

TEXAS INSTRUMENTS

SN54HC273, SN74HC273 SCLS136F – DECEMBER 1982 – REVISED APRIL 2022

SNx4HC273 Octal D-Type Flip-Flops With Clear

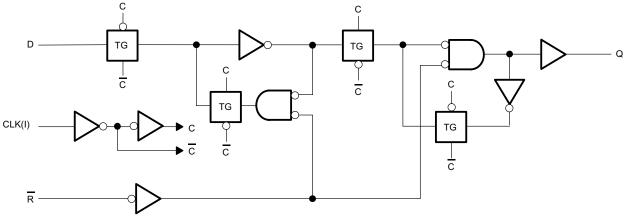
1 Features

- Wide operating voltage range of 2 V to 6 V
- Outputs can drive up to 10 LSTTL loads
- Low power consumption, 80- μ A maximum I_{CC}
- Typical t_{pd} = 12 ns
- ±4-mA output drive at 5 V
- Low input current of 1-µA maximum
- Contain eight flip-flops with single-rail outputs
- Direct clear input
- Individual data input to each flip-flop
- On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

2 Applications

- Buffer or storage registers
- Shift registers
- Pattern generators

3 Description


The SNx4HC273 devices are positive-edge-triggered D-type flip-flops with a direct active low clear ($\overline{\text{CLR}}$) input.

Information at the data (D) inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When CLK is at either the high or low level, the D input has no effect at the output.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PINS)	BODY SIZE (NOM)
SN54HC273J	CDIP (20)	24.20 mm × 6.92 mm
SN54HC273W	CFP (20)	13.09 mm × 6.92 mm
SN54HC273FK	LCCC (20)	8.89 mm × 8.89 mm
SN74HC273D	SOIC (20)	12.80 mm × 7.50 mm
SN74HC273DB	SSOP (20)	7.20 mm × 5.30 mm
SN74HC273NS	SO (20)	12.60 mm × 5.30 mm
SN74HC273N	PDIP (20)	24.33 mm × 6.35 mm
SN74HC273PW	TSSOP (20)	6.50 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated

Functional Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features1	8 Detailed De
2 Applications1	8.1 Overvie
3 Description1	8.2 Function
4 Revision History	8.3 Feature
5 Pin Configuration and Functions	8.4 Device
6 Specifications	9 Application
6.1 Absolute Maximum Ratings4	9.1 Applicat
6.2 ESD Ratings – SN74HC2734	9.2 Typical
6.3 Recommended Operating Conditions4	10 Power Su
6.4 Thermal Information5	11 Layout
6.5 Electrical Characteristics5	11.1 Layout
6.6 Electrical Characteristics – SN54HC2735	11.2 Layout
6.7 Electrical Characteristics – SN74HC2736	12 Device an
6.8 Timing Requirements6	12.1 Docum
6.9 Timing Requirements – SN54HC2737	12.2 Relate
6.10 Timing Requirements – SN74HC2737	12.3 Receiv
6.11 Switching Characteristics8	12.4 Suppo
6.12 Switching Characteristics – SN54HC2738	12.5 Trader
6.13 Switching Characteristics – SN74HC2738	12.6 Electro
6.14 Operating Characteristics9	12.7 Glossa
6.15 Typical Characteristics9	13 Mechanica
7 Parameter Measurement Information10	Information

8 Detailed Description	. 11
8.1 Overview	
8.2 Functional Block Diagram	. 11
8.3 Feature Description.	
8.4 Device Functional Modes	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application	
10 Power Supply Recommendations	
11 Layout	.14
11.1 Layout Guidelines	
11.2 Layout Example	
12 Device and Documentation Support	
12.1 Documentation Support	
12.2 Related Links	
12.3 Receiving Notification of Documentation Updates.	
12.4 Support Resources	
12.5 Trademarks	
12.6 Electrostatic Discharge Caution	
12.7 Glossary	
13 Mechanical, Packaging, and Orderable	
Information	15

4 Revision History

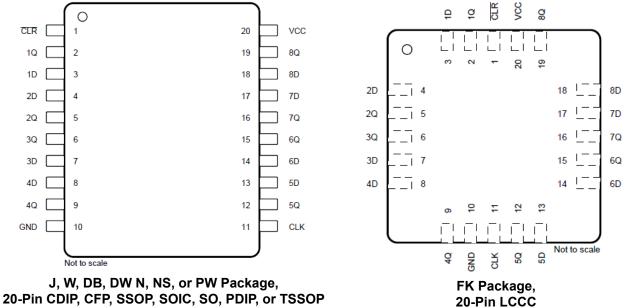
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from	Revision E	(August 2003)	to Revision F	(April 2022)

Page

Page

- Updated Power Supply Recommendations and Layout Guidelines sections to include current TI terminology...
 14


Changes from Revision D (December 1982) to Revision E (July 2016)

•	Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes,	
	Application and Implementation section, Power Supply Recommendations section, Layout section, Device	
	and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	. 1
•	Removed Ordering Information table, see POA at the end of the data sheet	. 1
•	Added Military Disclaimer to Features	.1

(Top View)

5 Pin Configuration and Functions

(Top View)

Table 5-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NO.	NAME		DESCRIPTION
1	CLR	I	Active low clear input
2	1Q	0	Output 1
3	1D	I	Input 1
4	2D	I	Input 2
5	2Q	0	Output 2
6	3Q	0	Output 3
7	3D	I	Input 3
8	4D	I	Input 4
9	4Q	0	Output 4
10	GND	_	Ground
11	CLK	I	Clock input
12	5Q	0	Output 5
13	5D	I	Input 5
14	6D	I	Input 6
15	6Q	0	Output 6
16	7Q	0	Output 7
17	7D	I	Input 7
18	8D	I	Input 8
19	8Q	0	Output 8
20	V _{CC}		Power

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{I} < 0 \text{ or } V_{I} > V_{CC}$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	V_{O} < 0 or V_{O} > V_{CC}		±20	mA
lo	Continuous output current	$V_{O} = 0$ to V_{CC}		±25	mA
	Continuous current through $V_{CC} \text{ or } GND$			±50	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings – SN74HC273

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V(ESD)	LIEUR OSIARU UISUNAIYE	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		2	5	6	V
V _{IH}		V _{CC} = 2 V	1.5			
	High-level input voltage	V _{CC} = 4.5 V	3.15			V
		V _{CC} = 6 V	4.2			
VIL		V _{CC} = 2 V			0.5	V
	Low-level input voltage	V _{CC} = 4.5 V			1.35	
		V _{CC} = 6 V			1.8	
VI	Input voltage		0		V _{CC}	V
Vo	Output voltage		0		V _{CC}	V
		V _{CC} = 2 V			1000	
Δt/Δv	Input transition rise and fall time	V _{CC} = 4.5 V			500	ns
		V _{CC} = 6 V			400	
Ŧ	Operating free air temperature	SN54HC273	-55		125	°C
T _A	Operating free-air temperature	SN74HC273	-40		85	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.4 Thermal Information

		SN74HC273						
THERMAL METRIC		DW (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)		
		20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	UNIT	
R _{θJA}	Junction-to-ambient thermal resistance ⁽¹⁾	109.1	122.7	84.6	113.4	131.8	°C/W	
R _{θJC (top)}	Junction-to-case (top) thermal resistance	76	81.6	72.5	78.6	72.2	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	77.6	77.5	65.3	78.4	82.8	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	51.5	46.1	55.3	47.1	21.5	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	77.1	77.1	65.2	78.1	82.4	°C/W	
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	°C/W	

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

6.5 Electrical Characteristics

T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
			V _{CC} = 2 V	1.9	1.998		
		I _{OH} = –20 μA	V _{CC} = 4.5 V	4.4	4.499		
V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$		V _{CC} = 6 V	5.9	5.999		V
		I_{OH} = -4 mA, V_{CC} = 4.5 V		3.98	4.3		
		I _{OH} = -5.2 mA, V _{CC} = 6 V		5.48	5.8		
		I _{OL} = 20 μA	V _{CC} = 2 V		0.002	0.1	V
			V _{CC} = 4.5 V		0.001	0.1	
V _{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$		V _{CC} = 6 V		0.001	0.1	
		I _{OL} = 4 mA, V _{CC} = 4.5 V			0.17	0.26	
		I _{OL} = 5.2 mA, V _{CC} = 6 V			0.15	0.26	
I _I	$V_{I} = V_{CC}$ or 0, $V_{CC} = 6 V$				±0.1	±100	nA
I _{CC}	$V_{I} = V_{CC}$ or 0, $I_{O} = 0$, V_{CC}	$V_1 = V_{CC} \text{ or } 0, I_0 = 0, V_{CC} = 6 \text{ V}$				8	μA
Ci	V _{CC} = 2 V to 6 V				3	10	pF

6.6 Electrical Characteristics – SN54HC273

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
			V _{CC} = 2 V	1.9			
V _{OH}		I _{OH} = –20 μA	V _{CC} = 4.5 V	4.4			
	$V_{I} = V_{IH}$ or V_{IL}		V _{CC} = 6 V	5.9			V
		I _{OH} = -4 mA, V _{CC} = 4.5 V		3.7			
		I _{OH} = -5.2 mA, V _{CC} = 6 V		5.2			
	$V_{I} = V_{IH} \text{ or } V_{IL}$		V _{CC} = 2 V			0.1	V
		I _{OL} = 20 μA	V _{CC} = 4.5 V			0.1	
V _{OL}			V _{CC} = 6 V			0.1	
		I _{OL} = 4 mA, V _{CC} = 4.5 V				0.4	
		I _{OL} = 5.2 mA, V _{CC} = V				0.4	
I _I	$V_{I} = V_{CC}$ or 0, $V_{CC} = 6 V$	•				±1000	nA
I _{CC}	$V_{I} = V_{CC} \text{ or } 0, I_{O} = 0, V_{CC} =$	= 6 V				160	μA

6.6 Electrical Characteristics - SN54HC273 (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Ci	$V_{CC} = 2 V \text{ to } 6 V$			10	pF

6.7 Electrical Characteristics – SN74HC273

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
			V _{CC} = 2 V	1.9			
		I _{OH} = –20 μA	V _{CC} = 4.5 V	4.4			
V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$		V _{CC} = 6 V	5.9			V
		I _{OH} = -4 mA, V _{CC} = 4.5 V		3.84			
		I _{OH} = -5.2 mA, V _{CC} = 6 V		5.34			
		I _{OL} = 20 μΑ	V _{CC} = 2 V			0.1	
			V _{CC} = 4.5 V			0.1	
V _{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$		V _{CC} = 6 V			0.1	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = 4.5 \text{ V}$				0.33	
		I _{OL} = 5.2 mA, V _{CC} = 6 V				0.33	
l _l	$V_{I} = V_{CC} \text{ or } 0, V_{CC} = 6 V$				±1000	nA	
Icc	$V_{I} = V_{CC} \text{ or } 0, I_{O} = 0, V_{CC} = 6 V$				80	μA	
Ci	V _{CC} = 2 V to 6 V	V _{CC} = 2 V to 6 V				10	pF

6.8 Timing Requirements

 $T_A = 25^{\circ}C$ (unless otherwise noted)

				MIN	MAX	UNIT	
			V _{CC} = 2 V		5		
f _{clock}	Clock frequency		V _{CC} = 4.5 V		27	MHz	
			V _{CC} = 6 V		32		
			V _{CC} = 2 V	80			
t _w		CLR low	V _{CC} = 4.5 V	16			
	Pulse duration	a duration	V _{CC} = 6 V	14			
			V _{CC} = 2 V	80		ns	
		CLK high or low	V _{CC} = 4.5 V	16			
			V _{CC} = 6 V	14			
				V _{CC} = 2 V	100		
		Data	V _{CC} = 4.5 V	20			
+			V _{CC} = 6 V	17		n 0	
t _{su}	Setup time before CLK↑		V _{CC} = 2 V	100		ns	
		CLR inactive	V _{CC} = 4.5 V	20			
			V _{CC} = 6 V	17			
			V _{CC} = 2 V	0			
t _h	Hold time, data after CLK↑		V _{CC} = 4.5 V	0		ns	
			V _{CC} = 6 V	0			

6.9 Timing Requirements – SN54HC273

over recommended operating free-air temperature range (unless otherwise noted)

				MIN MA	X UNIT
			V _{CC} = 2 V		4
f _{clock}	Clock frequency		V _{CC} = 4.5 V	1	8 MHz
			V _{CC} = 6 V	2	1
			V _{CC} = 2 V	120	
t _w		CLR low	V _{CC} = 4.5 V	24	
	Pulse duration		V _{CC} = 6 V	20	
	Puise duration		V _{CC} = 2 V	120	– ns
		CLK high or low	V _{CC} = 4.5 V	24	
			V _{CC} = 6 V	20	
		Data	V _{CC} = 2 V	150	
			V _{CC} = 4.5 V	30	
+			V _{CC} = 6 V	25	ns
t _{su}	Setup time before CLK↑		V _{CC} = 2 V	150	115
		CLR inactive	V _{CC} = 4.5 V	30	
			V _{CC} = 6 V	25	
t _h			V _{CC} = 2 V	0	
	Hold time, data after CLK \uparrow		V _{CC} = 4.5 V	0	ns
			V _{CC} = 6 V	0	

6.10 Timing Requirements – SN74HC273

over recommended operating free-air temperature range (unless otherwise noted)

				MIN MAX	UNIT
			V _{CC} = 2 V	4	
f _{clock}	Clock frequency		V _{CC} = 4.5 V	21	MHz
			V _{CC} = 6 V	25	
			V _{CC} = 2 V	100	
		CLR low	V _{CC} = 4.5 V	20	
+	Pulse duration		V _{CC} = 6 V	17	nc
t _w		CLK high or low	V _{CC} = 2 V	100	ns
			V _{CC} = 4.5 V	20	
			V _{CC} = 6 V	17	
		Data	V _{CC} = 2 V	125	
			V _{CC} = 4.5 V	25	
+	Catur time hafana CLIKA		V _{CC} = 6 V	21	ns
t _{su}	Setup time before $CLK\uparrow$		V _{CC} = 2 V	125	115
		CLR inactive	V _{CC} = 4.5 V	25	
			V _{CC} = 6 V	21	
			V _{CC} = 2 V	0	
t _h	Hold time, data after $CLK\uparrow$		V _{CC} = 4.5 V	0	ns
			V _{CC} = 6 V	0	

6.11 Switching Characteristics

$T_{\Lambda} = 25^{\circ}C$ and $C_{\Gamma} = 50 \text{ pF}$	(unless otherwise noted; see Figure 7-1)
	(anice checking and initial initian initial initian initial initial initial initian initian initian in

PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
		V _{CC} = 2 V	5	11		
f _{max}		V _{CC} = 4.5 V	27	50		MHz
		V _{CC} = 6 V	32	60		
		V _{CC} = 2 V		55	160	
t _{PHL}	From CLR (input) to any (output)	V _{CC} = 4.5 V		15	32	ns
		V _{CC} = 6 V		12	27	
	From CLK (input) to any (output)	V _{CC} = 2 V		56	160	
t _{pd}		V _{CC} = 4.5 V		15	32	ns
		V _{CC} = 6 V		13	27	
	To any (output)	V _{CC} = 2 V		38	75	
tt		V _{CC} = 4.5 V		8	15	ns
		V _{CC} = 6 V		6	13	

6.12 Switching Characteristics – SN54HC273

PARAMETER	TEST COND	ITIONS	MIN	MAX	UNIT
		V _{CC} = 2 V	4		
f _{max}		V _{CC} = 4.5 V	18		MHz
		V _{CC} = 6 V	21		
		V _{CC} = 2 V		240	
t _{PHL}	From CLR (input) to any (output)	V _{CC} = 4.5 V		48	ns
		V _{CC} = 6 V		41	
		V _{CC} = 2 V		240	
t _{pd}	From CLK (input) to any (output)	V _{CC} = 4.5 V		48	ns
		V _{CC} = 6 V		41	
	To any (output)	V _{CC} = 2 V		110	
t _t		V _{CC} = 4.5 V		22	ns
		V _{CC} = 6 V		19	

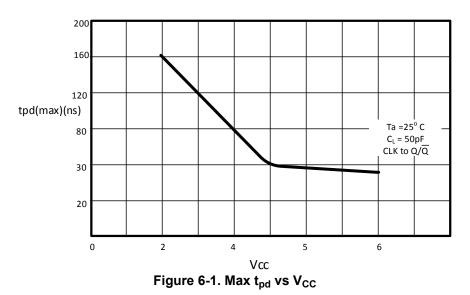
6.13 Switching Characteristics – SN74HC273

over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted; see Figure 7-1)

PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
		V _{CC} = 2 V	4		
f _{max}		V _{CC} = 4.5 V	21		MHz
		V _{CC} = 6 V	25		
		V _{CC} = 2 V		200	0
t _{PHL}	From CLR (input) to any (output)	V _{CC} = 4.5 V		40	ns
		V _{CC} = 6 V		34	
		V _{CC} = 2 V		200	
t _{pd}	From CLK (input) to any (output)	V _{CC} = 4.5 V		40	ns
		V _{CC} = 6 V		34	

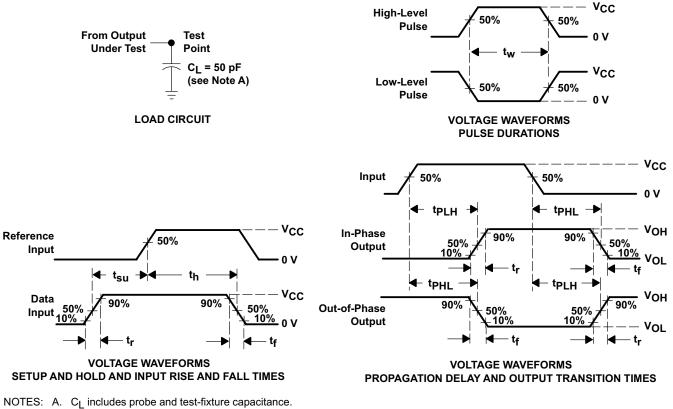
6.13 Switching Characteristics – SN74HC273 (continued)

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted; see Figure 7-1)


PARAMETER	TEST CONDITIONS		MIN M	X UNIT
		V _{CC} = 2 V		95
tt	To any (output)	V _{CC} = 4.5 V		9 ns
		V _{CC} = 6 V		6

6.14 Operating Characteristics

T_A = 25°C

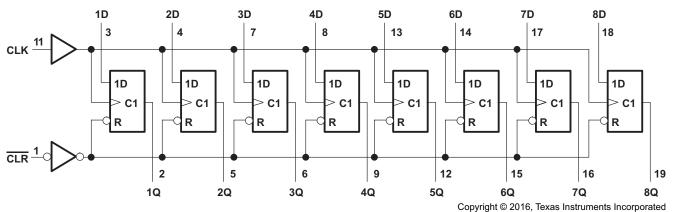

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per flip-flop	No load	35	pF

6.15 Typical Characteristics

7 Parameter Measurement Information

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
 - characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6$ ns, $t_f = 6$ ns. C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
 - D. The outputs are measured one at a time with one input transition per measurement.
 - E. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 7-1. Load Circuit and Voltage Waveforms



8 Detailed Description

8.1 Overview

The SNx4HC273 contains eight flip-flops with single-rail outputs with individual data input to each flip-flop. The outputs can drive up to 10 LSTTL loads. The device has direct active low clear input.

8.2 Functional Block Diagram

8.3 Feature Description

The SNx4HC273 has low power consumption with a maximum_{CC} of 80 μ A.

The typical t_{pd} for the SNx4HC273 is 12 ns and the output drive is ±4 mA at 5 V.

The SNx4HC273 also has very low input current, with the maximum set at 1 µA.

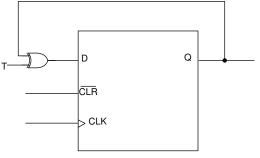
8.4 Device Functional Modes

Table 8-1 lists the functional modes of the SNx4HC273.

	(Each Flip-Flop)				
	INPUTS				
CLR	CLK	D	Q		
L	Х	Х	L		
н	↑	н	н		
н	↑	L	L		
н	L	Х	Q ₀		

Table 8-1. Function Table

9 Application and Implementation


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SNx4HC273 is octal D Flip flop with active low clear input. It has low input current and low power consumption. The D flip-flop can be used as a Toggle flip flop using an XOR gate at the input. The output toggles from the previous state whenever the T input is high.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

9.2.1 Design Requirements

This SNx4Hc273 device uses CMOS technology and has balanced output drive.

9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - Rise time and fall time specifications: see ($\Delta t/\Delta V$) in *Recommended Operating Conditions*.
 - Specified high and low levels: see (V_{IH} and V_{IL}) in *Recommended Operating Conditions*.
 - Inputs are not overvoltage tolerant and must not be above any valid V_{CC} as per *Recommended Operating Conditions*.
- 2. Absolute maximum output conditions:
 - Continuos output currents must not exceed (I_O max) per output and must not exceed total current (continuous current through V_{CC} or GND) for the part. These limits are located in the *Absolute Maximum Ratings*.
 - Outputs must not be pulled above V_{CC}.

9.2.3 Application Curve

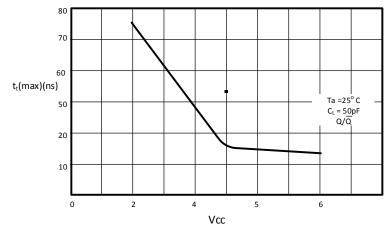


Figure 9-1. Maximum Transition Time vs $\ensuremath{V_{CC}}$

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more sense for the logic function or is more convenient.

11.2 Layout Example

Figure 11-1. SNx4HC273 Layout

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

• Texas Instruments, Implications of Slow or Floating CMOS Inputs application report

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 12-1. Related Links										
PARTS	PRODUCT FOLDER	SAMPLE & BUY	AMPLE & BUY DOCUMENTS SO		SUPPORT & COMMUNITY					
SN54HC273	Click here	Click here	Click here	Click here	Click here					
SN74HC273	Click here	Click here	Click here	Click here	Click here					

Table 12-1. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8409901VRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8409901VR A SNV54HC273J	Samples
5962-8409901VSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8409901VS A SNV54HC273W	Samples
84099012A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84099012A SNJ54HC 273FK	Samples
8409901RA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901RA SNJ54HC273J	Samples
8409901SA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901SA SNJ54HC273W	Samples
JM38510/65601BRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BRA	Samples
JM38510/65601BSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BSA	Samples
M38510/65601BRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BRA	Samples
M38510/65601BSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65601BSA	Samples
SN54HC273J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HC273J	Samples
SN74HC273DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DWRE4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273DWRG4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC273N	Samples
SN74HC273NE4	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC273N	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74HC273NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SN74HC273PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC273	Samples
SNJ54HC273FK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	84099012A SNJ54HC 273FK	Samples
SNJ54HC273J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901RA SNJ54HC273J	Samples
SNJ54HC273W	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8409901SA SNJ54HC273W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

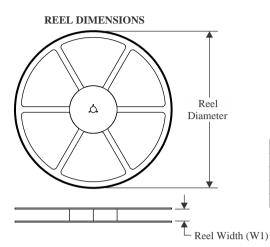
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

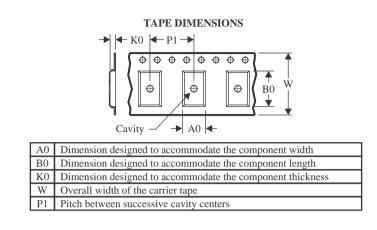
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC273, SN54HC273-SP, SN74HC273 :

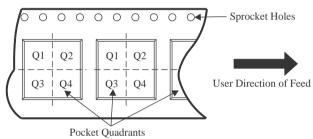
- Catalog : SN74HC273, SN54HC273
- Automotive : SN74HC273-Q1, SN74HC273-Q1
- Military : SN54HC273
- Space : SN54HC273-SP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application


www.ti.com

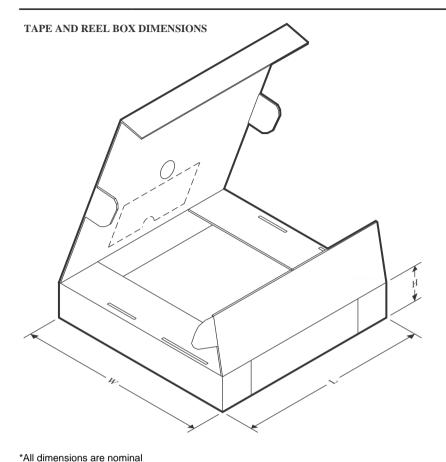
Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC273DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HC273DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HC273DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HC273DWRG4	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74HC273NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HC273NSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HC273PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HC273PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

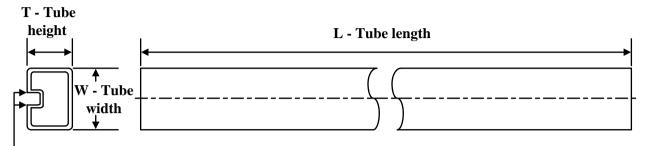

Pack Materials-Page 1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Dec-2023

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC273DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74HC273DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HC273DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HC273DWRG4	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HC273NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HC273NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HC273PWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74HC273PWR	TSSOP	PW	20	2000	356.0	356.0	35.0


Pack Materials-Page 2

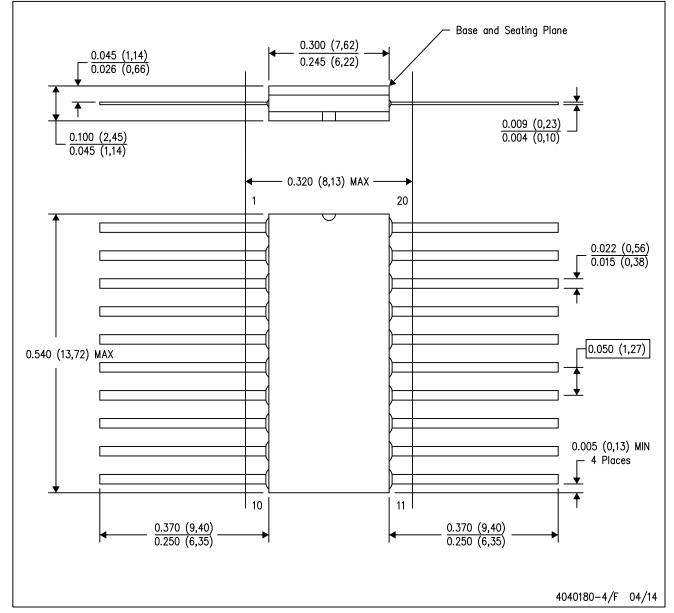
TEXAS INSTRUMENTS

www.ti.com

5-Dec-2023

TUBE

- B - Alignment groove width


*All dimensions are nor	minal
-------------------------	-------

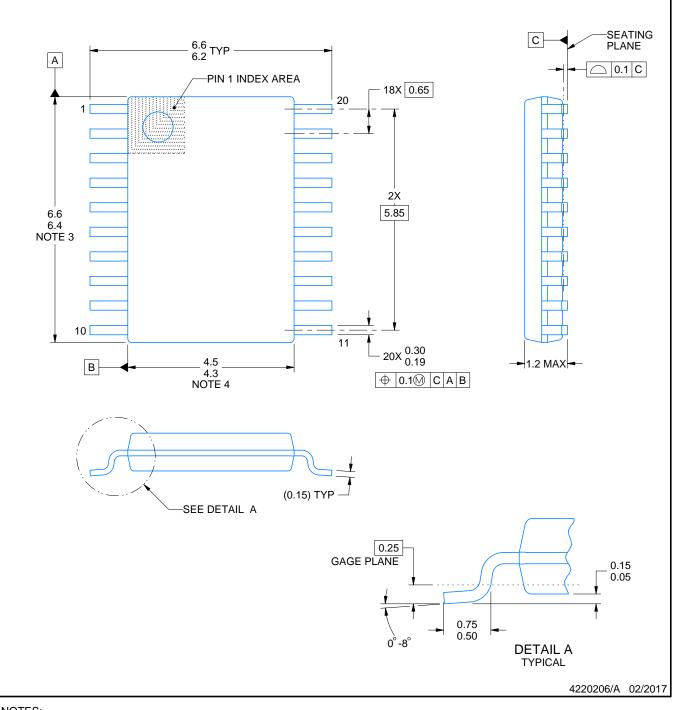
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-8409901VSA	W	CFP	20	25	506.98	26.16	6220	NA
84099012A	FK	LCCC	20	55	506.98	12.06	2030	NA
8409901SA	W	CFP	20	25	506.98	26.16	6220	NA
JM38510/65601BSA	W	CFP	20	25	506.98	26.16	6220	NA
M38510/65601BSA	W	CFP	20	25	506.98	26.16	6220	NA
SN74HC273N	N	PDIP	20	20	506	13.97	11230	4.32
SN74HC273NE4	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54HC273FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HC273W	W	CFP	20	25	506.98	26.16	6220	NA

Pack Materials-Page 3

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20

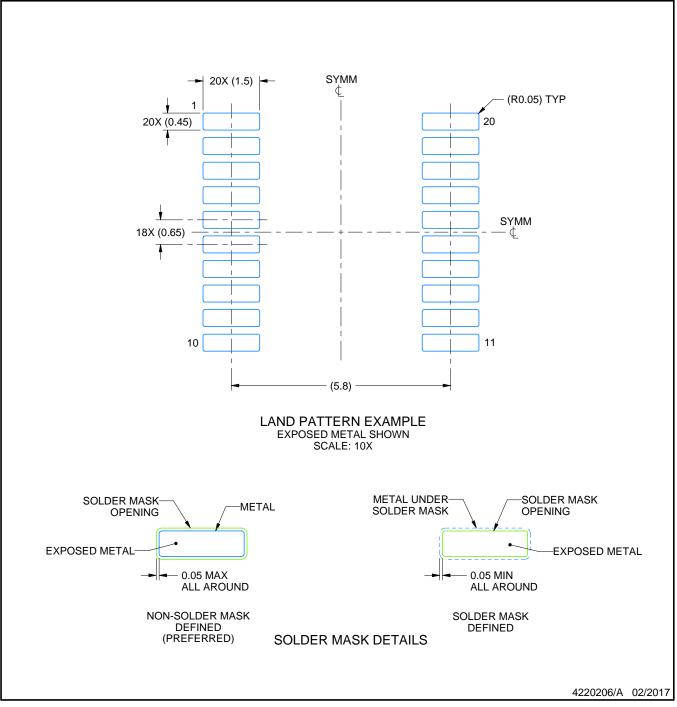

PW0020A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

PW0020A

EXAMPLE BOARD LAYOUT

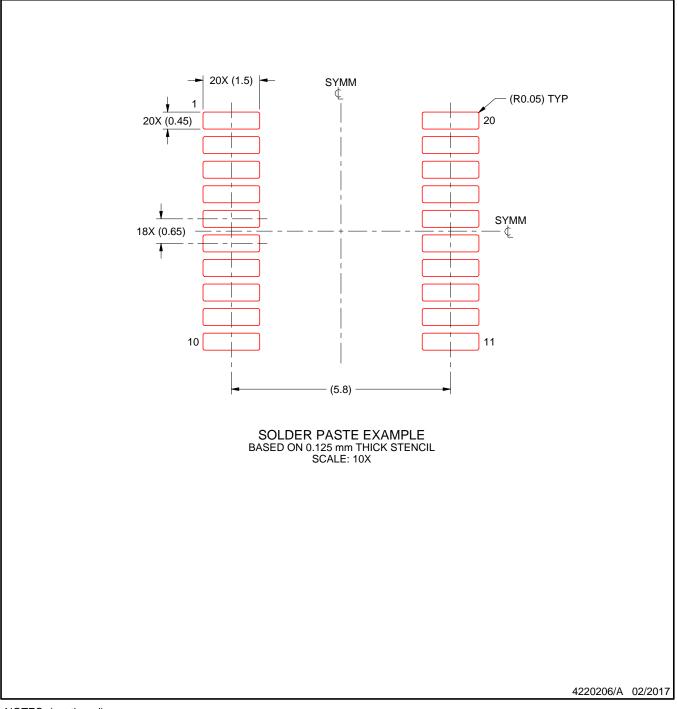
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

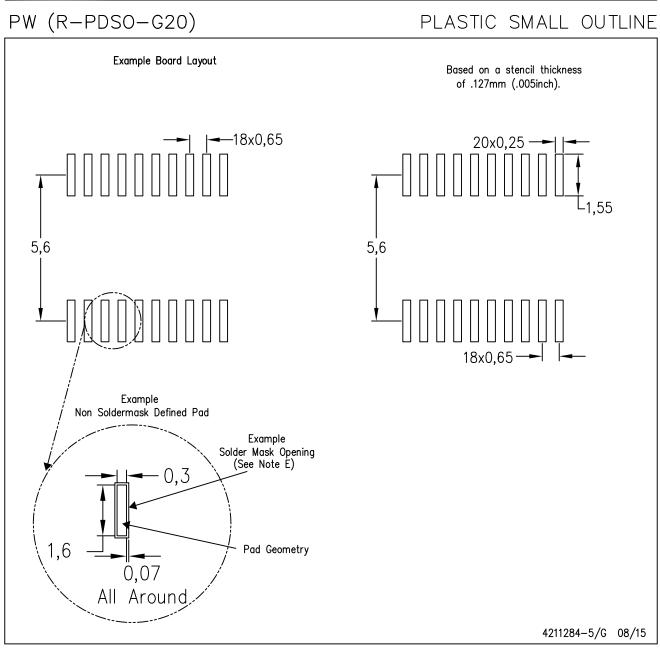


PW0020A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



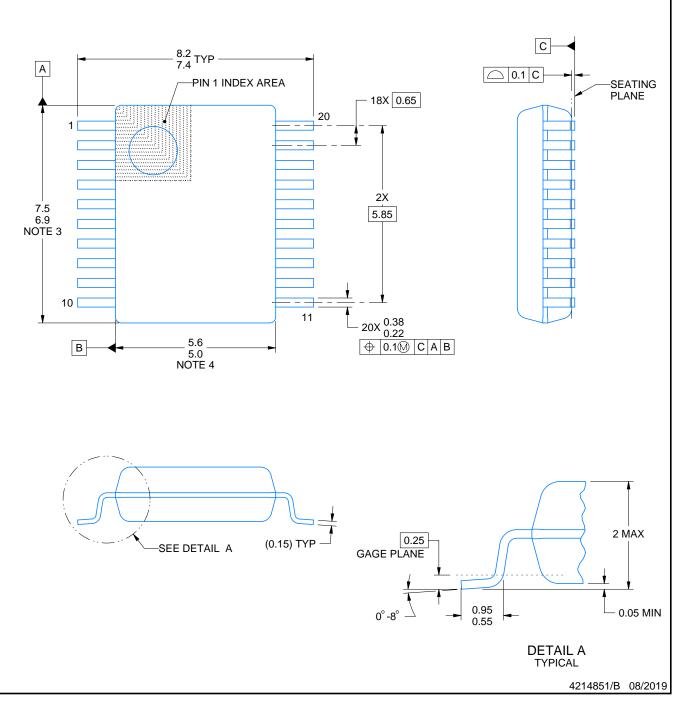
NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

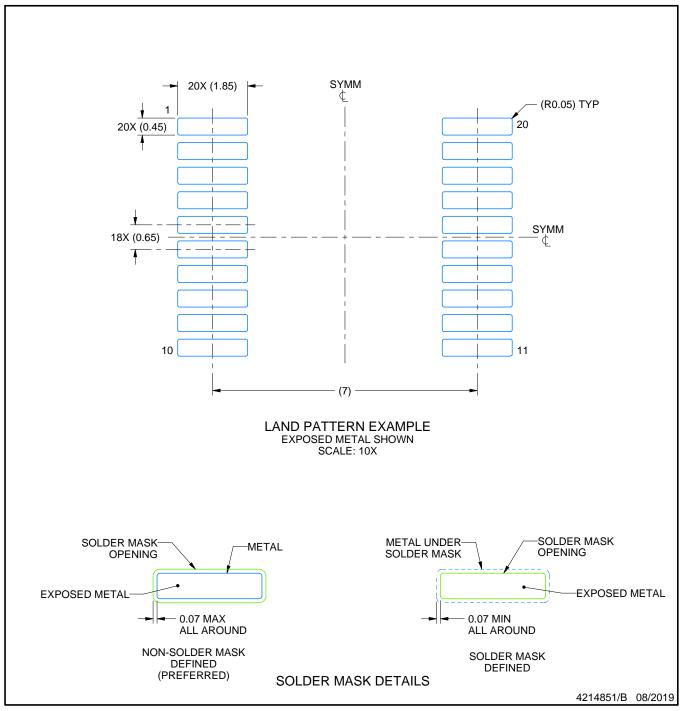

DB0020A

PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

DB0020A

EXAMPLE BOARD LAYOUT

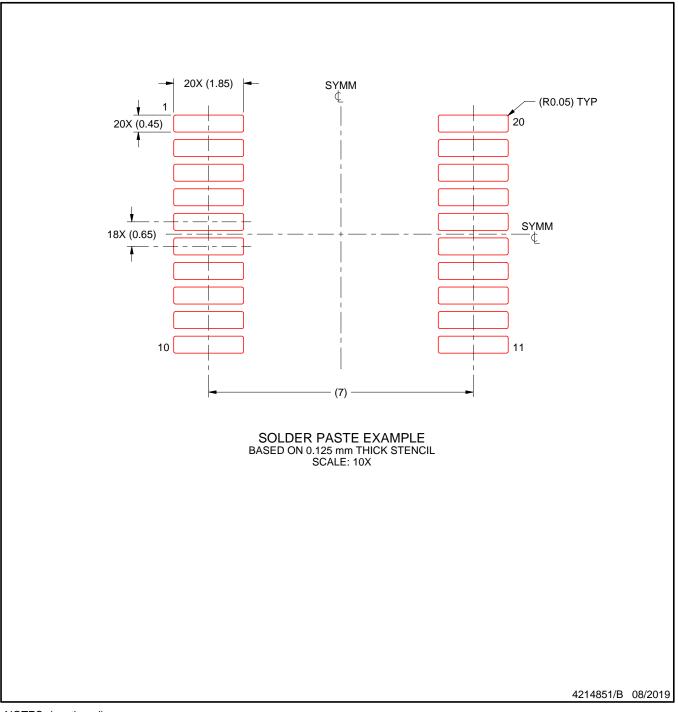
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0020A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

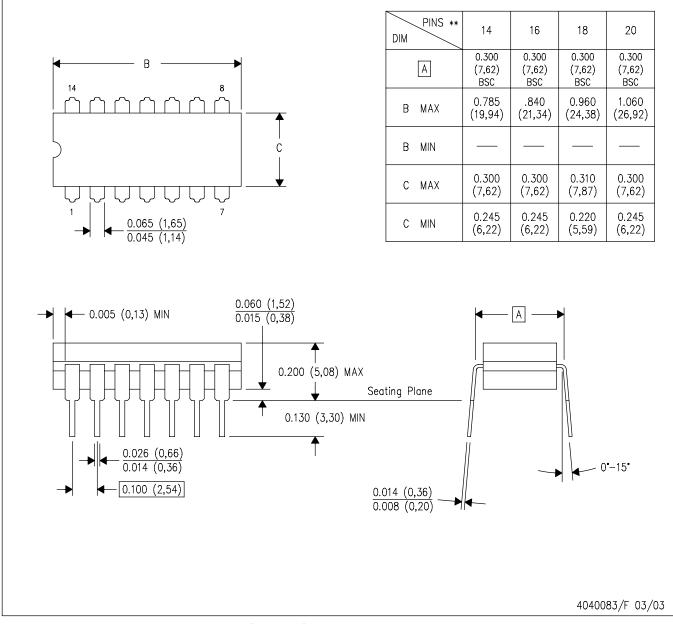
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 7,40 5,00 \bigcirc Gage Plane € 0,25 7 1 1,05 0,55 0°-10° 0,15 0,05 Seating Plane - 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)


14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

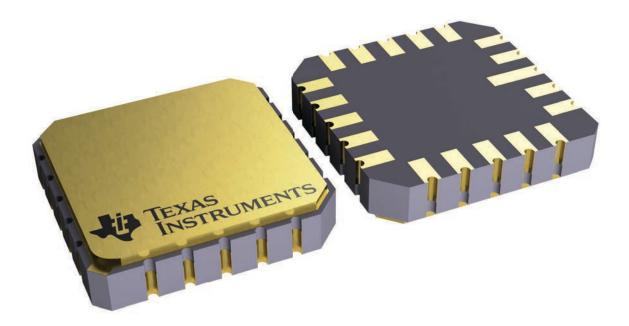
J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK 20

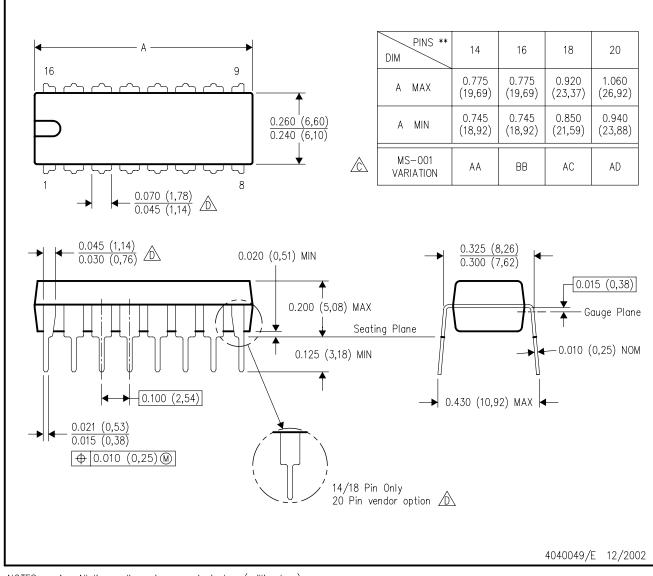

8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



4229370\/A\

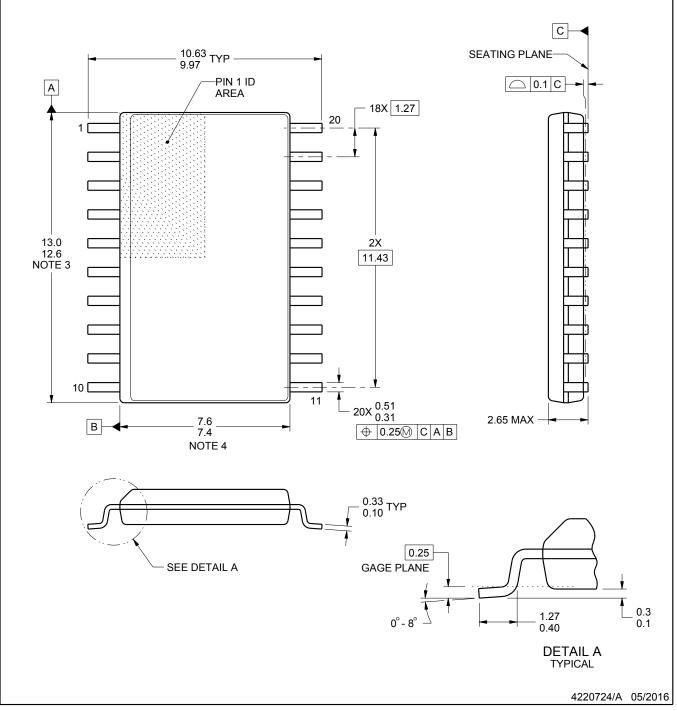
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

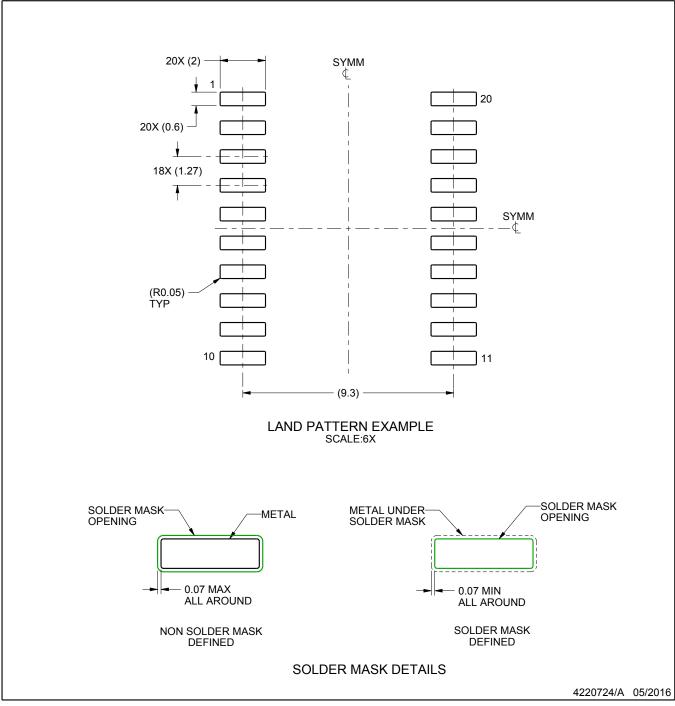

DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

DW0020A

EXAMPLE BOARD LAYOUT

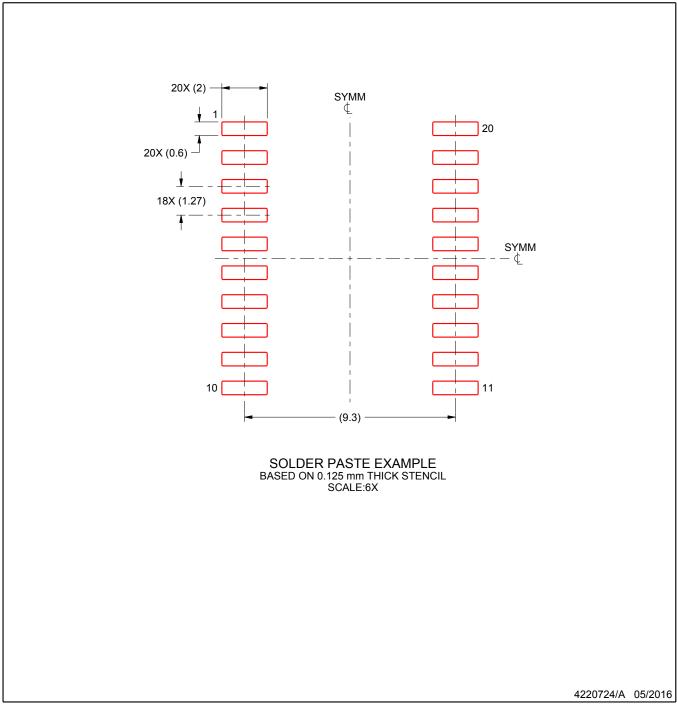
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated 单击下面可查看定价,库存,交付和生命周期等信息

>>TI(德州仪器)