurable ratio of OVP comparator		setting 0	1	1	1	V/V
	setting 1	0.925	0.95	0.975	V/V	
r _{OVP}	thresholds. r _{OVP} *V _{OVP4VSYS} = V _{OVP4RCP}	setting 2	0.875	0.90	0.925	V/V
	· OVP4RCP	setting 3	0.85	0.875	0.9	V/V
V _{OVP4VSYS}	VBUS over voltage protection range for VSYS protection	OVP detected when $r_{OVP}^{*}V_{PX_VBUS} > V_{OVP4RCP}$	5		27.5	V
V _{OVP4VSYS}	hysteresis	VBUS falling, % of V _{OVP4VSYS}		2		%
		rising	3.9	4.1	4.3	
V _{PP5V_UVLO}	Voltage required on PP5V	falling	3.8	4.0	4.2	V
		hysteresis		0.1		
IDSCH	VBUS discharge current ⁽¹⁾	V_{Px_VBUS} = 22V, measure I_{Px_VBUS}	4		13	mA

(1) The discharge is enabled automatically when needed to meet USB specifications. It is not always enabled.

6.11 CC Cable Detection Parameters

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6 V

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Type-C Source (Rp pull-up)					

6.11 CC Cable Detection Parameters (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OC_3.3}	Unattached Px_CCy open circuit voltage while Rp enabled, no load	$V_{LDO_{3V3}_{UVLO}} < V_{LDO_{3V3}} < 3.6 \text{ V},$ R _{CC} = 47 kΩ	1.85			V
V _{OC_5}	Attached Px_CCy open circuit voltage while Rp enabled, no load	$V_{PP5V_{UVLO}} < V_{PP5V} < 5.5 \text{ V}, \text{ R}_{CC} = 47 \text{ k}\Omega$	2.95			V
1	Unattached reverse current on	$\begin{array}{l} V_{Px_CCy} = 5.5 \text{V}, V_{Px_CCx} = 0 \text{V}, \\ V_{LDO_3V3_UVLO} < V_{LDO_3V3} < 3.6 \text{ V}, \\ V_{PP5V} = 3.8 \text{ V}, \text{measure current} \\ \text{into } Px_CCy \end{array}$			10	μA
Rev	Px_CCy	$ \begin{array}{l} V_{Px_CCy} = 5.5V, V_{Px_CCx} = 0V, \\ V_{LDO_3V3_UVLO} < V_{LDO_3V3} < 3.6 \ V, \\ V_{PP5V} = 0, -10^{\circ}C {\leqslant} T_{J} {\leqslant} 85^{\circ}C, \\ measure \ current \ into \ Px_CCy \end{array} $			10	μΛ
I _{RpDef}	current source - USB Default	$0 < V_{Px_CCy} < 1.0 V$, measure I_{Px_CCy}	64	80	96	μA
I _{Rp1.5}	current source - 1.5A	$4.75 V < V_{PP5V} < 5.5 V, 0 < V_{Px_CCy} < 1.5 V, measure I_{Px_CCy}$	166	180	194	μA
I _{Rp3.0}	current source - 3.0A	$4.75 V < V_{PP5V} < 5.5 V, 0 < V_{Px_CCy} < 2.45 V, measure I_{Px_CCy}$	304	330	356	μA
Type-C Sink (Rd pւ	ıll-down)					
	Open/Default detection threshold when Rd applied to Px_CCy	rising	0.2		0.24	V
V _{SNK1}	Open/Default detection threshold when Rd applied to Px_CCy	falling	0.16		0.20	V
	hysteresis			0.04		V
	Default/1.5A detection threshold	falling	0.62		0.68	V
V _{SNK2}	Default/1.5A detection threshold	rising	0.63	0.66	0.69	V
	hysteresis			0.01		V
	1.5A/3.0A detection threshold when Rd applied to Px_CCy	falling	1.17		1.25	V
V _{SNK3}	1.5A/3.0A detection threshold when Rd applied to Px_CCy	rising	1.22		1.3	V
	hysteresis			0.05		V
R _{SNK}	Rd pulldown resistance	$\begin{array}{l} 0.25 \: V \leqslant V_{Px_CCy} \leqslant 2.1 \: V, \\ measure \: resistance \: on \: Px_CCy \end{array}$	4.1		6.1	kΩ
R _{VCONN_DIS}	VCONN discharge resistance	$\begin{array}{l} 0 V \leqslant V_{Px_CCy} \leqslant 5.5 \text{ V, measure} \\ \text{resistance on } Px_CCy \end{array}$	4.1		6.1	kΩ
		V _{VIN_3V3} =0V, 64 μA < I _{Px_CCy} <96 μA	0.25		1.32	
V _{CLAMP}	Dead battery Rd clamp	V _{VIN_3V3} =0V, 166 μA < I _{Px_CCy} <194 μA	0.65		1.32	V
		V _{VIN_3V3} =0V, 304 μA < I _{Px_CCy} < 356 μA	1.20		2.18	
R _{Open}	resistance from Px_CCy to GND	$\label{eq:VPx_VBUS} \begin{array}{l} V_{Px} _{VBUS} = 0, \ V_{VIN} _{3V3} = 3.3V, \\ V_{Px} _{CCy} = 5 \ V, \ \text{measure resistance} \\ \text{on } \overline{Px} _{CCy} \end{array}$	500			kΩ
	when configured as open.	$\label{eq:VPx_VBUS} \begin{array}{l} V_{Px_VBUS} = 5V, \ V_{VIN_3V3} = 0, \\ V_{Px_CCy} = 5 \ V, \ measure \ resistance \\ on \ Px_CCy \end{array}$	500			k Ω
V _{FRS}	Fast Role swap request voltage detection threshold on Px_CCy (falling)		495	515	535	mV
V _{FRS}	hysteresis			0.01		V

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6 V

Copyright © 2022 Texas Instruments Incorporated

6.11 CC Cable Detection Parameters (continued)

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN_3V3} \leq 3.6 V

P/	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{FRS_DET}	Fast role swap signal detection time	$V_{\text{Px_CCy}}$ must be below V_{FRS} for at least this long before the FRS signal is detected	30		35	μs
t _{FRS_Resp}	response time of the Fast role swap comparator (rising)	V_{Px_CCy} rises from 0.24V to 0.64V			0.6	μs
Common (Source and Si	nk)					
t _{cc}	deglitch time for comparators on Px_CCy			3.2		ms

6.12 CC VCONN Parameters

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN-3V3} \leq 3.6 V

PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PP_CABLE}	Rdson of the VCONN path	V _{PP5V} =5V, I _L = 250 mA, measure resistance from PP5V to Px_CCy		0.4	0.7	Ω
I _{LIMVC}	short circuit current limit	setting 0, V _{PP5V} =5V, R _L =10m Ω , measure I _{Px_CCy}	350	410	470	mA
I _{LIMVC}	short circuit current limit	setting 1, V _{PP5V} =5V, R _L =10m Ω , measure I _{Px_CCy}	540	605	670	mA
I _{CC2PP5V}	Reverse leakage current through VCONN FET	$\label{eq:VCONN} \begin{array}{l} \text{VCONN disabled, } T_J \leqslant 85 \ ^{\circ}\text{C}, \\ V_{\text{Px}_\text{CCy}} = 5.5 \ \text{V}, \ V_{\text{PP5V}} = 0 \ \text{V}, \\ V_{\text{Px}_\text{VBUS}} = 5 \text{V}, \ \text{LDO forced to} \\ \text{draw from VBUS, measure} \\ I_{\text{Px}_\text{CCy}} \end{array}$		0	10	μA
t _{VCILIM}	Current clamp deglitch time			1.28		ms
t _{PP_CABLE_off}	from disable signal to Px_CCy at 10% of final value	I _L = 250 mA, V _{PP5V} = 5V, C _L =0	100	171	300	μs
t _{iOS_PP_CABLE}	response time to short circuit	$V_{\text{PP5V}}\text{=}5\text{V},$ for short circuit R_{L} = 10m Ω .		2		μs

6.13 CC PHY Parameters

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN_{}3V3} \leq 3.6 V or V_{Px_{}VBUS} \geq 3.9 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Transmitter								
V _{TXHI}	Transmit high voltage on Px_CCy	Standard External load	1.05	1.125	1.2	V		
V _{TXLO}	Transmit low voltage on Px_CCy	Standard External load	-75		75	mV		
Z _{DRIVER}	Transmit output impedance while driving the CC line using Px_CCy	measured at 750 kHz	33		75	Ω		
t _{Rise}	Rise time. 10 % to 90 % amplitude points on Px_CCy, minimum is under an unloaded condition. Maximum set by TX mask	C _{Px_CCy} = 520 pF	300			ns		
t _{Fall}	Fall time. 90 % to 10 % amplitude points on Px_CCy, minimum is under an unloaded condition. Maximum set by TX mask	C _{Px_CCy} = 520 pF	300			ns		
Receiver								
Z _{BMCRX}	receiver input impedance on Px_CCy	Does not include pull-up or pulldown resistance from cable detect. Transmitter is Hi-Z.	1			MΩ		

6.13 CC PHY Parameters (continued)

Operating under these	conditions unless	s otherwise noted.	$3 \cap V \leq V_{V}$	$\sim < 3.6 V \text{ or } V_{P}$	$v_{\rm RUO} \ge 3.0 V$
Operating under these	contaitions arriess	s otherwise noted.	$3.0 v \leq v_{\rm MN}$	$_{3V3} \leq 5.0$ v or v $_{Px}$	VBUS > 3.3 V

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{CC}	Receiver capacitance on Px_CCy ⁽¹⁾	Capacitance looking into the CC pin when in receiver mode			120	pF
V _{RX_SNK_R}	Rising threshold on Px_CCy for receiver comparator	sink mode (rising)	499	525	551	mV
V _{RX_SRC_R}	Rising threshold on Px_CCy for receiver comparator	source mode (rising)	784	825	866	mV
V _{RX_SNK_F} Falling threshold on Px_CCy for receiver comparator		sink mode (falling)	230	250	270	mV
Ealling threshold on Py, CCy for		source mode (falling)	523	550	578	mV

C_{CC} includes only the internal capacitance on a Px_CCy pin when the pin is configured to be receiving BMC data. External capacitance is needed to meet the required minimum capacitance per the USB-PD Specifications (cReceiver). Therefore, TI recommends adding C_{Px_CCy} externally.

6.14 Thermal Shutdown Characteristics

over operating free-air temperature range (unless otherwise noted)

P/	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T	Temperature shutdown threshold	Temperature rising	145	160	175	°C
	hysteresis		15		°C	
	Temperature controlled shutdown	Temperature rising	135	150	165	°C
T _{SD_PP5V}	threshold. The power paths for each port sourcing from PP5V have local sensors that disables them when this temperature is exceeded.	hysteresis		5		°C

6.15 ADC Characteristics

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6 V

	PARAMETER	TEST CONDITIONS	MIN TYP		MAX	UNIT
		3.6V max scaling, voltage divider of 3		14		mV
LSB	least significant bit	25.2V max scaling, voltage divider of 21		98		mV
		4.07A max scaling		16.5		mA
GAIN_ERR		$\begin{array}{c} 0.05 V \leqslant V_{\text{ADCINx}} \leqslant \\ 3.6 V, V_{\text{ADCINx}} \leqslant V_{\text{LDO}_3 V 3} \end{array}$	- 2.7		2.7	
	Gain error	$\begin{array}{l} 0.05V \leqslant V_{GPIOx} \leqslant 3.6V, V_{GPIOx} \\ \leqslant V_{LDO_3V3} \end{array}$	2.1		2.1	%
		$2.7V \leqslant V_{LDO_{3V3}} \leqslant 3.6V$	- 2.4		2.4	
		$0.6V \leqslant V_{Px_VBUS} \leqslant 22V$	- 2.1		2.1	
		$\begin{array}{c} 0.05V \leqslant V_{\text{ADCINx}} \leqslant \\ 3.6V, V_{\text{ADCINx}} \leqslant V_{\text{LDO}_3V3} \end{array}$	- 4.1 -4.1 -4.1		4.1	
VOS_ERR	Offset error ⁽¹⁾	$\begin{array}{l} 0.05V \leqslant V_{GPIOx} \leqslant 3.6V, V_{GPIOx} \\ \leqslant V_{LDO_3V3} \end{array}$				mV
		$2.7V \leqslant V_{LDO_{3V3}} \leqslant 3.6V$			4.1	
		$0.6V \leqslant V_{Px_VBUS} \leqslant 22V$			4.1	

(1) The offset error is specified after the voltage divider.

6.16 Input/Output (I/O) Characteristics

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6 V

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT		
GPIO0-8 (Inputs)								
GPIO_VIH	GPIOx high-Level input voltage	V _{LDO_3V3} = 3.3V	1.3			V		
GPIO_VIL	GPIOx low-level input voltage	V _{LDO_3V3} = 3.3V			0.54	V		
GPIO_HYS	GPIOx input hysteresis voltage	V _{LDO_3V3} = 3.3V	0.09			V		
GPIO_ILKG	GPIOx leakage current	V _{GPIOx} = 3.45 V	- 1		1	μA		
GPIO_RPU	GPIOx internal pull-up	pull-up enabled	50	100	150	kΩ		
GPIO_RPD	GPIOx internal pull-down	pull-down enabled	50	100	150	kΩ		
GPIO_DG	GPIOx input deglitch			20		ns		
GPIO0-9 (Outputs)			1		I			
GPIO_VOH	GPIOx output high voltage	V _{LDO_3V3} = 3.3V, I _{GPIOx} = -2mA	2.9			V		
GPIO_VOL	GPIOx output low voltage	V _{LDO_3V3} = 3.3V, I _{GPIOx} =2mA			0.4	V		
ADCIN1, ADCIN2								
ADCIN_ILKG	ADCINx leakage current	$V_{ADCINx} \leqslant V_{LDO_3V3}$	- 1		1	μA		
time from LDO_3V3 going high until ADCINx is read for configuration				10		ms		

6.17 I2C Requirements and Characteristics

Operating under these conditions unless otherwise noted: 3.0 V \leqslant V_{VIN_3V3} \leqslant 3.6 V $^{(2)}$

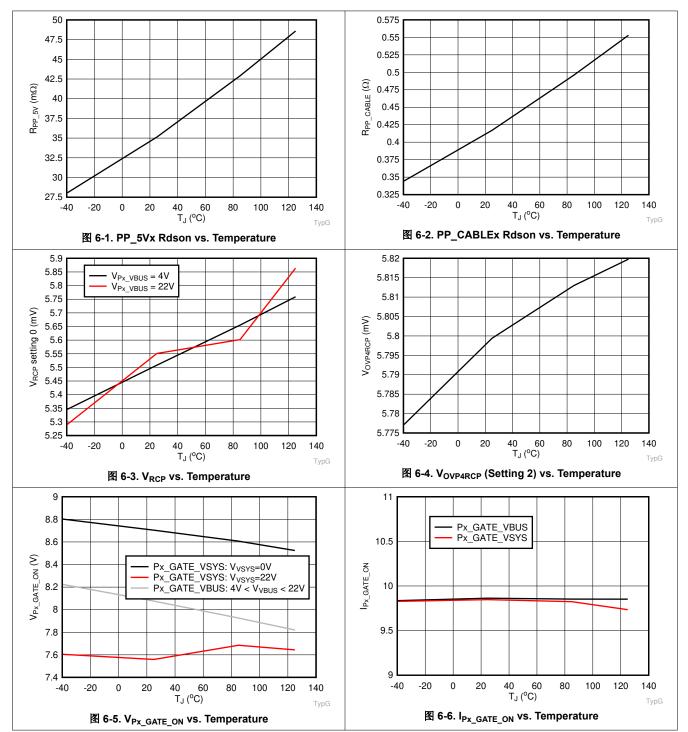
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
I2C_EC_IRQ , I2C2s_I	RQ					
OD_VOL_IRQ	Low level output voltage	I _{OL} = 2 mA			0.4	V
OD_LKG_IRQ	Leakage Current	Output is Hi-Z, V _{I2Cx_IRQ} = 3.45 V	- 1		1	μA
I2C3m_IRQ						
IRQ_VIH	High-Level input voltage	V _{LDO_3V3} = 3.3V	1.3			V
IRQ_VIH_THRESH	High-Level input voltage threshold	V _{LDO_3V3} = 3.3V	0.72		1.3	V
IRQ_VIL	low-level input voltage	V _{LDO_3V3} = 3.3V			0.54	V
IRQ_VIL_THRESH	low-level input voltage threshold	V _{LDO_3V3} = 3.3V	0.54		1.08	V
IRQ_HYS	input hysteresis voltage	V _{LDO_3V3} = 3.3V	0.09			V
IRQ_DEG	input deglitch			20		ns
IRQ_ILKG	I2C3m_IRQ leakage current	V _{I2C3m_IRQ} = 3.45 V	- 1		1	μA
SDA and SCL Commo	on Characteristics (Master, Slave)					
V _{IL}	Input low signal	V _{LDO_3V3} =3.3V,			0.54	V
V _{IH}	Input high signal	V _{LDO_3V3} =3.3V,	1.3			V
V _{HYS}	Input hysteresis	V _{LDO_3V3} =3.3V	0.165			V
V _{OL}	Output low voltage	I _{OL} =3 mA			0.36	V
I _{LEAK}	Input leakage current	Voltage on pin = V _{LDO_3V3}	- 3		3	μA
I _{OL}	Max output low current	V _{OL} =0.4 V	15			mA
I _{OL}	Max output low current	V _{OL} =0.6 V	20			mA
		V_{DD} = 1.8V, 10 pF $\leqslant C_{b} \leqslant$ 400 pF	12		80	ns
t _f	Fall time from 0.7^*V_{DD} to 0.3^*V_{DD}	V_{DD} = 3.3V, 10 pF \leq C _b \leq 400 pF	12		150	ns
t _{SP}	I2C pulse width surpressed				50	ns
Cl	pin capacitance (internal)				10	pF

6.17 I2C Requirements and Characteristics (continued)

Operating under these conditions unless otherwise noted: 3.0 V \leq V_{VIN 3V3} \leq 3.6 V ⁽²⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _b	Capacitive load for each bus line (external)			_	400	pF
t _{hd;dat}	Serial data hold time	V _{DD} = 1.8V or 3.3V	0			ns
SDA and SCL St	andard Mode Characteristics (Slave)					
f _{SCLS}	Clock frequency	V _{DD} = 1.8V or 3.3V			100	kHz
t _{VD;DAT}	Valid data time	Transmitting Data, V _{DD} = 1.8V or 3.3V, SCL low to SDA output valid			3.45	μs
t _{VD;ACK}	Valid data time of ACK condition	Transmitting Data, V _{DD} = 1.8V or 3.3V, ACK signal from SCL low to SDA (out) low			3.45	μs
SDA and SCL Fa	ast Mode Characteristics (Slave)				•	
f _{SCLS}	Clock frequency	V _{DD} = 1.8V or 3.3V	100		400	kHz
t _{VD;DAT}	Valid data time	Transmitting data, V _{DD} = 1.8V, SCL low to SDA output valid			0.9	μs
t _{VD;ACK}	Valid data time of ACK condition	Transmitting data, V _{DD} = 1.8V or 3.3V, ACK signal from SCL low to SDA (out) low	0.9		μs	
SDA and SCL Fa	ast Mode Plus Characteristics (Slave)					
f _{SCLS}	Clock frequency ⁽¹⁾	$\label{eq:VD} \begin{array}{l} V_{DD} = 1.8V \mbox{ or } 3.3V, \mbox{ master} \\ \mbox{ controls SCL frequency such that:} \\ t_{LOW} > t_{VD;ACK} + t_{SU;DAT}, T_J \leqslant \\ 65^{\circ} C \end{array}$	400 1000		kHz	
t _{VD;DAT}	Valid data time	Transmitting data, V_{DD} = 1.8V or 3.3V, SCL low to SDA output valid, $T_J \le 65 \ ^{\circ}$ C			0.55	μs
t _{VD;ACK}	Valid data time of ACK condition	Transmitting data, V _{DD} = 1.8V or 3.3V, ACK signal from SCL low to SDA (out) low, T _J \leqslant 65 °C			0.55	μs
SDA and SCL Fa	ast Mode Characteristics (Master)				•	
f	Clock frequency for moster ⁽³⁾	$V_{DD} = 3.3 V^{(4)}$		400	410	レ니ㅋ
f _{SCLM}	Clock frequency for master ⁽³⁾	V _{DD} = 1.8V		390	400	kHz
t _{HD;STA}	Start or repeated start condition hold time	V _{DD} = 3.3V	0.6			μs
t _{LOW}	Clock low time	V _{DD} = 3.3V	1.3			μs
t _{HIGH}	Clock high time	V _{DD} = 3.3V	0.6			μs
t _{SU;STA}	Start or repeated start condition setup time	V _{DD} = 3.3V	0.6			μs
t _{SU;DAT}	Serial data setup time	Transmitting data, V_{DD} = 3.3V	100			ns
t _{su;sто}	Stop condition setup time	V _{DD} = 3.3V	0.6			μs
t _{BUF}	Bus free time between stop and start	V _{DD} = 3.3V	1.3			μs
t _{VD;DAT}	Valid data time	Transmitting data, V _{DD} = 3.3V, SCL low to SDA output valid			0.9	μs
t _{VD;ACK}	Valid data time of ACK condition	Transmitting data, V _{DD} = 3.3V, ACK signal from SCL low to SDA (out) low			0.9	μs

(1) Fast Mode Plus is only recommended during boot when the device is in PTCH mode.


(2) The master or slave connected to the device follows I²C specifications.

(3) Actual frequency is dependent upon bus capacitance and pull-up resistance.

(4) Measured at 400kHz with Rp=1k Ω and Cb=145pF

6.18 Typical Characteristics

7 Parameter Measurement Information

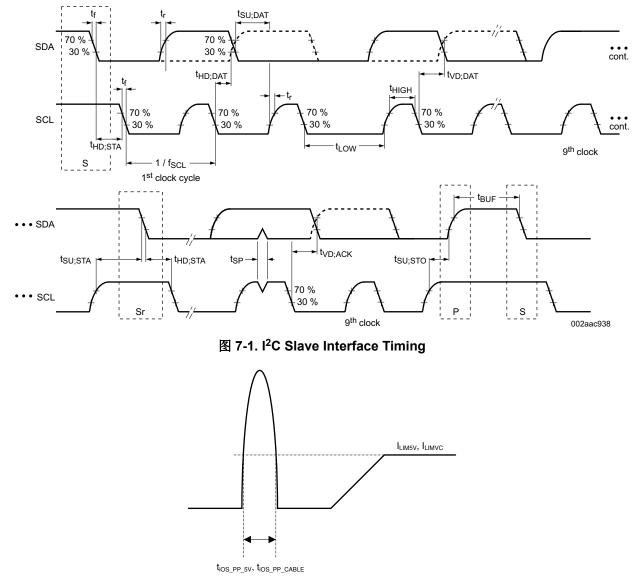


图 7-2. Short-Circuit Response Time for Internal Power Paths PP_5Vx and PP_CABLEx

8 Detailed Description

8.1 Overview

The TPS65994AD is a fully-integrated USB Power Delivery (USB-PD) management device providing cable plug and orientation detection for two USB Type-C and PD receptacles. The TPS65994AD communicates with the cable and another USB Type-C and PD device at the opposite end of the cable, enables integrated port power switch for sourcing, controls a high current port power switch for sinking and negotiates alternate modes for each port. The TPS65994AD may also control an attached super-speed multiplexer to simultaneously support USB data and DisplayPort video.

Each Type-C port controlled by the TPS65994AD is functionally identical and supports the full range of the USB Type-C and PD standards.

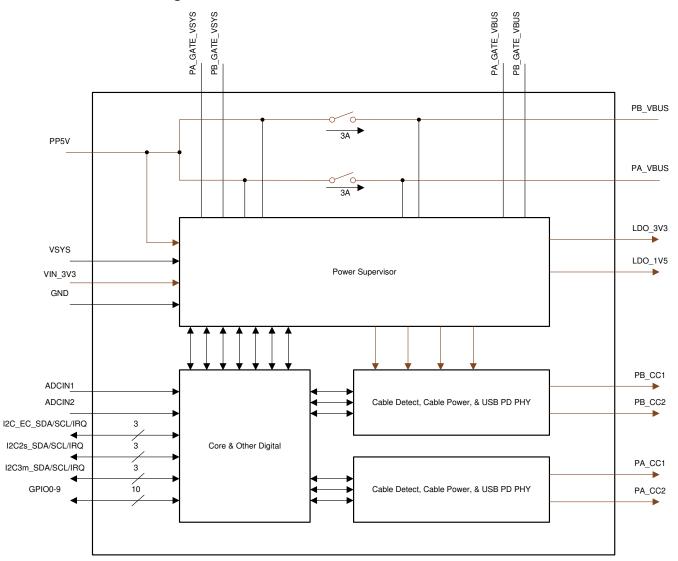
The TPS65994AD is divided into several main sections: the USB-PD controller, the cable plug and orientation detection circuitry, the port power switches, the power management circuitry and the digital core.

The USB-PD controller provides the physical layer (PHY) functionality of the USB-PD protocol. The USB-PD data is output through either the Px_CC1 pin or the Px_CC2 pin, depending on the orientation of the reversible USB Type-C cable. For a high-level block diagram of the USB-PD physical layer, a description of its features and more detailed circuitry, see the USB-PD Physical Layer section.

The cable plug and orientation detection analog circuitry automatically detects a USB Type-C cable plug insertion and also automatically detects the cable orientation. For a high-level block diagram of cable plug and orientation detection, a description of its features and more detailed circuitry, see the *Cable Plug and Orientation Detection*.

The port power switches provide power to the Px_VBUS pin and also to the Px_CC1 or Px_CC2 pins based on the detected plug orientation. For a high-level block diagram of the port power switches, a description of its features and more detailed circuitry, see the *Power Paths*.

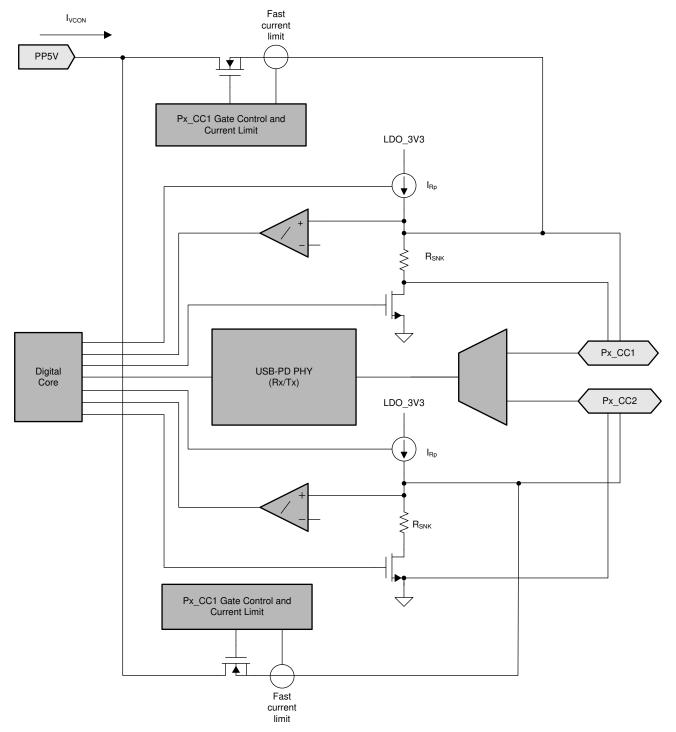
The power management circuitry receives and provides power to the TPS65994AD internal circuitry and to the LDO_3V3 output. See the *Power Management* section for more information.


The digital core provides the engine for receiving, processing and sending all USB-PD packets as well as handling control of all other TPS65994AD functionality. A portion of the digital core contains ROM memory which contains all the necessary firmware required to execute Type-C and PD applications. In addition, a section of the ROM, called boot code, is capable of initializing the TPS65994AD, loading of device configuration information and loading any code patches into volatile memory in the digital core. For a high-level block diagram of the digital core, a description of its features and more detailed circuitry, see the *Digital Core* section.

The digital core of the TPS65994AD also interprets and uses information provided by the analog-to-digital converter ADC (see the *ADC*), is configurable to read the status of general purpose inputs and trigger events accordingly, and controls general outputs which are configurable as push-pull or open-drain types with integrated pull-up or pull-down resistors. The TPS65994AD has two I²C slave ports to be controlled by host processors , and one I²C master to write to and read from external slave devices such as multiplexor, retimer, or an optional external EEPROM memory (see the I^2C Interface).

The TPS65994AD also integrates a thermal shutdown mechanism and runs off of accurate clocks provided by the integrated oscillator.

8.2 Functional Block Diagram



8.3 Feature Description

8.3.1 USB-PD Physical Layer

8-1 shows the USB PD physical layer block surrounded by a simplified version of the analog plug and orientation detection block. This block is duplicated for the second TPS65994AD port.

图 8-1. USB-PD Physical Layer and Simplified Plug and Orientation Detection Circuitry

USB-PD messages are transmitted in a USB Type-C system using a BMC signaling. The BMC signal is output on the same pin (Px_CC1 or Px_CC2) that is DC biased due to the Rp (or Rd) cable attach mechanism.

8.3.1.1 USB-PD Encoding and Signaling

图 8-2 illustrates the high-level block diagram of the baseband USB-PD transmitter. 图 8-3 illustrates the high-level block diagram of the baseband USB-PD receiver.

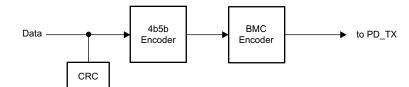


图 8-2. USB-PD Baseband Transmitter Block Diagram

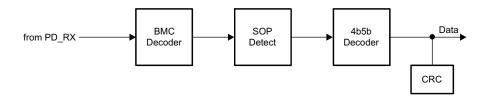
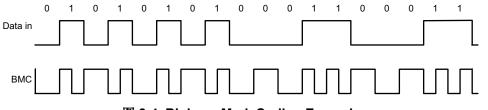



图 8-3. USB-PD Baseband Receiver Block Diagram

8.3.1.2 USB-PD Bi-Phase Marked Coding

The USB-PD physical layer implemented in the TPS65994AD is compliant to the *USB-PD Specifications*. The encoding scheme used for the baseband PD signal is a version of Manchester coding called Biphase Mark Coding (BMC). In this code, there is a transition at the start of every bit time and there is a second transition in the middle of the bit cell when a 1 is transmitted. This coding scheme is nearly DC balanced with limited disparity (limited to 1/2 bit over an arbitrary packet, so a very low DC level). 🕅 8-4 illustrates Biphase Mark Coding.

The USB PD baseband signal is driven onto the Px_CC1 or Px_CC2 pin with a tri-state driver. The tri-state driver is slew rate to limit coupling to D+/D – and to other signal lines in the Type-C fully featured cables. When sending the USB-PD preamble, the transmitter starts by transmitting a low level. The receiver at the other end tolerates the loss of the first edge. The transmitter terminates the final bit by an edge to ensure the receiver clocks the final bit of EOP.

8.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks

The USB-PD driver meets the defined USB-PD BMC TX masks. Since a BMC coded "1" contains a signal edge at the beginning and middle of the UI, and the BMC coded "0" contains only an edge at the beginning, the masks are different for each. The USB-PD receiver meets the defined USB-PD BMC Rx masks. The boundaries of the Rx outer mask are specified to accommodate a change in signal amplitude due to the ground offset through the cable. The Rx masks are therefore larger than the boundaries of the TX outer mask. Similarly, the boundaries of the Rx inner mask are smaller than the boundaries of the TX inner mask. Triangular time masks are superimposed on the TX outer masks and defined at the signal transitions to require a minimum edge rate that has minimal impact on adjacent higher speed lanes. The TX inner mask enforces the maximum limits on the rise and fall times. Refer to the *USB-PD Specifications* for more details.

8.3.1.4 USB-PD BMC Transmitter

The TPS65994AD transmits and receives USB-PD data over one of the Px_CCy pins for a given CC pin pair (one pair per USB Type-C port). The Px_CCy pins are also used to determine the cable orientation and maintain the cable/device attach detection. Thus, a DC bias exists on the Px_CCy pins. The transmitter driver overdrives the Px_CCy DC bias while transmitting, but returns to a Hi-Z state allowing the DC voltage to return to the Px_CCy pin when not transmitting. While either Px_CC1 or Px_CC2 may be used for transmitting and receiving, during a given connection only the one that mates with the CC pin of the plug is used; so there is no dynamic switching between Px_CC1 and Px_CC2. 8 8-5 shows the USB-PD BMC TX and RX driver block diagram.

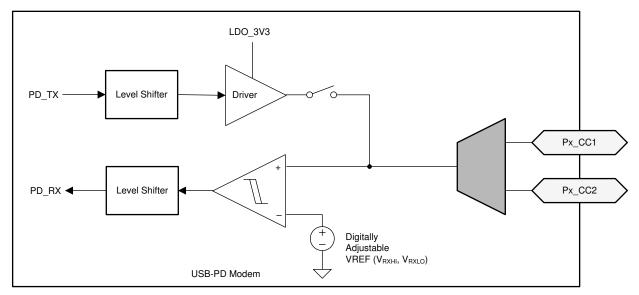


图 8-5. USB-PD BMC TX/Rx Block Diagram

8-6 shows the transmission of the BMC data on top of the DC bias. Note, The DC bias can be anywhere between the minimum and maximum threshold for detecting a Sink attach. This means that the DC bias can be above or below the VOH of the transmitter driver.

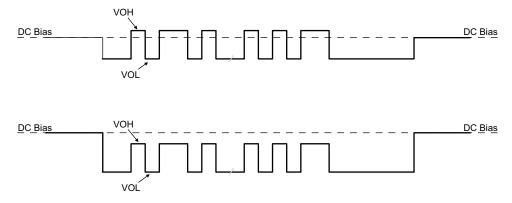


图 8-6. TX Driver Transmission with DC Bias

The transmitter drives a digital signal onto the Px_CCy lines. The signal peak, V_{TXHI} , is set to meet the TX masks defined in the *USB-PD Specifications*. Note that the TX mask is measured at the far-end of the cable.

When driving the line, the transmitter driver has an output impedance of Z_{DRIVER} . Z_{DRIVER} is determined by the driver resistance and the shunt capacitance of the source and is frequency dependent. Z_{DRIVER} impacts the noise ingression in the cable.

8-7 shows the simplified circuit determining Z_{DRIVER}. It is specified such that noise at the receiver is bounded.

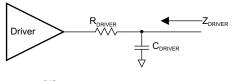


图 8-7. ZDRIVER Circuit

8.3.1.5 USB-PD BMC Receiver

The receiver block of the TPS65994AD receives a signal that follows the allowed Rx masks defined in the USB PD specification. The receive thresholds and hysteresis come from this mask.

 \mathbb{X} 8-8 shows an example of a multi-drop USB-PD connection (only the CC wire). This connection has the typical Sink (device) to Source (host) connection, but also includes cable USB-PD Tx/Rx blocks. Only one system can be transmitting at a time. All other systems are Hi-Z (Z_{BMCRX}). The *USB-PD Specification* also specifies the capacitance that can exist on the wire as well as a typical DC bias setting circuit for attach detection.

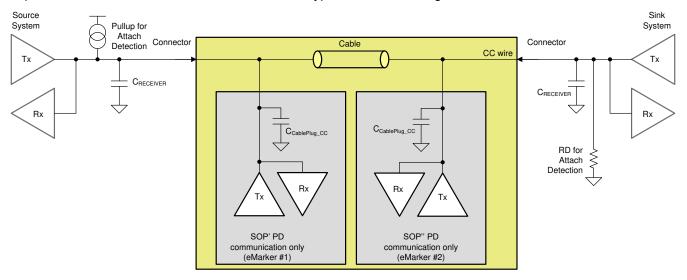
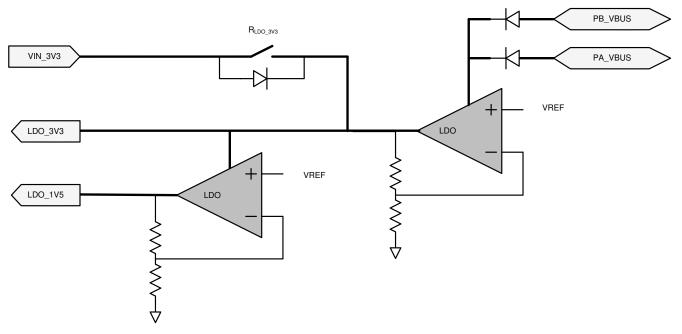


图 8-8. Example USB-PD Multi-Drop Configuration


8.3.1.6 Squelch Receiver

The TPS65994AD has a squelch receiver to monitor for the bus idle condition as defined by the USB PD specification.

8.3.2 Power Management

The TPS65994AD power management block receives power and generates voltages to provide power to the TPS65994AD internal circuitry. These generated power rails are LDO_3V3 and LDO_1V5. LDO_3V3 may also be used as a low power output for external EEPROM memory. The power supply path is shown in 🕅 8-9.

图 8-9. Power Supplies

The TPS65994AD is powered from either VIN_3V3, PA_VBUS, or PB_VBUS. The normal power supply input is VIN_3V3. When powering from VIN_3V3, current flows from VIN_3V3 to LDO_3V3 to power the core 3.3-V circuitry and I/Os. A second LDO steps the voltage down from LDO_3V3 to LDO_1V5 to power the 1.5-V core digital circuitry. When VIN_3V3 power is unavailable and power is available on PA_VBUS, or PB_VBUS it is referred to as the dead-battery startup condition. In a dead-battery startup condition, the TPS65994AD opens the VIN_3V3 switch until the host clears the dead-battery flag via I²C. Therefore, the TPS65994AD is powered from the VBUS input with the higher voltage during the dead-battery startup condition and until the dead-battery flag is cleared. When powering from a VBUS input, the voltage on PA_VBUS, or PB_VBUS is stepped down through an LDO to LDO_3V3.

8.3.2.1 Power-On And Supervisory Functions

A power-on reset (POR) circuit monitors each supply. This POR allows active circuitry to turn on only when a good supply is present.

8.3.2.2 VBUS LDO

The TPS65994AD contains an internal high-voltage LDO which is capable of converting Px_VBUS to 3.3 V for powering internal device circuitry. The VBUS LDO is only used when VIN_3V3 is low (the dead-battery condition). The VBUS LDO is powered from either PA_VBUS, or PB_VBUS ; the one with the highest voltage.

8.3.3 Power Paths

The TPS65994AD has internal sourcing power paths: PP_5V1, PP_5V2, PP_CABLE1, and PP_CABLE2. It also has control for external power paths: PP_EXT1, and PP_EXT2. Each power path is described in detail in this section.

8.3.3.1 Internal Sourcing Power Paths

8-10 shows the TPS65994AD internal sourcing power paths. The TPS65994AD features four internal 5-V sourcing power paths. The path from PP5V to PA_VBUS is called PP_5V1 , and the path from PP5V to PB_VBUS is called PP_5V2. The path from PP5V to PA_CCx is called PP_CABLE1 , and the path from PP5V to PB_CCy is called PP_CABLE2. Each path contains current clamping protection, overvoltage protection, UVLO protection and temperature sensing circuitry. PP_5V1 and PP_5V2 may each conduct up to 3 A continuously, while PP_CABLE1 and PP_CABLE2 may conduct up to 315 mA continuously. When disabled, the blocking FET protects the PP5V rail from high-voltage that may appear on Px_VBUS.

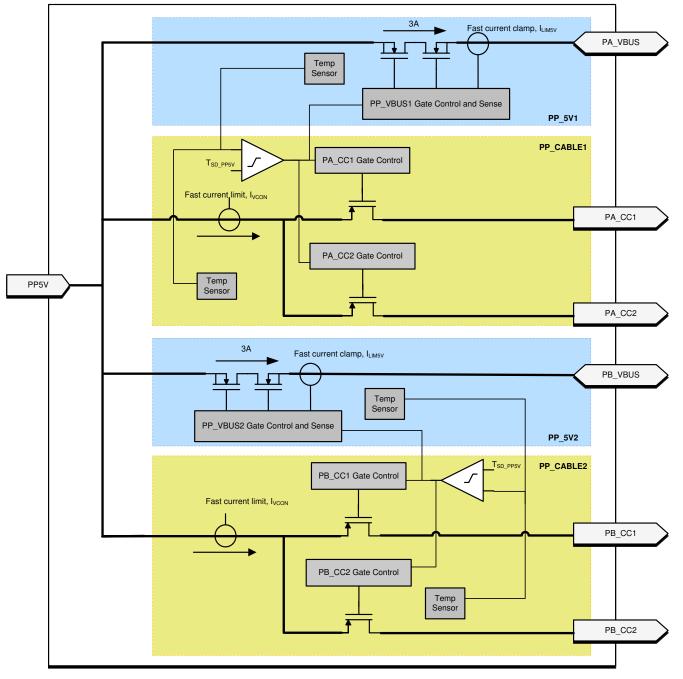


图 8-10. Port Power Switches

8.3.3.1.1 PP_5Vx Current Clamping

The current through the internal PP_5Vx paths are current limited to I_{LIM5V} . The I_{LIM5V} value is configured by application firmware. When the current through the switch exceeds I_{LIM5V} , the current limiting circuit activates within $t_{iOS_PP_5V}$ and the path behaves as a constant current source. If the duration of the overcurrent event exceeds t_{ILIM} , the PP_5V switch is disabled.

8.3.3.1.2 PP_5Vx Local Overtemperature Shut Down (OTSD)

When PP_5Vx clamps the current, the temperature of the switch will begin to increase. When the local temperature sensors of PP_5Vx or PP_CABLEx detect that $T_J > T_{SD_PP5V}$ the PP_5Vx switch is disabled and the affected port enters the USB Type-C ErrorRecovery state.

Copyright © 2022 Texas Instruments Incorporated

8.3.3.1.3 PP_5Vx Current Sense

The current from PP5V to Px_VBUS is sensed through the switch and passed to the internal ADC.

8.3.3.1.4 PP_5Vx OVP

The overvoltage protection level is automatically configured based on the expected maximum V_{BUS} voltage, which depends upon the USB PD contract. When the voltage on a port's Px_VBUS pin exceeds the configured value (V_{OVP4RCP}) while PP_5Vx is enabled, then PP_5Vx is disabled within $t_{PP_5V_ovp}$ and the affected port enters into the Type-C ErrorRecovery state.

8.3.3.1.5 PP_5Vx UVLO

If the PP5V pin voltage falls below its undervoltage lock out threshold (V_{PP5V_UVLO}) while PP_5Vx is enabled, then PP_5Vx is disabled within $t_{PP_5V_uvlo}$ and the port that had PP_5Vx enabled enters into the Type-C ErrorRecovery state.

8.3.3.1.6 PP_5Vx Reverse Current Protection

If V_{Px_VBUS} - V_{PP5V} > $V_{PP_5V_RCP}$, then the PP_5Vx path is automatically disabled within $t_{PP_5V_rcp}$. If the RCP condition clears, then the PP_5Vx path is automatically enabled within t_{ON} .

8.3.3.1.7 Fast Role Swap

The TPS65994AD supports Fast Role Swap as defined by USB PD. The PP_5Vx path has a fast turn-on mode that application firmware selectively enables to support Fast Role Swap. When enabled it is engaged when

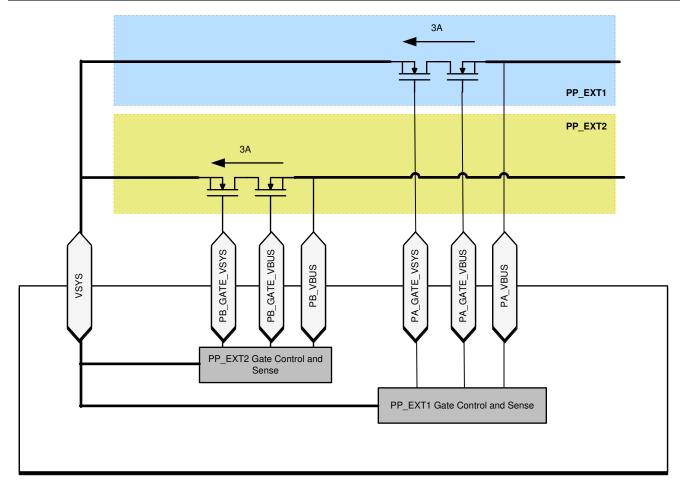
 V_{Px_VBUS} - V_{PP5V} < $V_{PP_5V_RCP}$, and turns on the switch within t_{FRS_on} .

8.3.3.1.8 PP_CABLE Current Clamp

When enabled and providing VCONN power the TPS65994AD PP_CABLE power switches clamp the current to I_{VCON} . When the current through the PP_CABLEx switch exceeds I_{VCON} , the current clamping circuit activates within $t_{iOS_{PP_{CABLE}}}$ and the switch behaves as a constant current source. The switches do not have reverse current blocking when the switch is enabled and current is flowing to either Px_CC1 or Px_CC2.

8.3.3.1.9 PP_CABLE Local Overtemperature Shut Down (OTSD)

When PP_CABLEx clamps the current, the temperature of the switch will begin to increase. When the local temperature sensors of PP_5Vx or PP_CABLEx detect that $T_J > T_{SD_PP5V}$ the PP_CABLEx switch is disabled and latched off within temperature off. The port then enters the USB Type-C ErrorRecovery state.


8.3.3.1.10 PP_CABLE UVLO

If the PP5V pin voltage falls below its undervoltage lock out threshold (V_{PP5V_UVLO}), then both PP_CABLE1 and PP_CABLE2 switches are automatically disabled within $t_{PP_CABLE_off}$.

8.3.3.2 Sink Path Control

The sink-path control includes overvoltage protection (OVP), and reverse current protection (RCP).

图 8-11. Sink Path Control

The following figure shows the Px_GATE_VSYS gate driver in more detail.

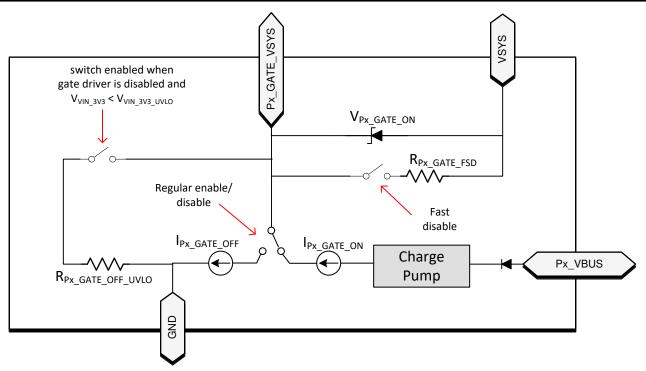


图 8-12. Details of the Px_GATE_VSYS gate driver.

8.3.3.2.1 Overvoltage Protection (OVP)

The application firmware enables the OVP and configures it based on the expected Px_VBUS voltage. If the voltage on Px_VBUS surpasses the configured threshold $V_{OVP4VSYS} = V_{OVP4RCP}/r_{OVP}$, then Px_GATE_VSYS is automatically disabled within $t_{Px_GATE_VSYS_FSD}$ to protect the system. If the voltage on Px_VBUS surpasses the configured threshold $V_{OVP4RCP}$ then Px_GATE_VBUS is automatically disabled within $t_{Px_GATE_VSYS_FSD}$ to protect the system. If the voltage on Px_VBUS surpasses the configured threshold $V_{OVP4RCP}$ then Px_GATE_VBUS is automatically disabled within $t_{Px_GATE_VBUS_OVP}$. When V_{Px_VBUS} falls below $V_{OVP4RCP} - V_{OVP4RCPH}Px_GATE_VBUS$ is automatically re-enabled within

 $t_{Px_GATE_VBUS_ON}$ since the OVP condition has cleared. This allows two sinking power paths to be enabled simultaneously and Px_GATE_VBUS will be disabled when necessary to ensure that V_{Px_VBUS} remains below $V_{OVP4RCP}$.

While the TPS65994AD is in the BOOT mode in a dead-battery scenario (that is VIN_3V3 is low) it handles an OVP condition slightly differently. As long as the OVP condition is present Px_GATE_VBUS and Px_GATE_VSYS are disabled. Once the OVP condition clears, both Px_GATE_VBUS and Px_GATE_VSYS are re-enabled (unless ADCINx are configured in SafeMode). Since this is a dead-battery condition, the TPS65994AD will be drawing approximately $I_{VIN_3V3,ActSnk}$ from PA_VBUS or PB_VBUS during this time to help discharge it.

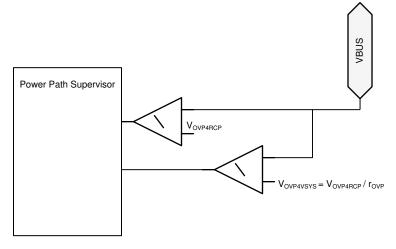


图 8-13. Diagram for OVP Comparators

8.3.3.2.2 Reverse-Current Protection (RCP)

The VSYS gate control circuit monitors the VSYS and Px_VBUS voltages and detects reverse current when the V_{VSYS} surpasses V_{Px_VBUS} by more than V_{RCP}. When the reverse current condition is detected, Px_GATE_VBUS is disabled within $t_{Px_GATE_VBUS_RCP}$. When the reverse current condition is cleared, Px_GATE_VBUS is re-enabled within $t_{Px_GATE_VBUS_ON}$. This limits the amount of reverse current that may flow from VSYS to Px_VBUS through the external N-ch MOSFETs.

In reverse current protection mode, the power switch controlled by Px_GATE_VBUS is allowed to behave resistively until the current reaches V_{RCP}/R_{ON} and then blocks reverse current from VSYS to Px_VBUS , where R_{ON} is the resistance of the external back-to-back N-ch MOSFET. 🔀 8-14 shows the behavior of the switch.

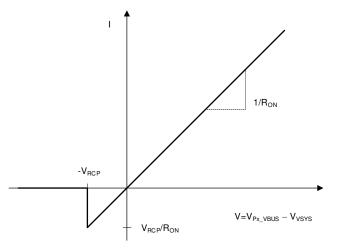
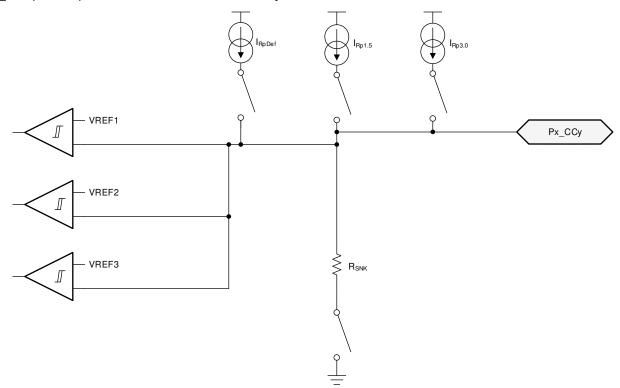


图 8-14. Switch I-V Curve for RCP on External Switches

8.3.3.2.3 VBUS UVLO

The TPS65994AD monitors Px_VBUS voltage and detects when it falls below V_{VBUS_UVLO} . When the UVLO condition is detected, Px_GATE_VBUS is disabled within $t_{Px_GATE_VBUS_RCP}$. When the UVLO condition is cleared, Px_GATE_VBUS is re-enabled within $t_{Px_GATE_VBUS_ON}$.


8.3.3.2.4 Discharging VBUS to Safe Voltage

The TPS65994AD has an integrated active pull-down (I_{DSCH}) on Px_VBUS for discharging from high voltage to VSAFE0V (0.8 V). This discharge is applied when it is in an Unattached Type-C state.

8.3.4 Cable Plug and Orientation Detection

8-15 shows the plug and orientation detection block at each Px_CCy pin (PA_CC1, PA_CC2, PB_CC1, PB_CC2). Each pin has identical detection circuitry.

图 8-15. Plug and Orientation Detection Block

8.3.4.1 Configured as a Source

When configured as a source, the TPS65994AD detects when a cable or a Sink is attached using the Px_CC1 and Px_CC2 pins. When in a disconnected state, the TPS65994AD monitors the voltages on these pins to determine what, if anything, is connected. See *USB Type-C Specification* for more information.

8-1 shows the Cable Detect States for a Source.

Px_CC1 Px_CC2		CONNECTION STATE	RESULTING ACTION	
Open	Open	Nothing attached	Continue monitoring both Px_CCy pins for attach. Power is not applied to Px_VBUS or VCONN.	
Rd Open Sink attached Open Rd Sink attached		Sink attached	Monitor Px_CC1 for detach. Power is applied to Px_VBUS but not to VCONN (Px_CC2).	
		Sink attached	Monitor Px_CC2 for detach. Power is applied to Px_VBUS but not to VCONN (Px_CC1).	
Ra Open Powered Cable-No UFP attached			Monitor Px_CC2 for a Sink attach and Px_CC1 for cable detach. Power is not applied to Px_VBUS or VCONN (Px_CC1).	
Open	Ra	Powered Cable-No UFP attached	Monitor Px_CC1 for a Sink attach and Px_CC2 for cable detach. Power is not applied to Px_VBUS or VCONN (Px_CC1).	
Ra	Rd	Powered Cable-UFP Attached	Provide power on Px_VBUS and VCONN (Px_CC1) then monitor Px_CC2 for a Sink detach. Px_CC1 is not monitored for a detach.	
Ro Ra Powereo Cable-UFP allacheo		Powered Cable-UFP attached	Provide power on Px_VBUS and VCONN (Px_CC2) then monitor Px_CC1 for a Sink detach. Px_CC2 is not monitored for a detach.	
		o ,	Sense either Px_CCy pin for detach.	

表 8-1. Cable Detect States for a Source

表 8-1. Cable Detect States for a Source (continued)

Px_CC1	Px_CC1 Px_CC2 CONNECTION STATE		RESULTING ACTION
Ra	Ra	Audio Adapter Accessory Mode attached	Sense either Px_CCy pin for detach.

When a TPS65994AD port is configured as a Source, a current I_{RpDef} is driven out each Px_CCy pin and each pin is monitored for different states. When a Sink is attached to the pin a pull-down resistance of Rd to GND exists. The current I_{RpDef} is then forced across the resistance Rd generating a voltage at the Px_CCy pin. The TPS65994AD applies I_{RpDef} until it closes the switch from PP5V to Px_VBUS, at which time application firmware may change to $I_{Rp1.5A}$ or $I_{Rp3.0A}$.

When the Px_CCy pin is connected to an active cable VCONN input, the pull-down resistance is different (Ra). In this case the voltage on the Px_CCy pin will be lower and the TPS65994AD recognizes it as an active cable.

The voltage on Px_CCy is monitored to detect a disconnection depending upon which Rp current source is active. When a connection has been recognized and the voltage on Px_CCy subsequently rises above the disconnect threshold for t_{CC} , the system registers a disconnection.

8.3.4.2 Configured as a Sink

When a TPS65994AD port is configured as a Sink, the TPS65994AD presents a pull-down resistance R_{SNK} on each Px_CCy pin and waits for a Source to attach and pull-up the voltage on the pin. The Sink detects an attachment by the presence of VBUS. The Sink determines the advertised current from the Source based on the voltage on the Px_CCy pin.

8.3.4.3 Configured as a DRP

When a TPS65994AD port is configured as a DRP, the TPS65994AD alternates the port's Px_CCy pins between the pull-down resistance, R_{SNK} , and pull-up current source, I_{Rp} .

8.3.4.4 Fast Role Swap Signal Detection

The TPS65994AD cable plug block contains additional circuitry that may be used to support the Fast Role Swap (FRS) behavior defined in the *USB Power Delivery Specification*. The circuitry provided for this functionality is detailed in 8 8-16.

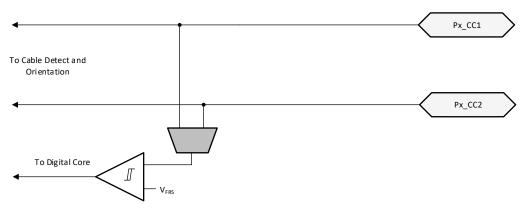


图 8-16. Fast Role Swap Detection and Signaling

When a TPS65994AD port is operating as a sink with FRS enabled, the TPS65994AD monitors the CC pin voltage. If the CC voltage falls below V_{FRS} for t_{FRS_DET} a fast role swap signal is detected and indicated to the digital core. When this signal is detected the TPS65994AD ceases operating as a sink (disables Px_GATE_VSYS and Px_GATE_VBUS) and begins operating as a source.

8.3.4.5 Dead Battery Advertisement

The TPS65994AD supports booting from no-battery or dead-battery conditions by receiving power from Px_VBUS. Type-C USB ports require a sink to present Rd on the CC pin before a USB Type-C source provides

a voltage on VBUS. TPS65994AD hardware is configured to present this Rd during a dead-battery or no-battery condition. Additional circuitry provides a mechanism to turn off this Rd once the device no longer requires power from VBUS.

8.3.5 Default Behavior Configuration (ADCIN1, ADCIN2)

Note

This functionality is firmware controlled and subject to change.

The ADCINx inputs to the internal ADC control the behavior of the TPS65994AD in response to PA_VBUS or PB_VBUS being supplied when VIN_3V3 is low (that is the dead-battery scenario). The ADCINx pins must be externally tied to the LDO_3V3 pin via a resistive divider as shown in the following figure. At power-up the ADC converts the ADCINx voltage and the digital core uses these two values to determine start-up behavior. The available start-up configurations include options for I²C slave address of I2C_EC_SCL/SDA, sink path control in dead-battery, and default configuration.

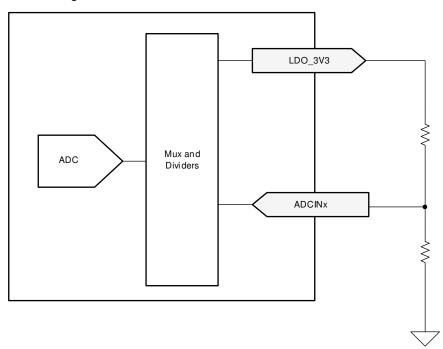
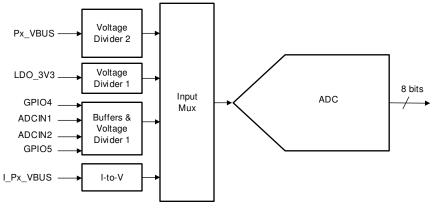


图 8-17. ADCINx Resistor Divider

The device behavior is determined in several ways depending upon the decoded value of the ADCIN1 and ADCIN2 pins. The following table shows the decoded values for different resistor divider ratios. See *Pin Strapping to Configure Default Behavior* for details on how the ADCINx configurations determine default device behavior. See *I*²*C* Address Setting for details on how ADCINx decoded values affects default I²C slave address.

A 0-2. Decoding of About 1 and About 2 1 ms								
DIV	= R _{DOWN} / (R _{UP} + R _{DOW}	(N) ⁽¹⁾	Without using R _{UP}	ADCINx decoded value				
MIN	Target	MAX	or R _{DOWN}	ADDINK decoded value				
0	0.0114	0.0228	tie to GND	0				
0.0229	0.0475	0.0722	N/A	1				
0.0723	0.1074	0.1425	N/A	2				
0.1425	0.1899	0.2372	N/A	3				
0.2373	0.3022	0.3671	N/A	4				
0.3672	0.5368	0.7064	tie to LDO_1V5	5				
0.7065	0.8062	0.9060	N/A	6				

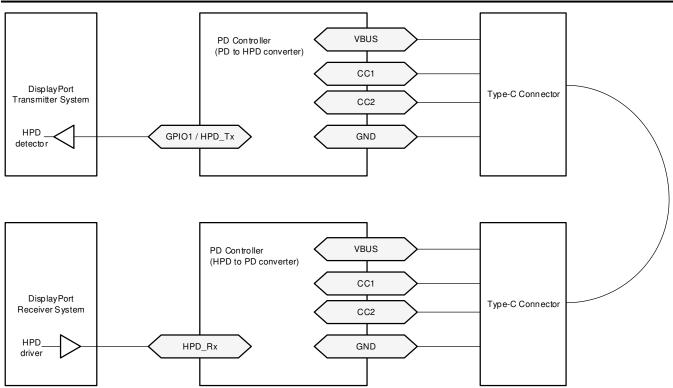

表 8-2. Decoding	g of ADCIN1	and ADCIN2 Pins
-----------------	-------------	-----------------

\approx 8-2. Decoding of ADCIN1 and ADCIN2 Pins (continued)							
$DIV = R_{DOWN} / (R_{UP} + R_{DOWN})^{(1)}$			Without using R _{UP}	ADCINx decoded value			
MIN	Target	MAX	or R _{DOWN}				
0.9061	0.9530	1.0	tie to LDO_3V3	7			

External resistor tolerance of 1% is recommended. Resistor values must be chosen to yield a DIV value centered nominally between (1) listed MIN and MAX values. For convenience, the Target column shows this value.

8.3.6 ADC

The TPS65994AD ADC is shown in 🛽 8-18. The ADC is an 8-bit successive approximation ADC. The input to the ADC is an analog input mux that supports multiple inputs from various voltages and currents in the device. The output from the ADC is available to be read and used by application firmware.


图 8-18. SAR ADC

8.3.7 DisplayPort Hot-Plug Detect (HPD)

The TPS65994AD supports the DisplayPort alternate mode as a DP source. It is recommended to use the virtual HPD functionality through I²C. However, the TPS65994AD also supports the HPD converter functions on GPIO pins (See 表 8-3). The core will translate PD messaging events onto the HPD pin.

TPS65994AD ZHCSLY5A - AUGUST 2020 - REVISED JULY 2021

图 8-19. Illustration of how a PD-to-HPD Converter Passes the HPD Signal Along in a DisplayPort System

8.3.8 Digital Interfaces

The TPS65994AD contains several different digital interfaces which may be used for communicating with other devices. The available interfaces include two I^2C Slaves and one I^2C Master, and additional GPIOs.

8.3.8.1 General GPIO

GPIOn pins can be mapped to USB Type-C, USB PD, and application-specific events to control other ICs, interrupt a host processor, or receive input from another IC. This buffer is configurable to be a push-pull output, a weak push-pull, or open drain output. When configured as an input, the signal can be a de-glitched digital input or an analog input to the ADC (only a subset of the GPIO's are ADC inputs see table below). The push-pull output is a simple CMOS output with independent pull-down control allowing open-drain connections. The weak push-pull is also a CMOS output, but with GPIO_RPU resistance in series with the drain. The supply voltage to the output buffer is LDO_3V3 and LDO_1V5 to the input buffer. When interfacing with non 3.3-V I/O devices the output buffer may be configured as an open drain output and an external pull-up resistor attached to the GPIO pin. The pull-up and pull-down output drivers are independently controlled from the input and are enabled or disabled via application code in the digital core.

Pin Name	Туре	Special Functionality
GPIO0	I/O	HPD_Tx for Port B
GPIO1	I/O	HPD_Tx for Port A
GPIO2	I/O	
GPIO3	I/O	
GPIO4	I/O	ADC Input,
GPIO5	I/O	ADC Input,
GPIO6	I/O	
GPIO7	I/O	
GPIO8	I/O	

表 8-3.	GPIO	Functionality	Table
--------	-------------	----------------------	-------

Pin Name	Туре	Special Functionality		
GPIO9	0	PROCHOT#		
I2C_EC_IRQ(GPIO10)	0	IRQ for I2C_EC, or used as a general-purpose output		
I2C2s_IRQ(GPIO11)	0	IRQ for I2C2, or used as a general-purpose output		
I2C3m_IRQ(GPIO12)	I	IRQ for I2C3, or used as a general-purpose input		

表 8-3. GPIO Functionality Table (continued)

8.3.8.2 I²C Interface

The TPS65994AD features three I²C interfaces that each use an I²C I/O driver like the one shown in \boxtimes 8-20. This I/O consists of an open-drain output and in input comparator with de-glitching.

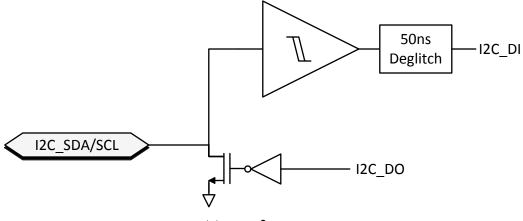


图 8-20. I²C Buffer

8.3.9 Digital Core

图 8-21 shows a simplified block diagram of the digital core.

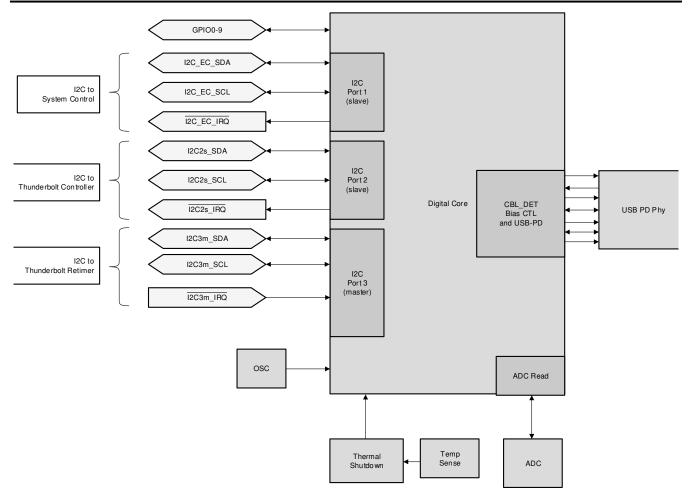


图 8-21. Digital Core Block Diagram

8.3.10 I²C Interface

The TPS65994AD has two I²C slave interface ports: I2C_EC and I2C2s. I²C port I2C_EC is comprised of the I2C_EC_SDA, I2C_EC_SCL, and I2C_EC_IRQ pins. I²C I2C2s is comprised of the I2C2s_SDA, I2C2s_SCL, and I2C2s_IRQ pins. These interfaces provide general status information about the TPS65994AD, as well as the ability to control the TPS65994AD behavior, supporting communications to/from a connected device and/or cable supporting BMC USB-PD, and providing information about connections detected at the USB-C receptacle.

When the TPS65994AD is in 'APP ' mode it is recommended to use Standard Mode or Fast Mode (that is a clock speed no higher than 400 kHz). However, in the 'BOOT' mode when a patch bundle is loaded Fast Mode Plus may be used (see f_{SCLS}).

The TPS65994AD has one I^2C master interface port: I2C3m. I2C3m is comprised of the I2C3m_SDA, I2C3m_SCL, and $\overline{I2C3m_IRQ1}$ pins. This interface can be used to read from or write to external slave devices. During boot the TPS65994AD attempts to read patch and Application Configuration data from an external EEPROM with a 7-bit slave address of 0x50. The EEPROM should be at least kilo-bytes.

I2C Bus	Туре	Typical Usage		
I2C_EC	Slave	Connect to an Embedded Controller (EC). Used to load the patch and application configuration.		
I2C2s	Slave	Connect to a TBT controller or second master.		
I2C3m	Master	Connect to a TBT retimer, USB Type-C mux, I ² C EEPROM, or other slave. Use the LDO_3V3 pin as the pull-up voltage. Multi-master configuration is not supported.		

表 8-4. I²C Summary

8.3.10.1 I²C Interface Description

The TPS65994AD supports Standard and Fast mode I²C interfaces. The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

A master sending a Start condition, a high-to-low transition on the SDA input and output, while the SCL input is high initiates I²C communication. After the Start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/ output during the high of the ACK-related clock pulse. On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period as changes in the data line at this time are interpreted as control commands (Start or Stop). The master sends a Stop condition, a low-to-high transition on the SDA input and output while the SCL input is high.

Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. The master receiver holding the SDA line high does this. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.

图 8-22 shows the start and stop conditions of the transfer. 图 8-23 shows the SDA and SCL signals for transferring a bit. 图 8-24 shows a data transfer sequence with the ACK or NACK at the last clock pulse.

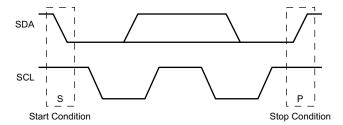


图 8-22. I²C Definition of Start and Stop Conditions

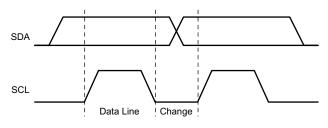


图 8-23. I²C Bit Transfer

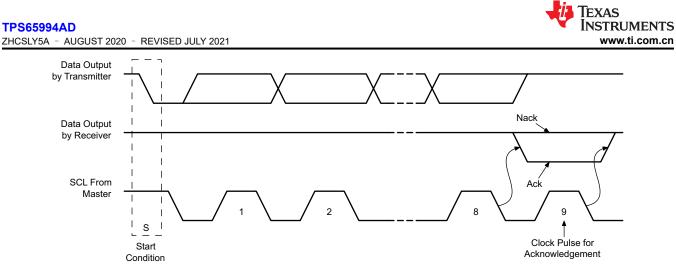


图 8-24. I²C Acknowledgment

8.3.10.2 I²C Clock Stretching

The TPS65994AD features clock stretching for the I²C protocol. The TPS65994AD slave I²C port may hold the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The master communicating with the slave must not finish the transmission of the current bit and must wait until the clock line actually goes high. When the slave is clock stretching, the clock line remains low.

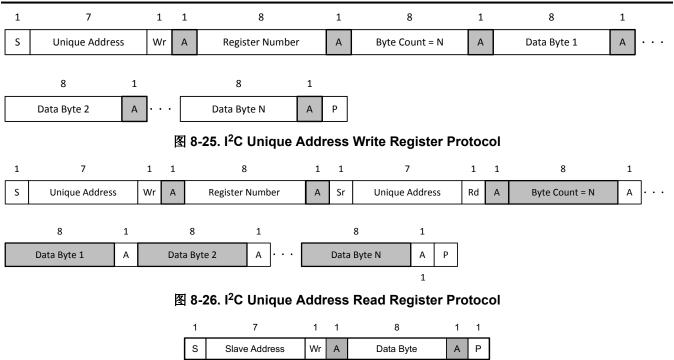
The master must wait until it observes the clock line transitioning high plus an additional minimum time (4 μ s for standard 100-kbps l²C) before pulling the clock low again.

Any clock pulse may be stretched but typically it is the interval before or after the acknowledgment bit.

8.3.10.3 I²C Address Setting

The host should only use I2C_EC_SCL/SDA for loading a patch bundle. Once the boot process is complete, each port has a unique slave address on the I2C_EC_SCL/SDA bus as selected by the ADCINx pins. The slave address used by each port on the I2C2s bus are determined from the application configuration. The Port A slave address should be used for pushing the patch bundle since the Port B slave address is not available during the BOOT mode.

I ² C address index				Slave A	ddress				Available During	
(decoded from ADCIN1 and ADCIN2) ⁽¹⁾	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	BOOT
#1	A	0	1	0	0	0	0	0	R/W	Yes
#1	В	0	1	0	0	1	0	0	R/W	No
#2	A	0	1	0	0	0	0	1	R/W	Yes
#2	В	0	1	0	0	1	0	1	R/W	No
#3	A	0	1	0	0	0	1	0	R/W	Yes
#3	В	0	1	0	0	1	1	0	R/W	No
#4	A	0	1	0	0	0	1	1	R/W	Yes
#4	В	0	1	0	0	1	1	1	R/W	No


表 8-5. I²C Default Slave Address for I2C_EC_SCL/SDA.

(1) See $\frac{1}{8}$ 8-2 details about ADCIN1 and ADCIN2 decoding.

8.3.10.4 Unique Address Interface

The Unique Address Interface allows for complex interaction between an I²C master and a single TPS65994AD. The I²C Slave sub-address is used to receive or respond to Host Interface protocol commands. \bigotimes 8-25 and \bigotimes 8-26 show the write and read protocol for the I²C slave interface, and a key is included in \bigotimes 8-27 to explain the terminology used. The TPS65994AD Host interface utilizes a different unique address to identify each of the two USB Type-C ports controlled by the TPS65994AD. The key to the protocol diagrams is in the SMBus Specification and is repeated here in part.

s	Slave Address	Wr	А	Data Byte	А	F	
			х		х		
S	Start Condition	ı					
SR	Repeated Star	Repeated Start Condition					
Rd	Read (bit value	Read (bit value of 1)					
Wr	Write (bit value	Write (bit value of 0)					
х	Field is require	Field is required to have the value x					
А	Acknowledge (1 for a NACK)	Acknowledge (this bit position may be 0 for an ACK or 1 for a NACK)					
Р	Stop Condition	Stop Condition					
	Master-to-Slav	Master-to-Slave					
	Slave-to-Maste	Slave-to-Master					
	Continuation o	Continuation of protocol					
	图 8-27. I ² C Read/Write Protocol Key						

8.4 Device Functional Modes

8.4.1 Pin Strapping to Configure Default Behavior

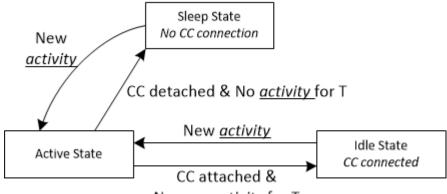
During the boot procedure, the device will read the ADCINx pins and set the configurations based on the table below. Then it will attempt to load a configuration from an external EEPROM on the I2C3m bus. If no EEPROM is detected, then the device will wait for an EC to load a configuration.

When an external EEPROM is used, each device is connected to a unique EEPROM, it cannot be shared for multiple devices. The external EEPROM shall be at 7-bit slave address 0x50.

ADCIN1 decoded value ⁽²⁾	ADCIN2 decoded value ⁽²⁾	I ² C address Index ⁽¹⁾	Dead Battery Configuration
7	5	#1	
5	5	#2	AlwaysEnableSink: The device always enables the sink path
2	0	#3	regardless of the amount of current the attached source is offering. USB PD is disabled until configuration is loaded.
1	7	#4	
7	4	#1	
4	4	#2	SinkRequires_3.0A: The device only enables the sink path if the
3	0	#3	attached source is offering at least 3.0A. USB PD is disabled until configuration is loaded.
2	7	#4	
7	6	#1	
6	6	#2	SinkRequires_1.5A: The device only enables the sink path if the
6	5	#3	attached source is offering at least 1.5A. USB PD is disabled until configuration is loaded.
6	7	#4	
7	3	#1	NegotiateHighVoltage: The device always enables the sink path
3	3	#2	during the initial implicit contract regardless of the amount of current the attached source is offering. The PD controller will
4	0	#3	enter the 'APP ' mode, enable USB PD PHY and negotiate a
3	7	#4	contract for the highest power contract that is offered up to 20 V. This cannot be used when a patch is loaded from EEPROM.
7	0	#1	SafeMode: The device does not enable the sink path. USB PD is
0	0	#2	disabled until configuration is loaded. Note that the configuration
6	0	#3	- could put the device into a source-only mode. This is recommended when the application loads the patch from
5	7	#4	EEPROM.

表 8-6. Device Configuration using ADCIN1 and ADCIN2

(1) See $\frac{1}{8}$ 8-5 to see the exact meaning of I²C Address Index.


(2) See $\frac{1}{8}$ 8-2 for how to configure a given ADCINx decoded value.

8.4.2 Power States

The TPS65994AD may operate in one of three different power states: Active, Idle, or Sleep. The Modern Standby mode is a special case of the Idle mode. The functionality available in each state is summarized in the following table. The device will automatically transition between the three power states based on the circuits that are active and required, see the following figure. In the Sleep State the TPS65994AD will detect a Type-C connection. Transitioning between the Active mode to the Idle mode requires a period of time (T) without any of the following activity:

- Incoming USB PD message.
- Change in CC status.
- GPIO input event.
- I²C transactions.
- Voltage alert.
- Fault alert.

No new <u>activity f</u>or T

图 8-28. Flow Diagram For Power States

表 8-7. Power Consumption States							
	Active Source Mode ⁽¹⁾	Active Sink Mode ⁽⁶⁾	Idle Source Mode ⁽²⁾	Idle Sink Mode ⁽⁷⁾	Modern Standby Source Mode ⁽⁴⁾	Modern Standby Sink Mode ⁽⁵⁾	Sleep Mode ⁽³⁾
PP_5V1	enabled	disabled	enabled	disabled	enabled	disabled	disabled
PP_5V2	enabled	disabled	enabled	disabled	disabled	disabled	disabled
PP_EXT 1	disabled	enabled	disabled	enabled	disabled	disabled	disabled
PP_EXT2	disabled	enabled	disabled	enabled	disabled	disabled	disabled
PP_CABLE1	enabled	enabled	enabled	enabled	disabled	disabled	disabled
PP_CABLE2	enabled	enabled	enabled	enabled	disabled	disabled	disabled
external PA_CC1 termination	Rd	Rp 3.0A	Rd	Rp 3.0A	Rd	Rp 3.0A	open
external PA_CC2 termination	open	open	open	open	open	open	open
external PB_CC1 termination	Rd	Rp 3.0A	Rd	Rp 3.0A	open	open	open
external PB_CC2 termination	open	open	open	open	open	open	open

表 8-7.	Power	Consum	ntion	States
10-1.	1 0 10 01	Consum	puon	Oluco

(1) This mode is used for: $I_{VIN_{3V3,ActSrc}}$.

(2) This mode is used for: $I_{VIN_3V3,IdlSrc}$

(3) This mode is used for: $I_{VIN_3V3,Sleep}$

(4) This mode is used for: P_{MstbySrc}

(5) This mode is used for: P_{MstbySnk}

(6) This mode is used for: I_{VIN_3V3,ActSnk}

(7) This mode is used for: $I_{VIN_3V3, IdlSnk}$

8.4.3 Thermal Shutdown

The TPS65994AD features a central thermal shutdown as well as independent thermal sensors for each internal power path. The central thermal shutdown monitors the overall temperature of the die and disables all functions except for supervisory circuitry when die temperature goes above a rising temperature of T_{SD_MAIN} . The temperature shutdown has a hysteresis of T_{SDH_MAIN} and when the temperature falls back below this value, the device resumes normal operation.

The power path thermal shutdown monitors the temperature of each internal PP5V-to-VBUS power path and disables both power paths and the VCONN power path when either exceeds T_{SD_PP5V} . Once the temperature falls by at least T_{SDH_PP5V} the path can be configured to resume operation or remain disabled until re-enabled by firmware.

9 Application and Implementation

Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The TPS65994AD firmware implements a host interface over I²C to allow for the configuration and control of all device options. Initial device configuration is configured through a configuration bundle loaded on to the device during boot. The bundle may be loaded through the I2C_EC port or it may be loaded over I2C3m from an external EEPROM. The TPS65994AD configuration bundle and host interface allow the device to be customized for each specific application. The configuration bundle can be generated through the Application Customization Tool.

9.2 Typical Application

9.2.1 Type-C VBUS Design Considerations

USB Type-C and PD allows for voltages up to 20 V with currents up to 5 A. This introduces power levels that could damage components touching or hanging off of VBUS. Under normal conditions, all high power PD contracts should start at 5 V and then transition to a higher voltage. However, there are some devices that are not compliant to the USB Type-C and Power Delivery standards and could have 20 V on VBUS. This could cause a 20-V hot plug that can ring above 30 V. Adequate design considerations are recommended below for these non-compliant devices.

9.2.1.1 Design Requirements

表 9-1 shows VBUS conditions that can be introduced to a USB Type-C and PD Sink. The system should be able to handle these conditions to ensure that the system is protected from non-compliant and/or damaged USB PD sources. A USB Sink should be able to protect from the following conditions being applied to its VBUS. The *Detailed Design Procedure* section explains how to protect from these conditions.

表 9-1. VBUS Conditions					
CONDITION	VOLTAGE APPLIED				
Abnormal VBUS Hot Plug	4 V - 21.5 V				
VBUS Transient Spikes	4 V - 43 V				

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Type-C Connector VBUS Capacitors

The first level of protection starts at the Type-C connector and the VBUS pin capacitors. These capacitors help filter out high frequency noise but can also help absorb short voltage transients. Each VBUS pin should have a 10-nF capacitor rated at or above 25 V and placed as close to the pin as possible. The GND pin on the capacitors should have very short path to GND on the connector. The derating factor of ceramic capacitors should be taken into account as they can lose more than 50% of their effective capacitance when biased. Adding the VBUS capacitors can help reduce voltage spikes by 2 V to 3 V.

9.2.1.2.2 VBUS Schottky and TVS Diodes

TVS Diodes help suppress and clamp transient voltages. Most TVS diodes can fully clamp around 10 ns and can keep the VBUS at their clamping voltage for a period of time. Looking at the clamping voltage of TVS diodes after they settle during a transient will help decide which TVS diode to use. The peak power rating of a TVS diode must be able to handle the worst case conditions in the system.

To prevent the possibility of large ground currents into the TPS65994AD during sudden disconnects due to inductive effects in a cable, it is recommended that a Schottky diode be placed from VBUS to ground.

The TVS2200 can serve to clamp the VBUS voltage and prevent large ground currents into the PD controller as shown in
9-1

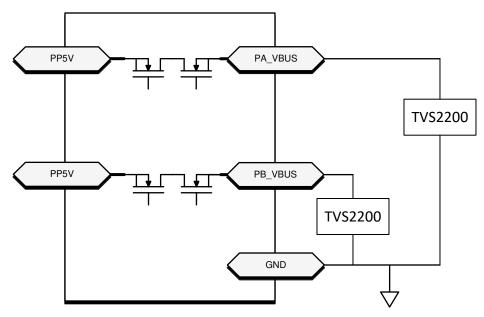
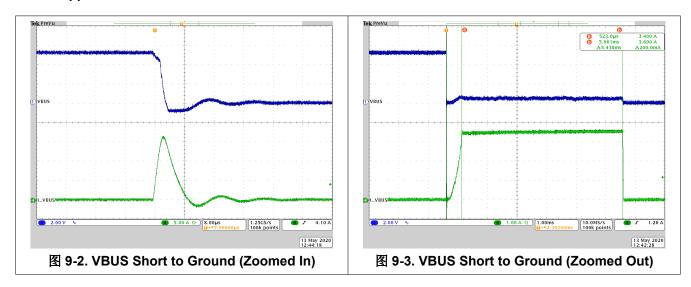
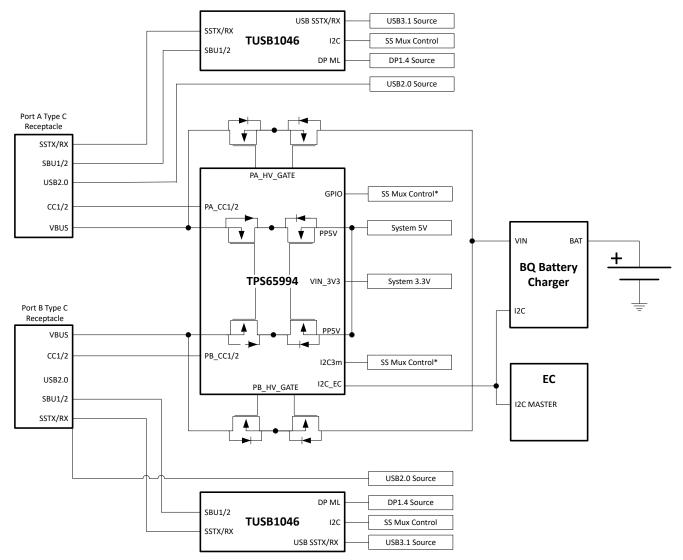



图 9-1. TVS2200 for VBUS clamping and current surge protection


9.2.1.3 Application Curves

9.2.2 Notebook Design Supporting PD Charging

The TPS65994AD works very well in dual port Notebooks that support PD charging. The internal power paths for the TPS65994AD source System 5 V from PP5V to the respective VBUS pins. Additionally, the TPS65994AD can control two external Common Drain N-FET power paths to sink power into the system. The TPS65994AD offers full reverse-current protection on these external power paths through the N-FET gate driver. The System 5-V connected to the PP5V pin on the TPS65994AD also supplies power to VCONN of Type-C e-marked cables and Type-C accessories. An embedded controller EC is used for additional control of the TPS65994AD and to relay information back to the operating system. An embedded controller enables features such as entering and exiting sleep modes, changing source and sink capabilities depending on the state of the battery, UCSI support, control alternate modes and so forth.

9.2.2.1 USB and DisplayPort Notebook Supporting PD Charging

图 9-4. USB and DisplayPort Notebook Supporting PD Charging

9.2.2.1.1 Design Requirements

 $\frac{1}{8}$ 9-2 summarizes the Power Design parameters for an USB Type-C PD Notebook.

表 9-2. Power Design Paramete	ers	Paramete	Desian	Power	表 9-2.
------------------------------	-----	----------	--------	-------	--------

POWER DESIGN PARAMETERS	VALUE	CURRENT PATH			
PP5V Input Voltage, Current	5 V, 4 A	VBUS 1 & 2 Source & VCONN 1 & 2 Source			
NFET PP_EXT Voltage, Current	5 V - 20 V, 3 A (5-A Maximum)	VBUS 1 & 2 Sink			
VIN_3V3 Voltage, Current	3.3 V, 50 mA	Internal TPS65994AD Circuitry			

9.2.2.1.2 Detailed Design Procedure

9.2.2.1.2.1 USB Power Delivery Source Capabilities

Most Type-C dongles (video and data) draw less than 900 mA and supplying 1.5 A on each Type-C port is sufficient for a notebook supporting USB and DisplayPort. 表 9-3 shows the PDO for the Type-C port.

表 9-3. Source PDOs

	••••			
SOURCE PDO	PDO TYPE	VOLTAGE	CURRENT	
PDO1	Fixed	5 V	1.5 A	

9.2.2.1.2.2 USB Power Delivery Sink Capabilities

Most notebooks support buck and boost charging which allows them to charge the battery from 5 V to 20 V. USB PD sources must also follow the Source Power Rules defined by the USB Power Delivery specification. It is recommended for notebooks to support all the voltages in the Source Power Rules to ensure compatibility with most PD chargers and adapters.

SINK PDO	PDO TYPE	VOLTAGE	CURRENT		
PDO1	Fixed	5 V	3 A		
PDO2	Fixed	9 V	3 A		
PDO3	Fixed	15 V	3 A		
PDO4	Fixed	20 V	3 A (5 A Max)		

表 9-4. Sink PDOs

9.2.2.1.2.3 USB and DisplayPort Supported Data Modes

 $\frac{1}{8}$ 9-5 summarizes the data capabilities of the notebook supporting USB3 and DisplayPort.

表 9-5. Data Capabilities

PROTOCOL	DATA	DATA ROLE
USB Data	USB3.1 Gen2	Host
DisplayPort	DP1.4 Host DFP_D (Pin Assignment C	

9.2.2.1.2.4 TUSB1046 Super Speed Mux GPIO Control

The TUSB1046 requires GPIO control in GPIO control mode to determine whether if there is USB or DisplayPort data connection. $\frac{9-6}{8}$ summarizes the TPS65994AD GPIO Events and the control pins for the TUSB1046. Note that the pin strapping on the TUSB1046 will set the GPIO control mode and the required equalizer settings. For more details refer to the TUSB1046 datasheet.

	At a second method when the second method with the second se				
TPS65994AD GPIO EVENT	TUSB1046 CONTROL				
Cable_Orientation_Event_Port1	FLIP				
USB3_Event_Port1	CTL0				
DP_Mode_Selection_Event_Port1	CTL1				

表 9-6. GPIO Events for Super Speed Mux

9.2.2.2 Thunderbolt Notebook Supporting PD Charging

A Thunderbolt system is capable of sourcing USB, DisplayPort, and Thunderbolt data. There is an I^2C connection between the TPS65994AD and the Thunderbolt controller. The TPS65994AD will determine the connection on the Type-C port and will generate an interrupt to the Thunderbolt controller to generate the appropriate data output. An external mux for SBU may be needed to mux the LSTX/RX and AUX_P/N signal from the Thunderbolt controller to the Type-C Connector. The TPD6S300 provides additional protection such as short to VBUS on the CC and SBU pins and ESD for the USB2 DN/P. See $\boxed{8}$ 9-5 for a block diagram of the system.

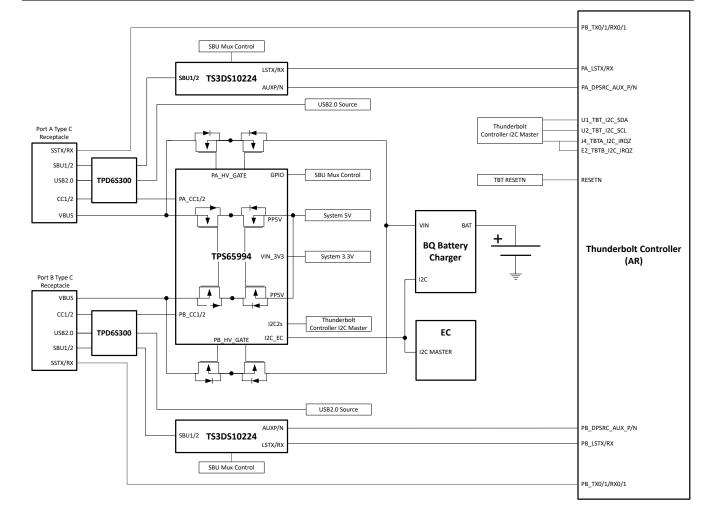


图 9-5. Thunderbolt Notebook Supporting PD Charging

9.2.2.2.1 Design Requirements

 $\frac{1}{8}$ 9-7 summarizes the Power Design parameters for an USB Type-C PD Thunderbolt Notebook.

表 9-7. Power Design Parameter	arameters	sign	Power	表 9-7.
-------------------------------	-----------	------	-------	--------

POWER DESIGN PARAMETERS	VALUE	CURRENT PATH
PP5V Input Voltage, Current	5 V, 7 A	VBUS 1 & 2 Source & VCONN 1 & 2 Source
NFET PP_EXT Voltage, Current	5 V - 20 V, 3 A (5-A Maximum)	VBUS 1 & 2 Sink
VIN_3V3 Voltage, Current	3.3 V, 50 mA	Internal TPS65994AD Circuitry

9.2.2.2.2 Detailed Design Procedure

9.2.2.2.1 USB Power Delivery Source Capabilities

All Type-C Ports that support Thunderbolt must support sourcing 5 V at 3 A (15 W). See $\frac{1}{2}$ 9-8 for the PDO information.

SOURCE PDO	PDO TYPE	VOLTAGE	CURRENT						
PDO1	Fixed	5 V	3 A						

表 9-8. Source PDOs

Texas

INSTRUMENTS www.ti.com.cn

9.2.2.2.2.2 USB Power Delivery Sink Capabilities

Most notebooks support buck and boost charging which allows them to charge the battery from 5 V to 20 V. USB PD sources must also follow the Source Power Rules defined by the USB Power Delivery specification. It is recommended for notebooks to support all the voltages in the Source Power Rules to ensure compatibility with most PD chargers and adapters.

SINK PDO	PDO TYPE	VOLTAGE	CURRENT							
PDO1	Fixed	5 V	3 A							
PDO2	Fixed	9 V	3 A							
PDO3	Fixed	15 V	3 A							
PDO4	Fixed	20 V	3 A (5-A Maximum)							

表 9-9. Sink PDOs

9.2.2.2.3 Thunderbolt Supported Data Modes

Thunderbolt Controllers are capable of generating USB3, DisplayPort and Thunderbolt Data. The Thunderbolt controller is also capable of muxing the appropriate super speed signal to the Type-C connector. Thunderbolt systems do not need a super speed mux for the Type-C connector. 表 9-10 summarizes the data capabilities of each Type-C port supporting Thunderbolt.

PROTOCOL	DATA	DATA ROLE							
USB Data	USB3.1 Gen2	Host							
DisplayPort	DP1.4	Host DFP_D (Pin Assignment C, D, and E)							
Thunderbolt	PCIe/DP	Host/Device							

表 9-10. Data Capabilities

9.2.2.2.2.4 I2C Design Requirements

The I²C connection from the TPS65994AD and the Thunderbolt control allows the Thunderbolt controller to read the current data status from the TPS65994AD when there is a connection on either Type-C port. The Thunderbolt controller has an interrupt assigned for the TPS65994AD and the Thunderbolt controller will read the I²C address corresponding to the Type-C port. The I2C2s on the TPS65994AD is always connected to the Thunderbolt controller.

9.2.2.2.2.5 TS3DS10224 SBU Mux for AUX and LSTX/RX

The SBU signals must be muxed from the Type-C connector to the Thunderbolt controller. The AUX for DisplayPort and LSTX/RX for Thunderbolt are connected to the TS3DS10224 and then muxed to the SBU pins. The SBU mux is controlled through GPIOs from the TPS65994AD. 表 9-11 shows the TPS65994AD GPIO events and the control signals from the TS3DS10224.

农 9-11. GPIO Events for SBO Mux									
TPS65994AD GPIO EVENT	TS3DS10224 CONTROL								
Cable_Orientation_Event_Port1	SAO, SBO								
DP_Mode_Selection_Event_Port1	ENA								
TBT_Mode_Selection_Event_Por1	ENB								
N/A	SAI tied to VCC								
N/A	SBI tied to GND								

表 9-11. GPIO Events for SBU Mux

$\frac{1}{8}$ 9-12 shows the connections for the AUX, LSTXRX, and SBU pins for the TS3DS10224.

表 9-12. TS3DS10224 Pin Connections

TS3DS10224 PIN	SIGNAL								
INA+	SBU1								
INA-	SBU2								

Copyright © 2022 Texas Instruments Incorporated

TPS65994AD ZHCSLY5A - AUGUST 2020 - REVISED JULY 2021

表 9-12. TS3DS10224 Pin Connections (continued)

TS3DS10224 PIN	SIGNAL
OUTB0+	LSTX
OUTB0-	LSRX
OUTB1+	LSRX
OUTB1-	LSTX
OUTA0+	AUX_P
OUTA0-	AUX_N
OUTA1+	AUX_N
OUTA1-	AUX_P

10 Power Supply Recommendations

10.1 3.3-V Power

10.1.1 VIN_3V3 Input Switch

The VIN_3V3 input is the main supply of the TPS65994AD device. The VIN_3V3 switch (see *Power Management*) is a uni-directional switch from VIN_3V3 to LDO_3V3, not allowing current to flow backwards from LDO_3V3 to VIN_3V3. This switch is on when the 3.3 V supply is availableand the dead-battery flag is cleared. The recommended capacitance C_{VIN_3V3} (see the Recommended Capacitance in the *Specifications* section) should be connected from the VIN_3V3 pin to the GND pin.

10.1.2 VBUS 3.3-V LDO

The 3.3 V LDO from Px_VBUS to LDO_3V3 steps down voltage from the PA_VBUS pin to LDO_3V3 which allows the TPS65994AD device to be powered from VBUS when VIN_3V3 is unavailable. This LDO steps down any recommended voltage on the PA_VBUS pin. When VBUS reaches 20 V, which is allowable by USB PD, the internal circuitry of the TPS65994AD device operates without triggering thermal shutdown; however, a significant external load on the LDO_3V3 pin or any GPIOx pin can increase temperature enough to trigger thermal shutdown. Keep the total load on LDO_3V3 within the limits from the *Recommended Operating Conditions* in the Specifications section. Connect the recommended capacitance C_{Px_VBUS} (see *Recommended Capacitance* in the Specifications section) from the VBUS pin to the GND pin.

10.2 1.5-V Power

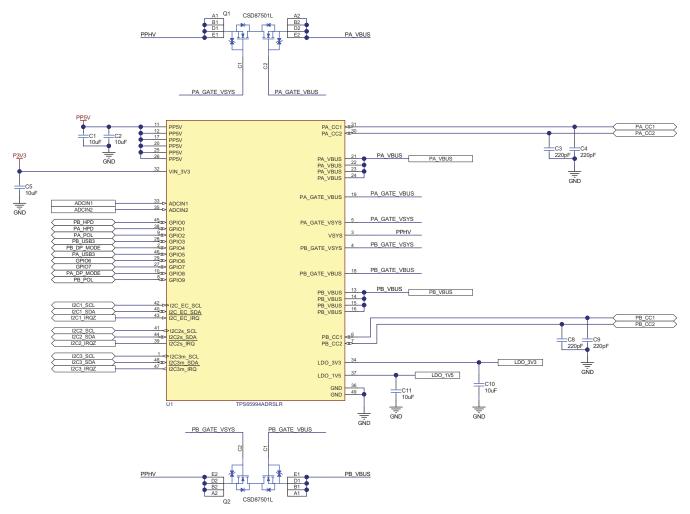
The internal circuitry is powered from 1.5 V. The 1.5-V LDO steps the voltage down from LDO_3V3 to 1.5 V. The 1.5-V LDO provides power to all internal low-voltage digital circuits which includes the digital core, and memory. The 1.5-V LDO also provides power to all internal low-voltage analog circuits. Connect the recommended capacitance C_{LDO_1V5} (see the Recommended Capacitance in the *Specifications* section) from the LDO_1V5 pin to the GND pin.

10.3 Recommended Supply Load Capacitance

The Recommended Capacitance in the *Specifications* section lists the recommended board capacitances for the various supplies. The typical capacitance is the nominally rated capacitance that must be placed on the board as close to the pin as possible. The maximum capacitance must not be exceeded on pins for which it is specified. The minimum capacitance is minimum capacitance allowing for tolerances and voltage derating ensuring proper operation.

11 Layout

11.1 Layout Guidelines


Proper routing and placement will maintain signal integrity for high speed signals and improve the heat dissipation from the power paths. The combination of power and high speed data signals are easily routed if the following guidelines are followed. It is a best practice to consult with board manufacturing to verify manufacturing capabilities.

11.1.1 Top TPS65994AD Placement and Bottom Component Placement and Layout

When the TPS65994AD is placed on top and its components on bottom the solution size will be at its smallest.

11.2 Layout Example

Follow the differential impedances for Super and High Speed signals defined by their specifications (DisplayPort - AUXN/P and USB2.0). All I/O will be fanned out to provide an example for routing out all pins, not all designs will utilize all of the I/O on the TPS65994AD.

11.3 Component Placement

Top and bottom placement is used for this example to minimize solution size. The TPS65994AD is placed on the top side of the board and the majority of its components are placed on the bottom side. When placing the components on the bottom side, it is recommended that they are placed directly under the TPS65994AD. When placing the VBUS and PPHV capacitors it is easiest to place them with the GND terminal of the capacitors to

face outward from the TPS65994AD or to the side since the drain connection pads on the bottom layer should not be connected to anything and left floating. All other components that are for pins on the GND pad side of the TPS65994AD should be placed where the GND terminal is underneath the GND pad.

The CC capacitors should be placed on the same side as the TPS65994AD close to the respective CC1 and CC2 pins. Do NOT via to another layer in between the CC pins to the CC capacitor, placing a via after the CC capacitor is recommended.

The ADCIN1/2 voltage divider resistors can be placed where convenient. In this layout example they are placed on the opposite layer of the TPS65994AD close to the LDO_3V3 pin to simplify routing.

The figures below show the placement in 2-D and 3-D.

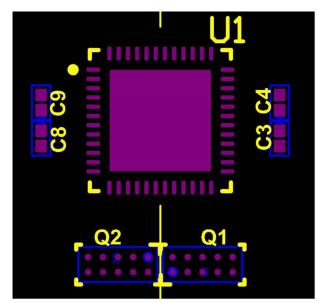


图 11-2. Top View Layout

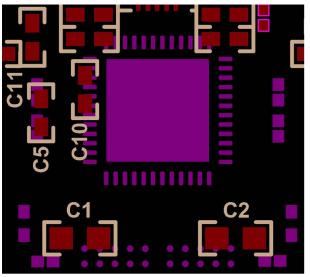


图 11-3. Bottom View Layout (Flipped)

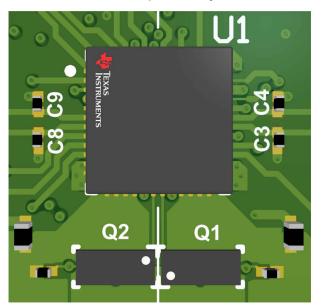


图 11-4. Top View 3-D

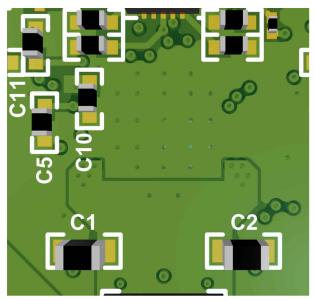


图 11-5. Bottom View 3-D

11.4 Routing PP_5V, VBUS, VIN_3V3, LDO_3V3, LDO_1V5

On the top side, create pours for PP_5V and VBUS1/2. Connect PP5V from the top layer to the bottom layer using at least 7 8-mil hole and 16-mil diameter vias. See \boxtimes 11-6 and \boxtimes 11-7 for top and bottom layer via placement and copper pours respectively.

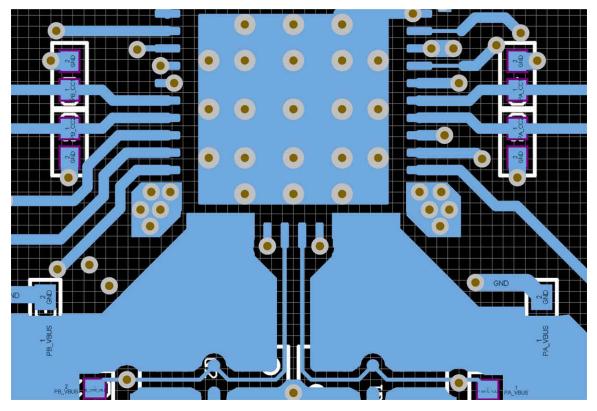


图 11-6. VBUS1 and VBUS2 Copper Pours and Via Placement (Top)

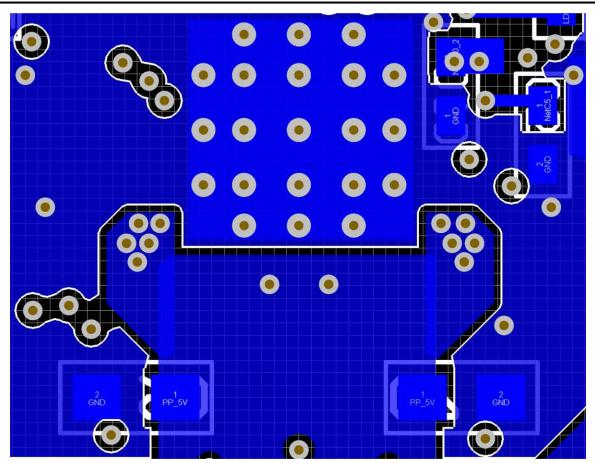
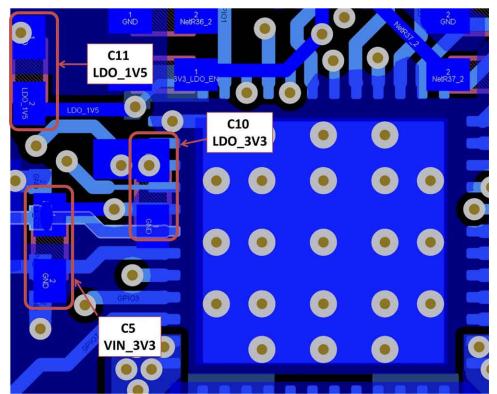
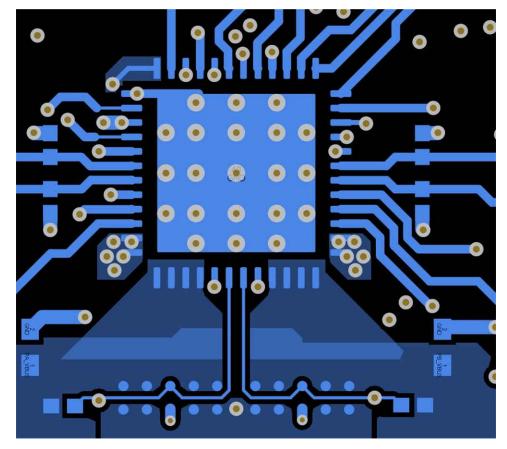


图 11-7. PP5V Copper Pours and Via Placement (Bottom)

Next, VIN_3V3, LDO_3V3, and LDO_1V5 will be routed to their respective decoupling capacitors. This is highlighted in Figure 8. Connect the bottom side VIN_3V3, LDO_1V5, and LDO_3V3 capacitors with traces through a via. The vias should have a straight connection to the respective pins.

As shown in **11-5** (3D view) these decoupling capacitors are in the bottom layer.




图 11-8. VIN_3V3, LDO_3V3, and LDO_1V5 Routing

11.5 Routing CC and GPIO

Routing the CC lines with a 10-mil trace will ensure the needed current for supporting powered Type-C cables through VCONN. For more information on VCONN refer to the Type-C specification. For capacitor GND pin use a 16-mil trace if possible.

Most of the GPIO signals can be fanned out on the top or bottom layer using either a 6-mil trace or a 8-mil trace. The following images highlight how the CC lines and GPIOs are routed out.

图 11-9. Top Layer GPIO Routing

表 11-1. Routing Widths

ROUTE	WIDTH (mil minimum)
PA_CC1, PA_CC2, PB_CC1, PB_CC2	8
VIN_3V3, LDO_3V3, LDO_1V5	6
Component GND	10
GPIO	4

12 Device and Documentation Support

12.1 Device Support

12.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此 类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

12.2 Documentation Support

12.2.1 Related Documentation

- USB-PD Specifications
- USB Power Delivery Specification

12.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

USB Type-C[®] is a registered trademark of USB Implementers Forum.

所有商标均为其各自所有者的财产。

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.1 Package Option Addendum

Packaging Information

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish ⁽³⁾	MSL Peak Temp ⁽⁴⁾	Op Temp	Device Marking ^{(5) (6)}
TPS65994ADRSL R	ACTIVE	VQFN	RSL	48	2500	Green (RoHS& no Sb/Br)	NiPdAu / NiPdAuAg	Level-2-260C-1 YEAR	-40 to 125	TPS65994 AD

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没 有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改TI 针对TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS65994ADRSLR	ACTIVE	VQFN	RSL	48	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPS65994	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

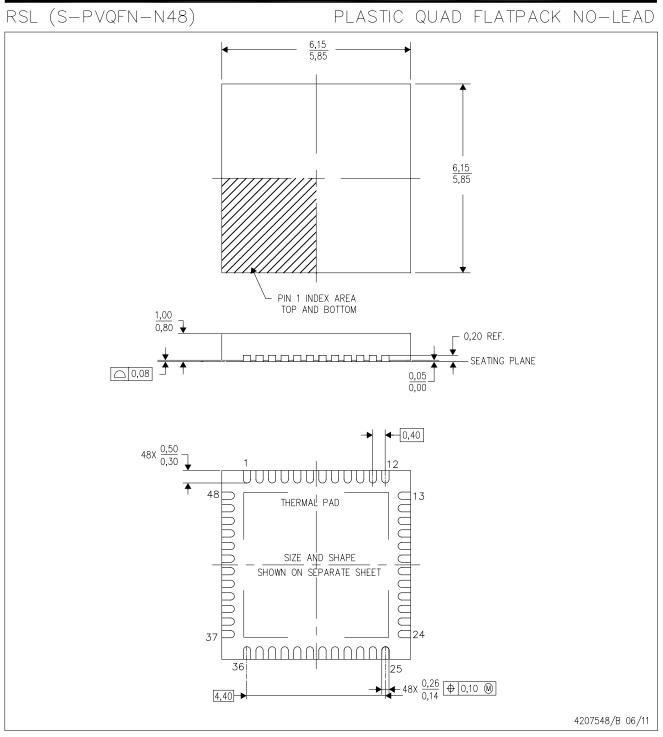
⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.


(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

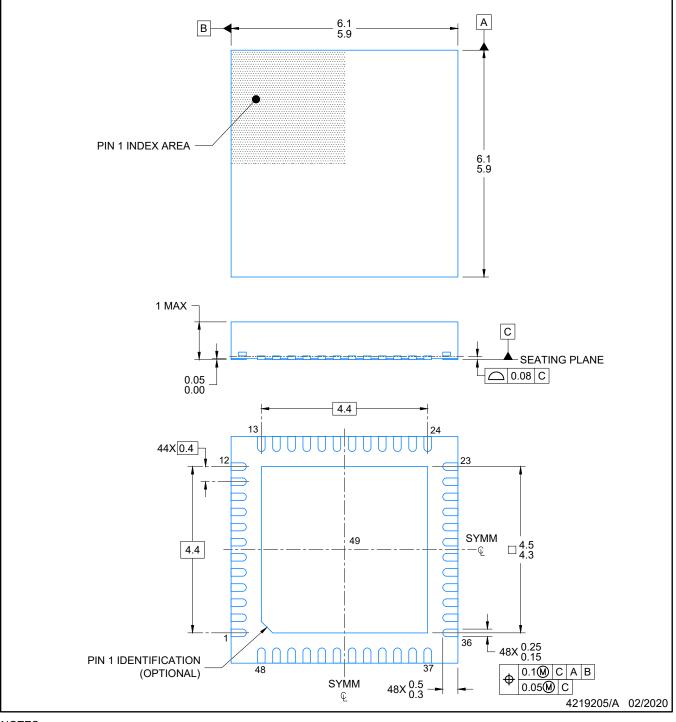
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.



RSL0048B

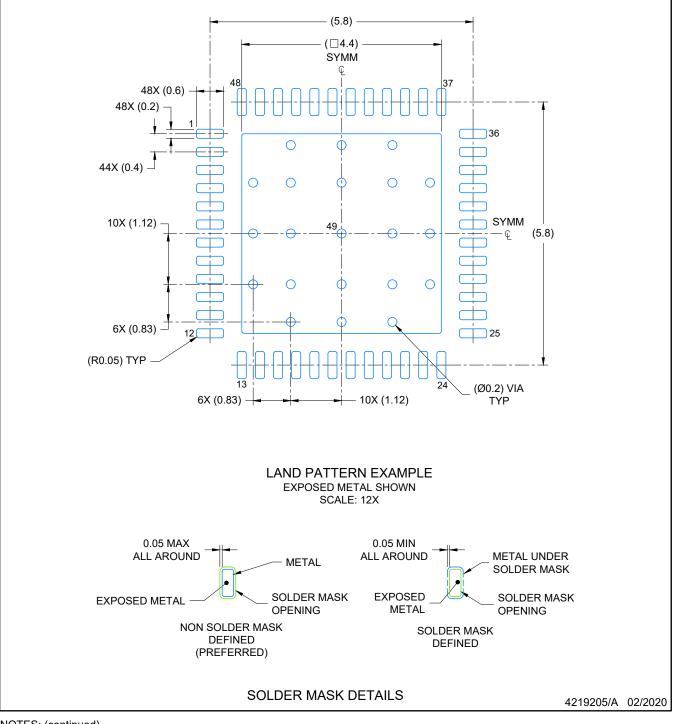
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



<u>RSL0048B</u>

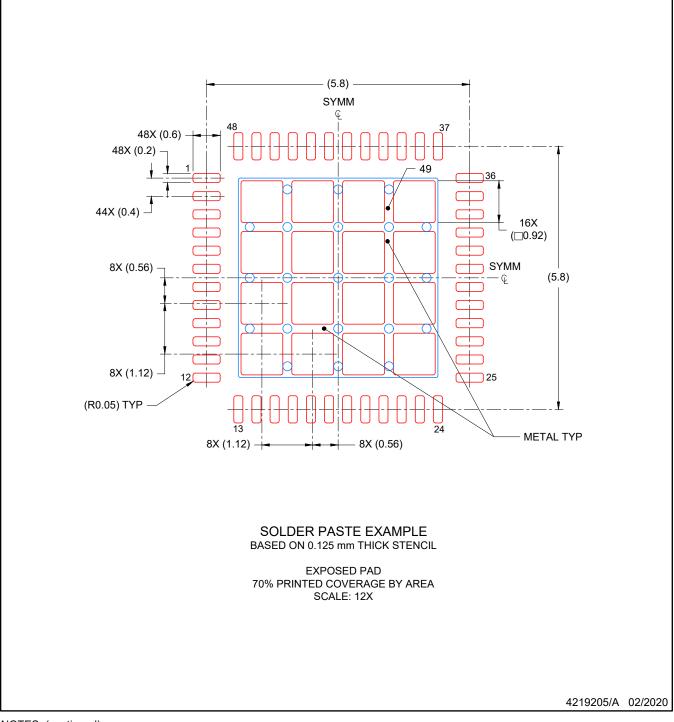
EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RSL0048B

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司 单击下面可查看定价,库存,交付和生命周期等信息

>>TI(德州仪器)