

SN74LVCH162244A

SCAS545L - OCTOBER 1995 - REVISED JUNE 2014

SN74LVCH162244A 16-Bit Buffer/Driver with 3-State Outputs

Features

- Member of the Texas Instruments Widebus™ Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.4 ns at 3.3 V
- Output Ports Have Equivalent 26-Ω Series Resistors, so No External Resistors are Required
- Typical V_{OLP} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Supports Mixed-Mode Signal Operation on All Ports
 - (5-V Input/Output Voltage With 3.3-V V_{CC})
- Bus Hold on Data Inputs Eliminates the Need for External Pullup or Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

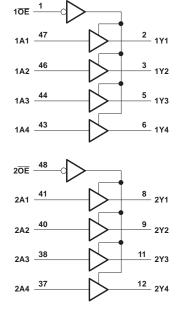
2 Applications

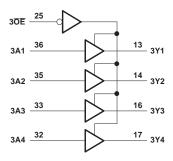
- Servers
- PCs and Notebooks
- **Network Switches**
- Wireless and Telecom Infrastructures
- TV Set-top Boxes
- Electronic Points of Sale

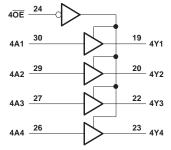
3 Description

This 16-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer.


SN74LVCH162244A device specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.


Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	SSOP (48)	15.88 mm × 7.49 mm		
SN74LVCH162244A	TSSOP (48)	12.50 mm × 6.10 mm		
	TVSOP (48)	9.70 mm × 4.40 mm		

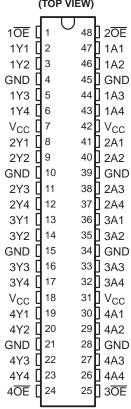
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Features 1		9.1 Overview	10
2	Applications 1		9.2 Functional Block Diagram	10
3	Description 1		9.3 Feature Description	11
4	Simplified Schematic 1		9.4 Device Functional Modes	11
5	Revision History2	10	Application and Implementation	12
6	Pin Configuration and Functions		10.1 Application Information	12
7	Specifications		10.2 Typical Application	12
•	7.1 Absolute Maximum Ratings	11	Power Supply Recommendations	13
	7.1 Absolute Maximum Ratings	12	Layout	13
	7.3 Recommended Operating Conditions		12.1 Layout Guidelines	13
	7.4 Thermal Information		12.2 Layout Example	13
	7.5 Electrical Characteristics	13	Device and Documentation Support	14
	7.6 Switching Characteristics		13.1 Trademarks	14
	7.7 Operating Characteristics		13.2 Electrostatic Discharge Caution	14
	7.8 Typical Characteristics		13.3 Glossary	14
8	Parameter Measurement Information 9	14	Mechanical, Packaging, and Orderable Information	14
9	Detailed Description 10			

5 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision K (March 2005) to Revision L	Page
•	Updated document to new TI data sheet standards.	1
•	Changed Updated I _{off} Features bullet	1
	Added Applications	
•	Added Device Information table.	1
•	Added Handling Ratings table.	5
•	Changed MAX ambient temperature from 85°C to 125°C.	6
•	Added Thermal Information table.	6
•	Added Typical Characteristics.	٤

6 Pin Configuration and Functions

DL, DGG, OR DGV PACKAGE (TOP VIEW)

Pin Functions

PIN		1/0	DESCRIPTION		
NO.	NAME	I/O	DESCRIPTION		
1	1 OE	1	Output Enable 1		
2	1Y1	0	1Y1 Output		
3	1Y2	0	1Y2 Output		
4	GND	_	Ground pin		
5	1Y3	0	1Y3 Output		
6	1Y4	0	1Y4 Output		
7	VCC	_	Power Pin		
8	2Y1	0	2Y1 Output		
9	2Y2	0	2Y2 Output		
10	GND	_	Ground Pin		
11	2Y3	0	2Y3 Output		
12	2Y4	0	2Y4 Output		
13	3Y1	0	3Y1 Output		
14	3Y2	0	3Y2 Output		
15	GND	_	Ground Pin		
16	3Y3	0	3Y3 Output		
17	3Y4	0	3Y4 Output		
18	VCC		Power Pin		
19	4Y1	0	4Y1 Output		
20	4Y2	0	4Y2 Output		

Pin Functions (continued)

PIN		1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
21	GND	_	Ground Pin
22	4Y3	0	4Y3 Output
23	4Y4	0	4Y4 Output
24	4 OE	1	Output Enable 4
25	3 OE	I	Output Enable 3
26	4A4	I	4A4 Input
27	4A3	1	4A3 Input
28	GND	_	Ground Pin
29	4A2	1	4A2 Input
30	4A1	1	4A1 Input
31	VCC	_	Power Pin
32	3A4	1	3A4 Input
33	3A3	I	3A3 Input
34	GND	_	Ground Pin
35	3A2	I	3A2 Input
36	3A1	1	3A1 Input
37	2A4	I	2A4 Input
38	2A3	I	2A3 Input
39	GND	_	Ground Pin
40	2A2	1	2A2 Input
41	2A1	1	2A1 Input
42	VCC	_	Power Pin
43	1A4	I	1A4 Input
44	1A3	1	1A3 Input
45	GND	_	Ground Pin
46	1A2	I	1A2 Input
47	1A1	I	1A1 Input
48	2 OE	l	Output Enable 2

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range (2)			6.5	V
Vo	Voltage range applied to any output in the high-impedance or power-off state (2)			6.5	V
Vo	Voltage range applied to any output in the high or low state (2)	(3)	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		- 50	mA
I _{OK}	Output clamp current	V _O < 0		- 50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND			±100	mA

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	-65	150	°C	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾		2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	0	1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the Recommended Operating Conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
.,	Owner have the man	Operating	1.65	3.6		
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage		0	5.5	V	
	Output voltage	High or low state	0	V _{CC}		
Vo		3-state	0	5.5	V	
		V _{CC} = 1.65 V		-2		
		V _{CC} = 2.3 V		-4		
I _{OH}	High-level output current	V _{CC} = 2.7 V		-8	mA	
		V _{CC} = 3 V		-12		
		V _{CC} = 1.65 V		2		
	I am land autout amant	V _{CC} = 2.3 V		4	A	
l _{OL}	Low-level output current	V _{CC} = 2.7 V			mA	
		V _{CC} = 3 V		12		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	125	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

7.4 Thermal Information

		S	SN74LVCH162244A				
	THERMAL METRIC ⁽¹⁾	DGG	DGV	DL	UNIT		
		48 PINS	48 PINS	48 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	64.3	78.4	68.4			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	17.6	30.7	34.7			
$R_{\theta JB}$	Junction-to-board thermal resistance	31.5	41.8	41.0	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	1.1	3.8	12.3	3C/W		
ΨЈВ	Junction-to-board characterization parameter	31.2	41.3	40.4			
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a			

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾ MAX	UNIT
	$I_{OH} = -100 \ \mu A$	1.65 V to 3.6 V	V _{CC} - 0.2	
	$I_{OH} = -2 \text{ mA}$	1.65 V	1.2	
	I _{OH} = -4 mA	2.3 V	1.7	
V_{OH}	10H = -4 111A	2.7 V	2.2	V
	$I_{OH} = -6 \text{ mA}$	3 V	2.4	
	$I_{OH} = -8 \text{ mA}$	2.7 V	2	
	$I_{OH} = -12 \text{ mA}$	3 V	2	
	$I_{OL} = 100 \mu A$	1.65 V to 3.6 V	0.2	
	$I_{OL} = 2 \text{ mA}$	1.65 V	0.45	
	I _{OL} = 4 mA	2.3 V	0.7	
V_{OL}	10L = 4 111A	2.7 V	0.4	V
	$I_{OL} = 6 \text{ mA}$	3 V	0.55	
	$I_{OL} = 8 \text{ mA}$	2.7 V	0.6	
	I _{OL} = 12 mA	3 V	0.8	
l _l	$V_1 = 0 \text{ to } 5.5 \text{ V}$	3.6 V	±5	μΑ
	$V_1 = 0.58 \text{ V}$	1.65 V	(2)	
	$V_1 = 1.07 \text{ V}$	1.65 V	(2)	
	$V_1 = 0.7 V$	2.3 V	45	
$I_{I(hold)}$	$V_1 = 1.7 \text{ V}$	2.3 V	-45	μΑ
	$V_{I} = 0.8 \text{ V}$	3 V	75	
	$V_I = 2 V$	3 V	– 75	
	$V_I = 0$ to 3.6 $V^{(3)}$	3.6 V	±500	
$I_{\rm off}$	V_I or $V_O = 5.5 \text{ V}$	0	±10	μΑ
I_{OZ}	$V_0 = 0 \text{ to } 5.5 \text{ V}$	3.6 V	±10	μΑ
l	$V_1 = V_{CC}$ or GND	3.6 V	20	
I _{CC}	$3.6 \text{ V} \le \text{V}_1 \le 5.5 \text{ V}^{(4)}$	3.0 v	20	μA
ΔI_{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V	500	μΑ
C_{i}	$V_I = V_{CC}$ or GND	3.3 V	5.5	pF
C _o	$V_O = V_{CC}$ or GND	3.3 V	6	pF

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This information was not available at the time of publication.

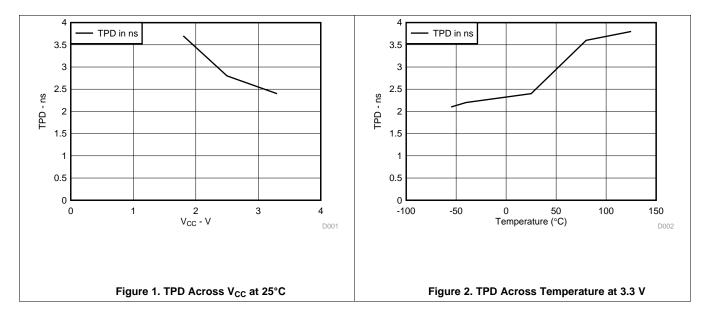
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

This applies in the disabled state only.

7.6 Switching Characteristics

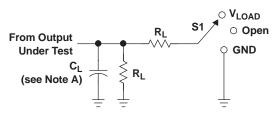
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = : ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	Α	Υ	1	10.2	1	6.4	1	5.6	1.1	4.4	ns
t _{en}	ŌĒ	Υ	1	14.8	1	8.2	1	6.9	1	5.5	ns
t _{dis}	ŌĒ	Υ	1	12.3	1	7.1	1	6.8	1.8	6.3	ns

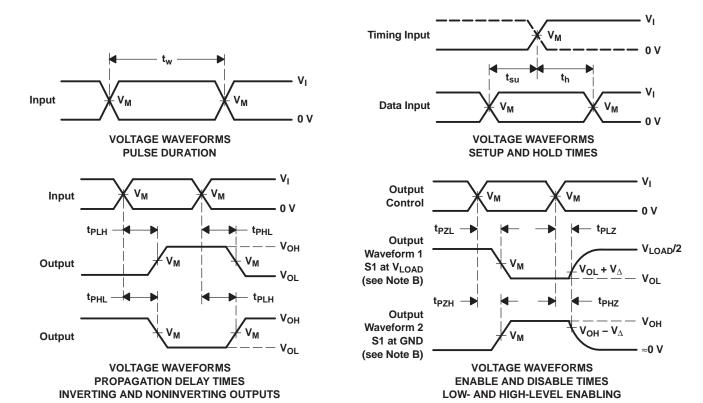

7.7 Operating Characteristics

 $T_A = 25$ °C

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
	Davis dissination associtores	Outputs enabled		See ⁽¹⁾	See ⁽¹⁾	35	
C_{pd}	Power dissipation capacitance per buffer/driver	Outputs disabled	f = 10 MHz	See ⁽¹⁾	See ⁽¹⁾	4	pF


(1) This information was not available at the time of publication.

7.8 Typical Characteristics


8 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

Т	0	Δ	ח	CI	R	CI	Ш	т
_			_	v	1.	•	u	

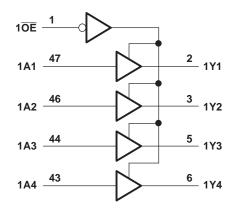
.,	INPUTS		.,	.,		В	.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_\Delta$
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V_{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

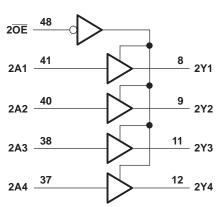
NOTES: A. C_L includes probe and jig capacitance.

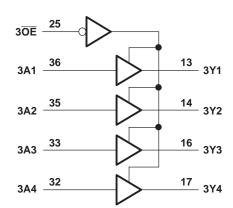
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

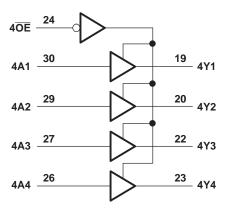
Figure 3. Load Circuit and Voltage Waveforms

9 Detailed Description


9.1 Overview


The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.


To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.


This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

9.2 Functional Block Diagram

9.3 Feature Description

- · Wide operating range
 - Operates from 1.65 V to 3.6 V
- Allows down voltage translation
 - Inputs accept voltages to 5.5 V
- I_{off} feature
 - Allows voltages on the inputs and outputs when V_{CC} is 0 V

9.4 Device Functional Modes

Table 1. Function Table (Each 4-Bit Buffer)

INP	UTS	OUTPUT
ŌĒ	Α	Υ
L	Н	Н
L	L	L
Н	Χ	Z

10 Application and Implementation

10.1 Application Information

The SN74LVCH16244A device is a 16-bit buffer driver. This device can be used as four 4-bit, two 8-bit, or one 16-bit buffer.

It allows data transmission from the A bus to the Y bus with 4 separate enable pins that control 4 bits each. The output-enable (OE) input can be used to disable sections of the device so that the buses are effectively isolated.

The SN74LVCH16244A device has 5.5 V tolerant inputs at any valid V_{CC} which allows it to be used in multipower systems and can be used for down translation. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

10.2 Typical Application

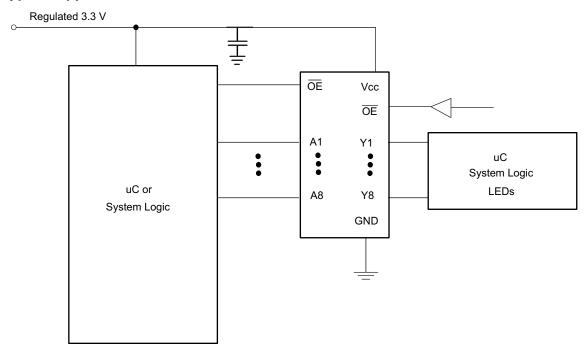
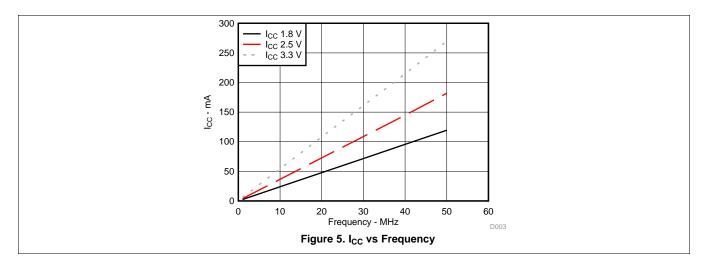


Figure 4. Typical Application Diagram

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure


- 1. Recommended Input Conditions
 - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table.
 - Specified high and low levels: See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

Submit Documentation Feedback

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Recommended Operating Conditions table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ f is recommended; if there are multiple V_{CC} pins, then 0.01 μ f or 0.022 μ f is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ f and a 1 μ f are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

12.2 Layout Example

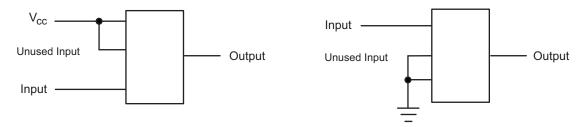


Figure 6. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

Widebus is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

www.ti.com 14-Oct-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LVCH162244ADL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVCH162244A	Samples
SN74LVCH162244ADLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVCH162244A	Samples
SN74LVCH162244AGR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVCH162244A	Samples
SN74LVCH162244AVR	ACTIVE	TVSOP	DGV	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LN2244A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

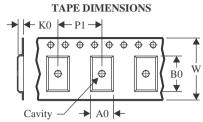
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 14-Oct-2022

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

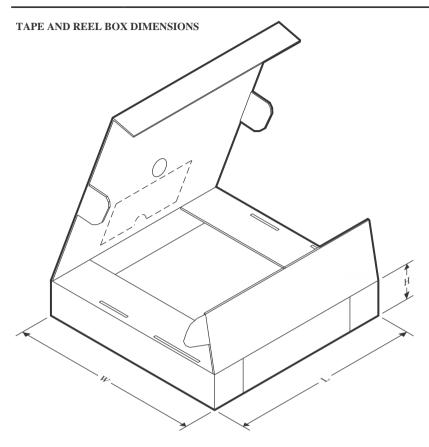

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TAPE AND REEL INFORMATION

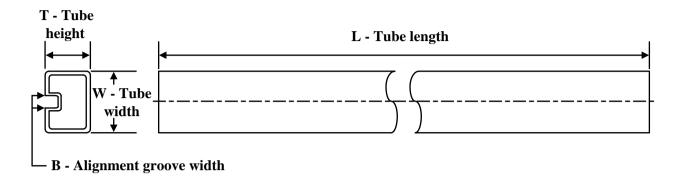
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVCH162244ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1
SN74LVCH162244AGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVCH162244AVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

www.ti.com 3-Jun-2022

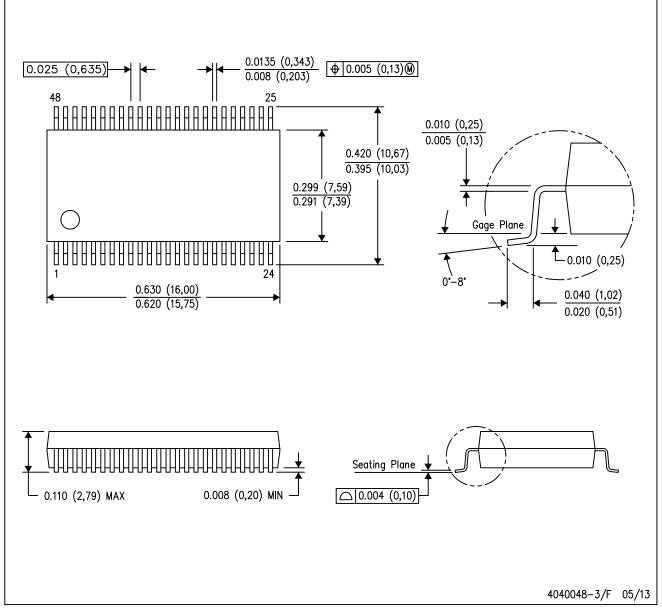

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCH162244ADLR	SSOP	DL	48	1000	367.0	367.0	55.0
SN74LVCH162244AGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVCH162244AVR	TVSOP	DGV	48	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

TUBE



*All dimensions are nominal

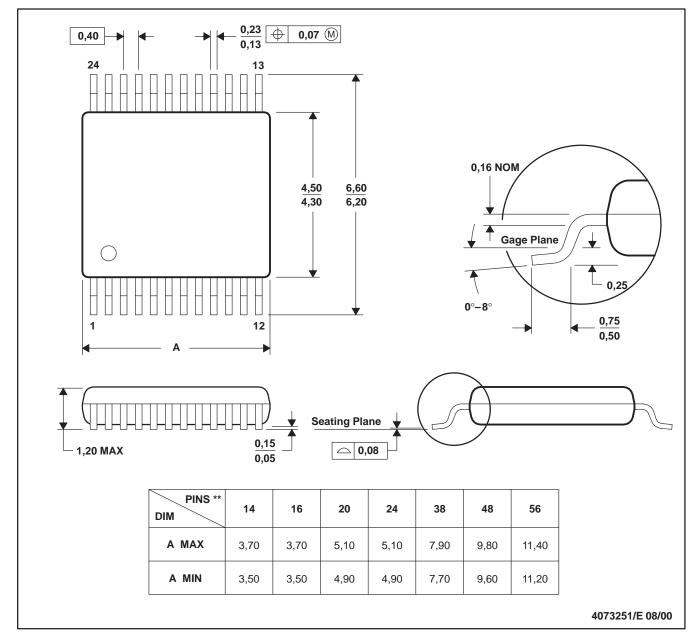
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LVCH162244ADL	DL	SSOP	48	25	473.7	14.24	5110	7.87

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

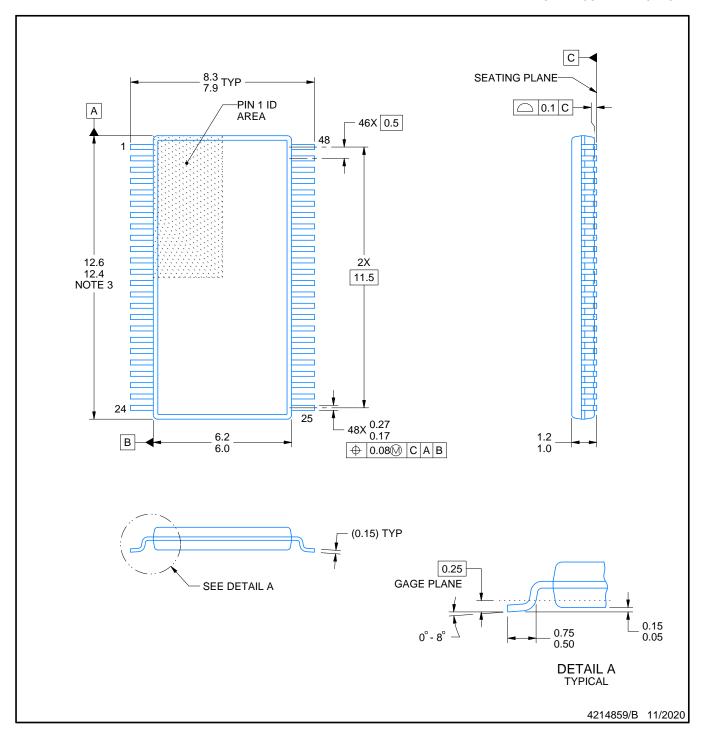

PowerPAD is a trademark of Texas Instruments.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

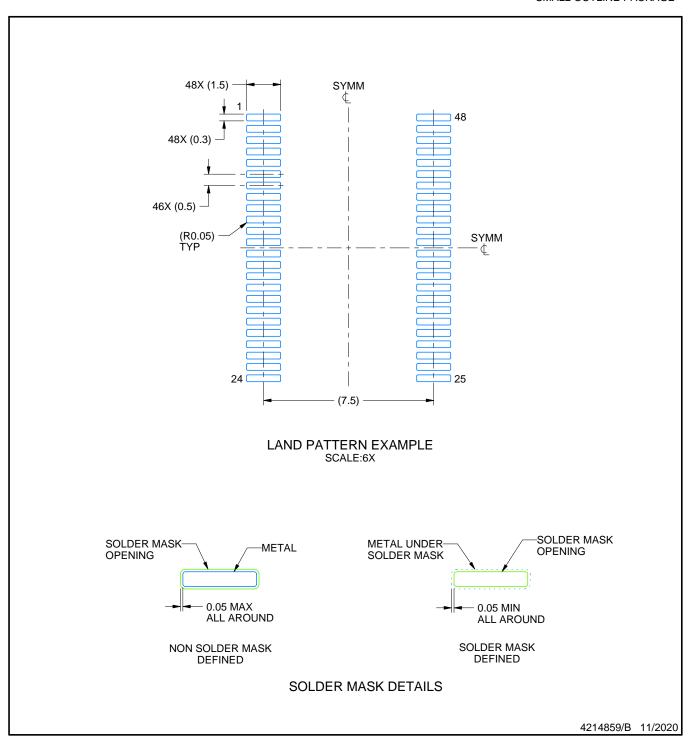

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

SMALL OUTLINE PACKAGE

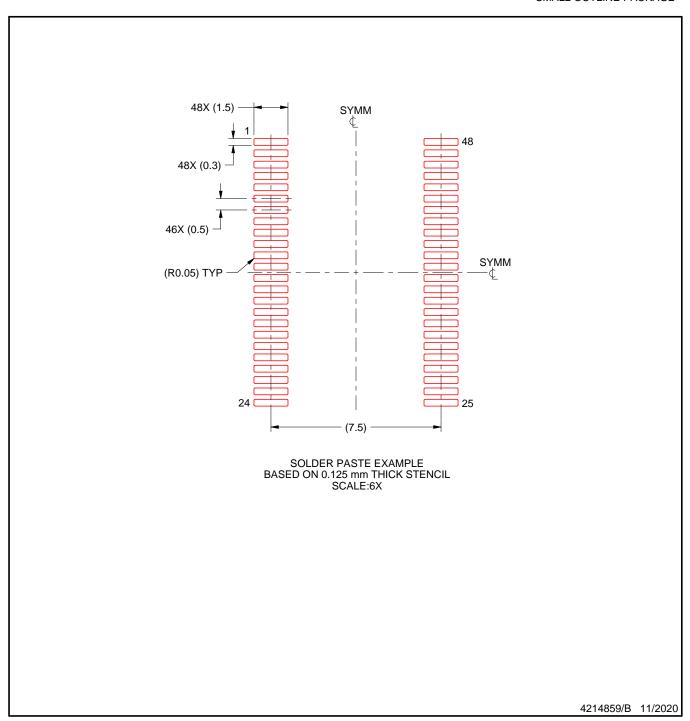
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

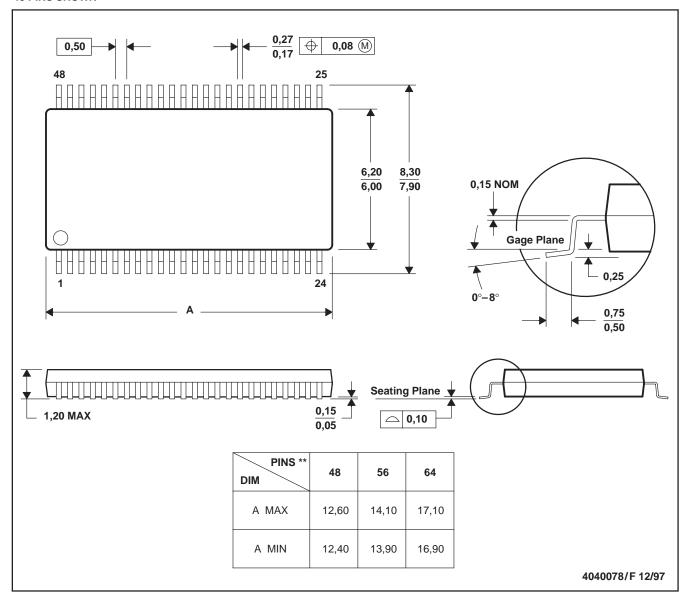


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated

单击下面可查看定价,库存,交付和生命周期等信息

>>TI (德州仪器)