TPS3800-xx

SLVS219E - AUGUST 1999-REVISED OCTOBER 2010

ULTRA-SMALL SUPPLY VOLTAGE SUPERVISORS

Check for Samples: TPS3800-xx, TPS3801-xx, TPS3802-xx

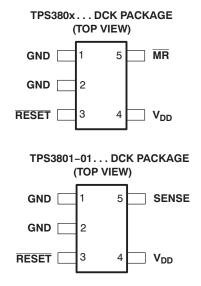
FEATURES

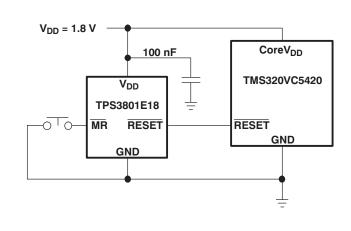
- Small, 5-Pin SC-70 (SOT-323) Package
- Supply Current of 9 µA
- **Power-On Reset Generator With Fixed Delay** Time
 - TPS3800 = 100 ms
 - TPS3801 = 200 ms
 - TPS3802 = 400 ms
- Precision Supply Voltage Monitor 1.8 V, 2.5 V, 2.7 V, 3 V, 3.3 V, 5 V, and Adjustable
- Manual Reset Input (Except TPS3801-01)
- Temperature Range: -40°C to +85°C

APPLICATIONS

- Applications Using DSPs, Microcontrollers, or **Microprocessors**
- **Wireless Communication Systems**
- Portable/Battery-Powered Equipment
- **Programmable Controls**
- **Intelligent Instruments**
- **Industrial Equipment**
- **Notebook/Desktop Computers**
- **Automotive Systems**

DESCRIPTION


The TPS380x family of supervisory circuits monitor supply voltages to provide circuit initialization and timing supervision, primarily for DSPs and other processor-based systems.


These devices assert a push-pull RESET signal when the SENSE (adjustable version) or V_{DD} (fixed version) drops below a preset threshold. The RESET output remains asserted for the factory programmed delay time after the SENSE or V_{DD} return above its threshold.

The TPS380x devices, except the TPS3801-01, incorporate a manual reset input (MR). A low level at MR causes RESET to become active.

The TPS380x uses a precision reference to achieve an overall threshold accuracy of 2%-2.5%. These devices are available in a 5-pin SC-70 package, which is only about half the size of a 5-pin SOT-23 package.

The TPS380x devices are fully specified over a temperature range of -40°C to +85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS(1)

T _A	DEVICE NAME	THRESHOLD VOLTAGE	TYP DELAY TIME	MARKING
	TPS3801-01DCK	Adjustable (V _{ref} = 1.14 V)	200 ms	ARF
	TPS3801E18DCK	1.71 V	200 ms	ARE
	TPS3801J25DCK	2.25 V	200 ms	NJA
	TPS3800G27DCK	2.5 V	95 ms	ARI
-40°C to 85°C	TPS3801L30DCK	2.64 V	200 ms	NPA
-40°C to 85°C	TPS3801K33DCK	2.93 V	200 ms	NWA
	TPS3802L30DCK	2.64 V	380 ms	ASA
	TPS3802K33DCK	2.93 V	380 ms	ARK
	TPS3801T50DCK	4.00 V	25 ms	AVI
	TPS3801I50DCK	4.55 V	200 ms	NSA

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or refer to our web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1) (2)

Over operating free-air temperature range (unless otherwise noted).

	UNIT
Supply voltage, V _{DD}	7 V
SENSE	–0.3 V to 5 V
All other pins	–0.3 V to 7 V
MR	-0.3 V to V _{DD} + 0.3 V
RESET	-0.3 V to V _{DD} + 0.3 V
Maximum low-output current, I _{OL}	5 mA
Maximum high-output current, I _{OH}	−5 mA
Input-clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$)	±20 mA
Output-clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$)	±20 mA
Operating junction temperature range, T _J ⁽³⁾	-40°C to +85°C
Storage temperature range, T _{stg}	−65°C to +150°C

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to GND. For reliable operation, the device should not be operated at 7 V for more than t = 1000h continuously.
- (3) Due to the low dissipation power of this device, it is assumed that $T_J = T_A$.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
Cumply valtage 1/	TPS3801J25, TPS3801L30, TPS3801K33, TPS3801I50, TPS3801T50	2	6	V
Supply voltage, V _{DD}	All other devices	1.6	4	V
SENSE		0	See (1)	V
Input voltage, V _I		0	V _{DD} +0.3	V
High-level input voltage	ge, V _{IH}	$0.7 \times V_{DD}$	V _{DD} +0.3	V
Low-level input voltag	e, V _{IL}		$0.3 \times V_{DD}$	V
Input transition rise ar	nd fall rate at MR, Δt/ΔV		100	ns/V
Pull-up resistor value,	RESET	V _{Pull-up} 50μΑ		Ω
Operating free-air tem	perature range, T _A	-40	+85	°C

(1) Maximum = V_{DD} + 0.3 or 4.5 V, whichever is greater.

ELECTRICAL CHARACTERISTICS

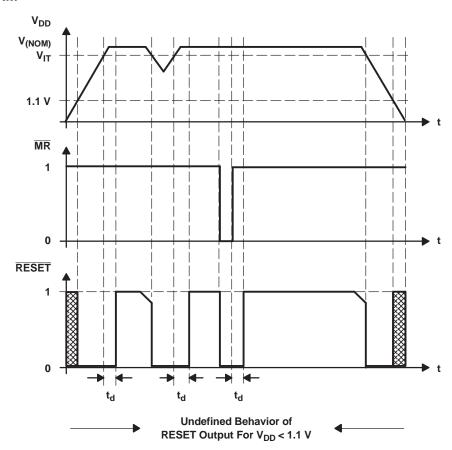
Over -40°C to +85°C free-air temperature range (unless otherwise noted).

PAR/	AMETER	·	TEST CONDITIONS		xx, TPS3801- S3802-xx	xx,		
				MIN	TYP	MAX	UNIT	
			$V_{DD} = 1.6 \text{ V to } 6 \text{ V } I_{OH} = -500 \mu\text{A}$	V _{DD} -0.2				
V_{OH}	High-level output voltage	ge (RESET)	$V_{DD} = 3.3 \text{ V } I_{OH} = -2 \text{ mA}$	V _{DD} -0.4			V	
			$V_{DD} = 6 \text{ V } I_{OH} = -4 \text{ mA}^{(1)}$	V _{DD} -0.4				
			$V_{DD} = 1.6 \text{ V to 6 V}, I_{OL} = 500 \mu\text{A}$			0.2		
V_{OL}	Low-level output voltag	e (RESET)	V _{DD} = 3.3 V, I _{OL} = 2 mA			0.4	V	
			V _{DD} = 6 V, I _{OL} = 4 mA ⁽¹⁾			0.4		
	Power-up reset voltage	(2)	V _{DD} ≥ 1.1 V, I _{OL} = 50 μA			0.2	V	
		TPS380x-01		1.117	1.14	1.163		
		TPS380xE18		1.67	1.71	1.75		
		TPS380xJ25		2.2	2.25	2.3		
.,	Negative-going input	TPS380xG27	T 4000 to 0500	2.45	2.5	2.55	.,	
V_{IT-}	threshold voltage (3)	TPS380xL30 TPS380xK33	$T_A = -40$ °C to 85°C	2.58	2.64	2.7	V	
				2.87	2.93	2.99		
		TPS380xl50		4.45	4.55	4.65		
		TPS380xT50		3.92	4	4.08		
	TPS380x-01 TPS380xx18 TPS380xx25	TPS380x-01			15			
				25				
		TPS380xx25			30			
V_{hys}	Threshold hysteresis	TPS380xx27			35		mV	
,-		TPS380xx30			35			
		TPS380xx33			40			
		TPS380xx50			60			
I _{IH}	High-level input current	(MR)	$\overline{MR} = 0.7 \times V_{DD}, V_{DD} = 6 \text{ V}$	-40	-60	-100		
I _{IL}	Low-level input current	(MR)	$\overline{MR} = 0 \text{ V}, \text{ V}_{DD} = 6 \text{ V}$	-130	-200	-340	μА	
l _l	Input current (SENSE)			-25		25	nA	
		TPS3801J25, TPS3801L30,	V _{DD} = 2 V, MR and output unconnected		9	12		
	TPS3801E18	TPS3801I50,	V _{DD} = 6 V, MR and output unconnected		20	25		
I _{DD}		TP\$3801-01	V_{DD} = 1.6 V, SENSE = 0 V to V_{DD} , output unconnected		7	10	μΑ	
50		71 00001-01	$V_{DD} = 4 \text{ V}, \text{ SENSE} = 0 \text{ V to } V_{DD},$ output unconnected		9	12	• •	
		TPS3801E18, TPS3800G27,	V _{DD} = 1.6 V, MR and output unconnected		8	11		
		TPS3802K33, TPS3802L30	V _{DD} = 4 V, MR and output unconnected		13	18		
Ci	Input capacitance		$V_I = 0 V \text{ to } V_{DD}$		5		pF	

 ⁽¹⁾ Only valid for the TPS3801J25, TPS3801L30, TPS3801K33, TPS3801I50, and TPS3801T50.
 (2) The lowest supply voltage at which RESET becomes active. t_{r, VDD} ≥ 15 μs/V.
 (3) To ensure the best stability of the threshold voltage, a bypass capacitor (0.1-μF ceramic) should be placed near the supply terminals.

TIMING REQUIREMENTS

at $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$, $T_A = +25^{\circ}\text{C}$


PAR	AMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		at SENSE	$V_{DD} = 1.6 \text{ V}, V_{IH} = 1.1 \times V_{IT-}, V_{IL} = 0.9 \times V_{IT-}$	1			
t _w	Pulse width	at V _{DD}	$V_{DD} = V_{IT-} + 0.2 \text{ V}, V_{DD} = V_{IT-} -0.2 \text{ V}$	3			μS
		at MR	$V_{DD} \ge V_{IT-} + 0.2 \text{ V}, V_{IL} = 0.3 \times V_{DD}, V_{IH} = 0.7 \times V_{DD}$	100			ns

SWITCHING CHARACTERISTICS

at $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$, $T_A = +25^{\circ}\text{C}$

PARAI	METER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		TPS3801T50		15	25	35	
	A DECET recovery delay time	TPS3800	$V_{DD} \ge V_{IT-} + 0.2 \text{ V},$	60	95	140	
t _d	RESET recovery delay time	TPS3801	MR ≥ 0.7 x V _{DD} See timing diagram	120	200	280	ms
		TPS3802		240	380	560	
t _{PHL}	Propagation (delay) time, high-to-low-level	MR to RESET delay	$V_{DD} \ge V_{IT-} + 0.2 \text{ V},$ $V_{IL} = 0.3 \times V_{DD},$ $V_{IH} = 0.7 \times V_{DD}$		15		ns
YHL	output	V _{DD} to RESET delay SENSE to RESET	$V_{IL} = V_{IT-} - 0.2 \text{ V},$ $V_{IH} = V_{IT-} + 0.2 \text{ V}$		1		μS

TIMING DIAGRAM

NOTE: $\overline{\text{RESET}}$ should not be forced high during the power-up sequence (until $V_{DD} > 1.1 \text{ V}$).

FUNCTIONAL BLOCK DIAGRAMS

FUNCTION/TRUTH TABLE. TPS380x

1 0110110	1 ONOTION/TROTTI TABLE, 11 03007						
MR	$V_{DD} > V_{IT}$	RESET					
L	0	L					
L	1	L					
н	0	L					
н	1	Н					

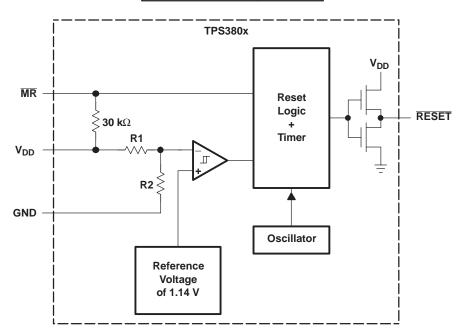


Figure 1.

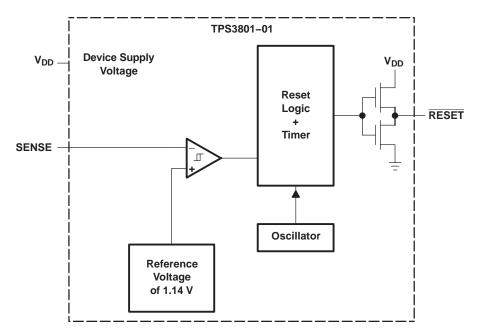
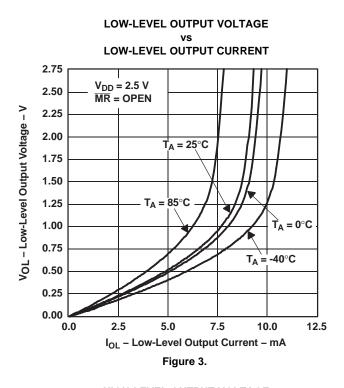
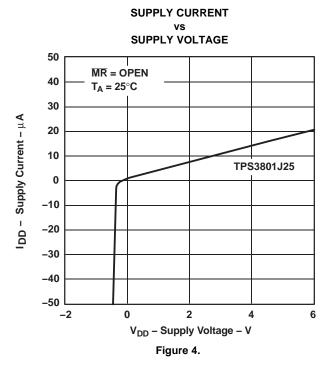
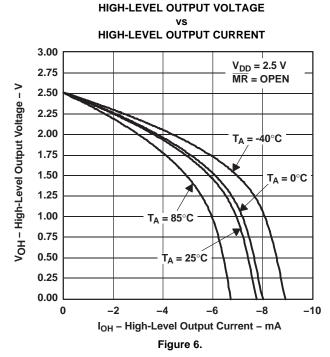
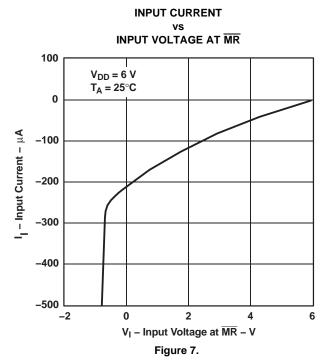
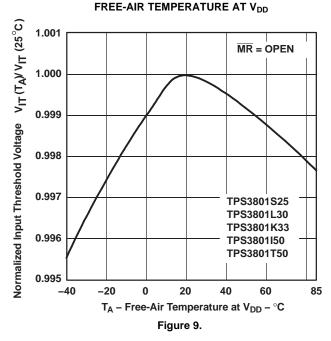




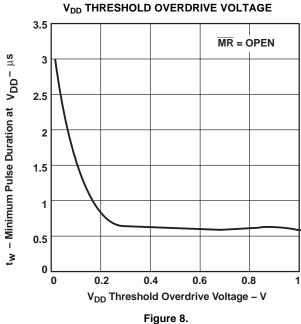
Figure 2.



TYPICAL CHARACTERISTICS






TYPICAL CHARACTERISTICS (continued)

NORMALIZED INPUT THRESHOLD VOLTAGE vs

NORMALIZED INPUT THRESHOLD VOLTAGE vs

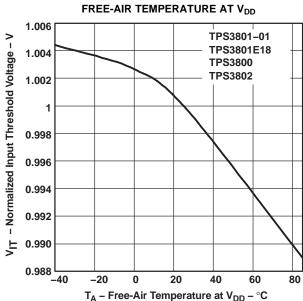
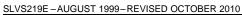



Figure 10.

Changes from Revision D (December 2006) to Revision E

Page

VS219E -AUGUST 1999-REVISED OCTOBER 2010	www.ti.com

www.ti.com 13-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS3800G27DCKR	LIFEBUY	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ARI	
TPS3801-01DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ARF	Samples
TPS3801E18DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ARE	Samples
TPS3801I50DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NSA	Samples
TPS3801J25DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NJA	Samples
TPS3801K33DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NWA	Samples
TPS3801L30DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NPA	Samples
TPS3801T50DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVI	Samples
TPS3802K33DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ARK	Samples
TPS3802L30DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ASA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

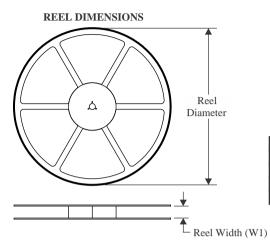
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

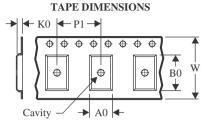
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com 13-Jan-2024

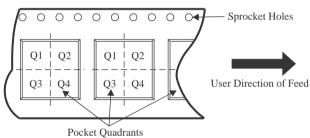
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

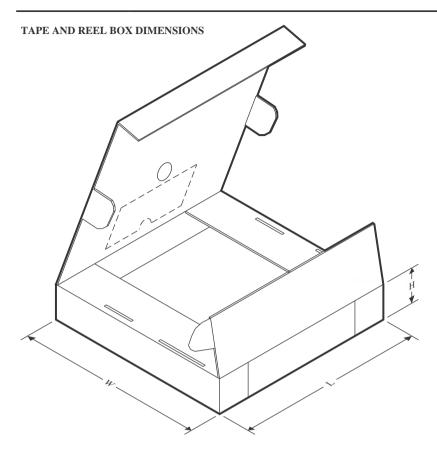

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

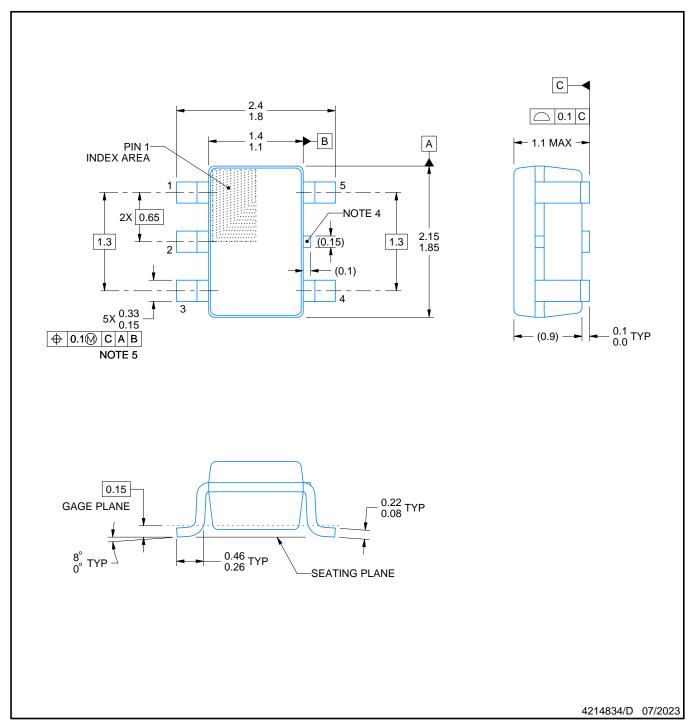
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3800G27DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TPS3800G27DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801-01DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801-01DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TPS3801E18DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TPS3801E18DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801I50DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801J25DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801K33DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801K33DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TPS3801L30DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3801T50DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TPS3801T50DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3802K33DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TPS3802K33DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
TPS3802L30DCKR	SC70	DCK	5	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3

www.ti.com 3-Jun-2022



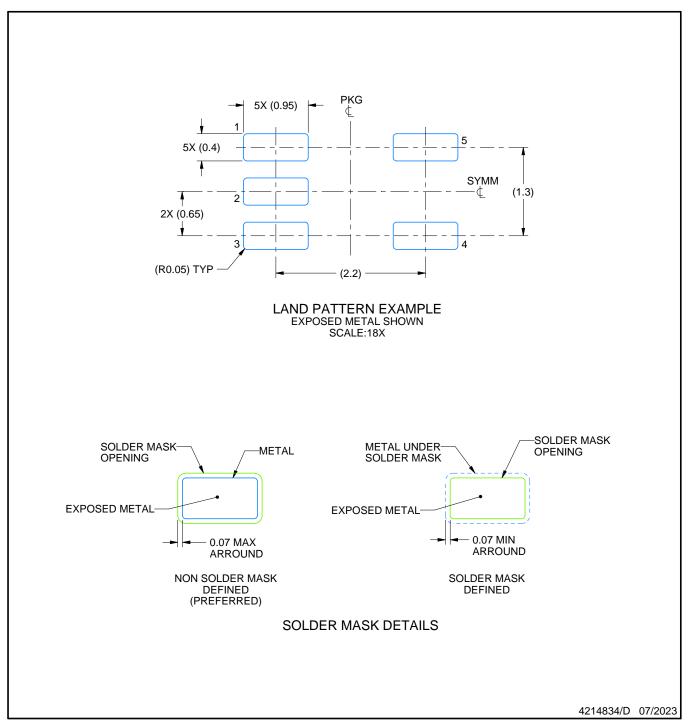
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3800G27DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TPS3800G27DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801-01DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801-01DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TPS3801E18DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TPS3801E18DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801I50DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801J25DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801K33DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801K33DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TPS3801L30DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3801T50DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TPS3801T50DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3802K33DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TPS3802K33DCKR	SC70	DCK	5	3000	183.0	183.0	20.0
TPS3802L30DCKR	SC70	DCK	5	3000	183.0	183.0	20.0

SMALL OUTLINE TRANSISTOR

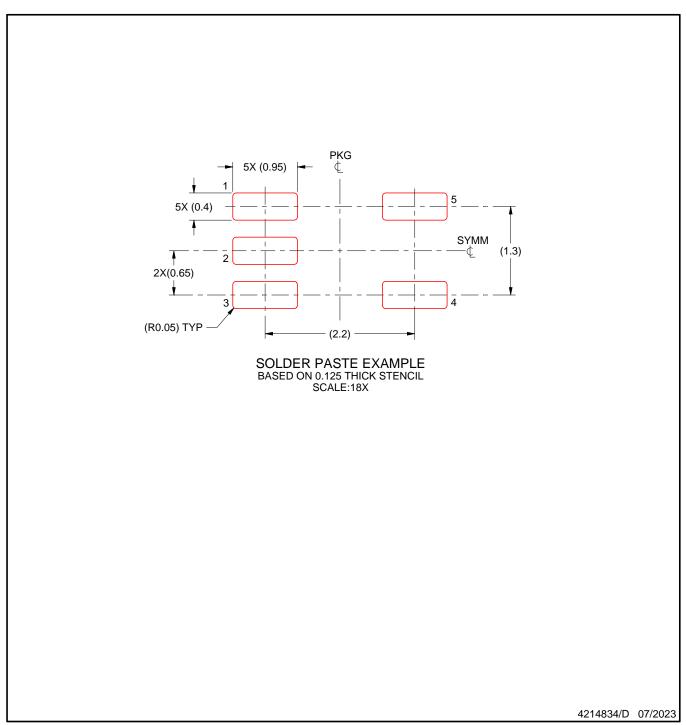
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.


SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated

单击下面可查看定价,库存,交付和生命周期等信息

>>TI (德州仪器)