

🚽 Order

Now

CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053 SCHS122M-NOVEMBER 1997-REVISED MAY 2019

Tools &

Software

CDx4HC405x, CDx4HCT405x High-Speed CMOS Logic Analog **Multiplexers and Demultiplexers**

Technical

Documents

1 Features

- Wide Analog Input Voltage Range: ±5-V Maximum
- Low ON-Resistance
 - 70- Ω Typical (V_{CC} V_{EE} = 4.5 V)
 - 40- Ω Typical (V_{CC} V_{EE} = 9 V)
- Low Crosstalk Between Switches
- Fast Switching and Propagation Speeds
- Break-Before-Make Switching
- Wide Operating Temperature Range: -55°C to +125°C
- CD54HC and CD74HC Types
 - Operation Control Voltage: 2 V to 6 V
 - Switch Voltage: 0 V to 10 V _
- CD54HCT and CD74HCT Types
 - Operation Control Voltage: 4.5 V to 5.5 V
 - Switch Voltage: 0 V to 10 V
 - Direct LSTTL Input Logic Compatibility $V_{IL} = 0.8$ -V Max, $V_{IH} = 2$ -V Min
 - CMOS Input Compatibility
 - $I_{I} \leq 1 \ \mu A \text{ at } V_{OL}, V_{OH}$
- On Products Compliant to MIL-PRF-38535, All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications

- **Digital Radio**
- Signal Gating
- **Factory Automation**
- Televisions
- Appliances
- Programmable Logic Circuits
- Sensors

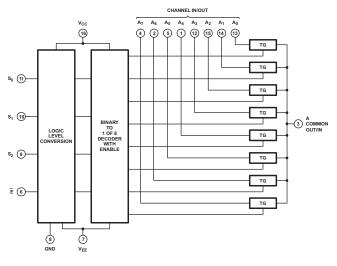
3 Description

The CDx4HC405x and CDx4HCT405x devices are digitally controlled analog switches that use silicon gate CMOS technology to achieve operating speeds similar to LSTTL with the low-power consumption of standard CMOS integrated circuits.

Support &

Community

20


These analog multiplexers and demultiplexers control analog voltages that may vary across the voltage supply range (for example, V_{CC} to V_{EE}). They are bidirectional switches that allow any analog input to be used as an output and vice versa. The switches have low ON resistance and low OFF leakages. In addition, all these devices have an enable control that, when high, disables all switches to their OFF state.

Device information '				
PART NUMBER	PACKAGE	BODY SIZE (NOM)		
CD54HCx405xF	CDIP (16)	19.56 mm × 6.92 mm		
CD74HCx405xE	PDIP (16)	19.30 mm × 6.35 mm		
CD74HCx405xM	SOIC (16)	9.90 mm × 3.91 mm		
CD74HCx405xNS	SOP (16)	10.30 mm × 5.30 mm		
CD74HCx405xPW	TSSOP (16)	5.00 mm × 4.40 mm		
CD7411CX403XFW	1330F (10)	5.00 mm x 4.40 mm		

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Diagram of HC4051 and HCT4051

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Submit Documentation Feedback	Copyright © 1997–2019, Texas Instruments Incorporated
Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051	CD74HCT4051 CD54HC4052 CD74HC4052
CD54HCT4052 CD74HCT4052 CD5 (110 1052 CD74HCT4052	1050 0054HCT4053 CD74HCT4053

INSTRUMENTS

ÈXAS

Table of Contents

1	Feat	ures 1
2	Арр	lications1
3		cription 1
4		ision History 2
5		Configuration and Functions 3
6		cifications
	6.1	Absolute Maximum Ratings 6
	6.2	ESD Ratings 6
	6.3	Recommended Operating Conditions
	6.4	Thermal Information7
	6.5	Electrical Characteristics: HC Devices
	6.6	Electrical Characteristics: HCT Devices 10
	6.7	Switching Characteristics, $V_{CC} = 5 V_{$
	6.8	Switching Characteristics, $C_L = 50 \text{ pF}$ 13
	6.9	Analog Channel Specifications 16
	6.10	Typical Characteristics 17
7	Para	ameter Measurement Information
8	Deta	niled Description
	8.1	Overview

CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

	8.2	Functional Block Diagrams	20
	8.3	Feature Description	22
	8.4	Device Functional Modes	22
9	App	lication and Implementation	23
	9.1	Application Information	
	9.2	Typical Application	23
10	Pow	er Supply Recommendations	24
11	Lay	out	25
	11.1	Layout Guidelines	25
	11.2	Layout Example	25
12	Dev	ice and Documentation Support	26
	12.1	Documentation Support	26
	12.2	Related Links	26
	12.3	Receiving Notification of Documentation Updates	26
	12.4	Community Resources	26
	12.5	Trademarks	26
	12.6	Electrostatic Discharge Caution	26
	12.7	Glossary	27
13	Mec	hanical, Packaging, and Orderable	
	Infor	mation	27

4 Revision History

CD54HC4051, CD74HC4051

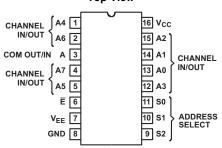
SCHS122M - NOVEMBER 1997 - REVISED MAY 2019

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

hanges from Revision L (February 2017) to Revision MFChanged Feature From: 7-Ω Typical To: 70-Ω Typical	
Changed Feature From: 7-Ω Typical To: 70-Ω Typical	1
Changes from Revision K (September 2015) to Revision L	Page
	i age
Changed Charged device model (CDM) value from: ±1000 V to: ±200 V	G

Changes from Revision J (February 2011) to Revision K

•	Removed Ordering Information table.	1
•	Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Detailed	
	Description section, Applications and Implementation section, Power Supply Recommendations section, Layout	
	section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Added Military Disclaimer to Features list.	1


2

Page

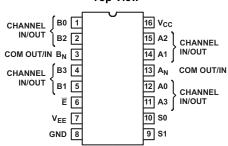
5 Pin Configuration and Functions

CD54HC4051, CD54HCT4051, CD74HC4051, CD74HCT4051 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP Top View

Pin Functions for CDx4HCx4051B

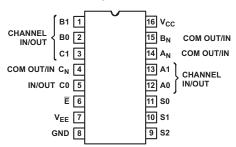
PIN		I/O	DESCRIPTION	
NO.	NAME	1/0	DESCRIPTION	
1	CH A4 IN/OUT	I/O	Channel 4 in/out	
2	CH A6 IN/OUT	I/O	Channel 6 in/out	
3	COM OUT/IN	I/O	Common out/in	
4	CH A7 IN/OUT	I/O	Channel 7 in/out	
5	CH A5 IN/OUT	I/O	Channel 5 in/out	
6	Ē	Ι	Enable Channels (Active Low). See Table 1.	
7	V _{EE}	_	Negative power input	
8	GND	_	round	
9	S2	Ι	hannel select 2. See Table 1.	
10	S1	Ι	Channel select 1. See Table 1.	
11	S0	Ι	Channel select 0. See Table 1.	
12	CH A3 IN/OUT	I/O	Channel 3 in/out	
13	CH A0 IN/OUT	I/O	Channel 0 in/out	
14	CH A1 IN/OUT	I/O	Channel 1 in/out	
15	CH A2 IN/OUT	I/O	Channel 2 in/out	
16	V _{CC}		Positive power input	

3


CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

www.ti.com

CD54HC4052, CD74HC4052, CD74HCT4052 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SO, TSSOP Top View



Pin Functions for CDx4HCx4052B

PIN		1/0		
NO.	NAME	I/O	DESCRIPTION	
1	CH B0 IN/OUT	I/O	Channel B0 in/out	
2	CH B2 IN/OUT	I/O	Channel B2 in/out	
3	COM B OUT/IN	I/O	B common out/in	
4	CH B3 IN/OUT	I/O	Channel B3 in/out	
5	CH B1 IN/OUT	I/O	Channel B1 in/out	
6	Ē	I	Enable channels (Active Low). See Table 2.	
7	V _{EE}	—	Negative power input	
8	GND	—	Ground	
9	S1	I	Channel select 1. See Table 2.	
10	SO	I	Channel select 0. See Table 2.	
11	CH A3 IN/OUT	I/O	Channel A3 in/out	
12	CH A0 IN/OUT	I/O	Channel A0 in/out	
13	COM A IN/OUT	I/O	A common out/in	
14	CH A1 IN/OUT	I/O	Channel A1 in/out	
15	CH A2 IN/OUT	I/O	Channel A2 in/out	
16	V _{CC}		Positive power input	

CD54HC4053 CD74HC4053 CD74HCT4053 J, N, D, NS, PW Packages 16-Pin CDIP, PDIP, SOIC, SOP, TSSOP TOP VIEW

Pin Functions CDx4HCx4053B

PIN		I/O	DECODIDION	
NO.	NAME	1/0	DESCRIPTION	
1	B1 IN/OUT	I/O	B channel Y in/out	
2	B0 IN/OUT	I/O	B channel X in/out	
3	C1 IN/OUT	I/O	C channel Y in/out	
4	COM C OUT/IN	I/O	C common out/in	
5	C0 IN/OUT	I/O	C channel X in/out	
6	Ē	Ι	Enable channels (Active Low). See Table 3.	
7	V _{EE}	_	Negative power input	
8	GND	_	Ground	
9	S2	Ι	Channel select 2. See Table 3.	
10	S1	Ι	Channel select 1. See Table 3.	
11	S0	Ι	Channel select 0. See Table 3.	
12	A0 IN/OUT	I/O	A channel X in/out	
13	A1 IN/OUT	I/O	A channel Y in/out	
14	COM A OUT/IN	I/O	A common out/in	
15	COM B OUT/IN	I/O	B common out/in	
16	V _{CC}	_	Positive power input	

Copyright © 1997–2019, Texas Instruments Incorporated

Submit Documentation Feedback 5

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HCT4053 CD74HCT405 CD74HCT405 CD74HCT405 CD74HCT405 CD74HCT405 CD74HCT405 CD74HCT

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
$V_{CC} - V_{EE}$	DC supply voltage		-0.5	10.5	V
V _{CC}	DC supply voltage		-0.5	7	V
V _{EE}	DC supply voltage		0.5	-7	V
I _{IK}	DC input diode current	$V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V		±20	mA
I _{OK}	DC switch diode current	$V_{\rm I} < V_{\rm EE}~-$ 0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V		±20	mA
	DC switch current ⁽²⁾	$V_{\rm I}$ > $V_{\rm EE}~-0.5$ V or $V_{\rm I}$ < $V_{\rm CC}$ + 0.5 V		±25	mA
I _{CC}	DC V _{CC} or ground current			±50	mA
I _{EE}	DC V _{EE} current			-20	mA
T _{JMAX}	Maximum junction temperature			150	°C
T _{LMAX}	Maximum lead temperature	Soldering 10 s		300	°C
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to GND unless otherwise specified.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002 $^{\rm (2)}$	±200	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	NOM	MAX	UNIT
	Supply voltage range	CD54 and 74HC types	2		6	
V _{CC}	$(T_A = full package temperature range)^{(2)}$	CD54 and 74HCT types	4.5		5.5	V
V _{CC} – V _{EE}	Supply voltage range (T _A = full package temperature range)	CD54 and 74HC types, CD54 and 74HCT types (see Figure 1)	2		10	V
V_{EE}	Supply voltage range $(T_A = full package temperature range)^{(3)}$	CD54 and 74HC types, CD54 and 74HCT types (see Figure 2)	0		-6	V
VI	DC input control voltage		GND		V_{CC}	V
VIS	Analog switch I/O voltage		V _{EE}		V_{CC}	V
T _A	Operating temperature		-55		125	°C
		2 V	0		1000	
t _r , t _f	Input rise and fall times	4.5 V	0		500	ns
		6 V	0		400	

(1) For maximum reliability, nominal operating conditions must be selected so that operation is always within the ranges specified in the *Recommended Operating Conditions* table.

(2) All voltages referenced to GND unless otherwise specified.

(3) In certain applications, the external load resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6 V (calculated from r_{ON} values shown in *Electrical Characteristics: HC Devices* and *Electrical Characteristics: HCT Devices* tables). No V_{CC} current will flow through R_L if the switch current flows into terminal 3 on the HC and HCT4051; terminals 3 and 13 on the HC and HCT4052; terminals 4, 14, and 15 on the HC and HCT4053.

6 Submit Documentation Feedback

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC7405 CD74HC7405 CD74HC7405 CD74HC7405 CD74HC7

Copyright © 1997–2019, Texas Instruments Incorporated

			CD74HC4051		
	THERMAL METRIC ⁽¹⁾	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	49.0	83.0	107.7	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	36.3	41.2	42.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	29.0	43.3	52.8	°C/W
ΨJT	Junction-to-top characterization parameter	21.2	9.2	4.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	28.9	43.0	52.2	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics: HC Devices

			TEST C	ONDITIONS						
	PARAMETERS	V _{IS} (V)	V _I (V)	V _{EE} (V)	V _{cc} (V)	T _A	MIN	ТҮР	МАХ	UNIT
						25°C	1.5			
					2	-40°C to +85°C	1.5			
						–55°C to +125°C	1.5			
						25°C	3.15			
V _{IH}	′ _{IH} High-level input voltage				4.5	–40°C to +85°C	3.15			V
						–55°C to +125°C	3.15			
						25°C	4.2			
					6	–40°C to +85°C	4.2			
						–55°C to +125°C	4.2			
						25°C			0.5	
					2	–40°C to +85°C			0.5	
						–55°C to +125°C			0.5	
						25°C			1.35	
V _{IL}	Low-level input voltage				4.5	–40°C to +85°C			1.35	V
						–55°C to +125°C			1.35	
						25°C			1.8	
					6	-40°C to +85°C			1.8	
						–55°C to +125°C			1.8	

7

CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

www.ti.com

INSTRUMENTS

Texas

Electrical Characteristics: HC Devices (continued)

		TEST CONDITIONS Vis Vi Vere Vcc Vcc </th <th colspan="2"></th> <th colspan="2"></th> <th></th>									
	PARAMET	ERS	V _{IS} (V)	V _I (V)	V _{EE} (V)	V _{cc} (V)	T _A	MIN	ТҮР	MAX	UNIT
							25°C		70	160	
					0	4.5	–40°C to +85°C			200	
							–55°C to +125°C			240	
							25°C		60	140	
			V_{CC} or V_{EE}		0	6	–40°C to +85°C			175	
							–55°C to +125°C			210	
							25°C		40	120	
					-4.5	4.5	–40°C to +85°C			150	
-	ON I r _{ON} resistance S	l _o = 1 mA		V _{IL}			–55°C to +125°C			180	Ω
ON		See Figure 21		V _{IH}			25°C		90	180	52
					0	4.5	–40°C to +85°C			225	
							–55°C to +125°C			270	
							25°C		80	160	
			V_{CC} to V_{EE}		0	6	–40°C to +85°C			200	
							–55°C to +125°C			240	
							25°C		45	130	
					-4.5	4.5	–40°C to +85°C			162	
							–55°C to +125°C			195	
					0	4.5	25°C		10		
Δr_{ON}	Maximum ON between any				0	6	25°C		8.5		Ω
					-4.5	4.5	25°C		5		

Submit Documentation Feedback

8

Copyright © 1997–2019, Texas Instruments Incorporated

Product Folder Links: CD54HC4051 CD74HC4051 CD54HC74051 CD54HC74051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC740C74HC7405 CD74HC7405 CD74HC7405 CD74HC740C74HC7405 CD7

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

Electrical Characteristics: HC Devices (continued)

				TEST C	ONDITIONS								
	PARAME	TERS	V _{IS} (V)	V ₁ (V)	V _{EE} (V)	V _{cc} (V)	T _A	MIN TYP MAX	UNIT				
							25°C	±0.1					
		1 and 2 channels			0	6	-40°C to +85°C	±1					
							–55°C to +125°C	±1					
							25°C	±0.1					
		4053			-5	5	–40°C to +85°C	±1					
							–55°C to +125°C	±1					
							25°C	±0.1					
		4 channels	For switch OFF: When $V_{IS} = V_{CC}$, $V_{CC} = V_{CC}$		0	6	–40°C to +85°C	±1					
l	Switch ON/OFF		$V_{OS} = V_{EE};$ When V _{IS} = V _{EE} , V _{OS} = V _{CC} , For switch ON:	V _{IL} or			–55°C to +125°C	±1	μA				
I _{IZ}	leakage current		For switch ON: All applicable	V _{IH}			25°C	±0.2	μΑ				
	current	4052	combinations of		-5	5	-40°C to +85°C	±2					
			voltage levels				–55°C to +125°C	±2					
							25°C	±0.2					
		8 channels			0	6	-40°C to +85°C	±2					
												–55°C to +125°C	±2
							25°C	±0.4					
		4051			-5	5	-40°C to +85°C	±4					
							–55°C to +125°C	±4					
							25°C	±0.1					
I _{IL}	Control input	leakage current		V _{CC} or	0	6	-40°C to +85°C	±1	μA				
				GND			–55°C to +125°C	±1					
							25°C	8					
	Quiescent		When $V_{IS} = V_{EE}$, $V_{OS} = V_{CC}$		0	6	-40°C to +85°C	80					
			VOS – VCC	V _{CC}			–55°C to +125°C	160					
I _{CC}	device current	$I_{O} = 0$		or GND			25°C	16	μΑ				
			When $V_{IS} = V_{CC}$, $V_{OS} = V_{EE}$		-5	5	–40°C to +85°C	160					
							–55°C to +125°C	320					

9

Product Folder Links: CD54HC4051 CD74HC4051 CD54HC74051 CD54HC74051 CD54HC4052 CD74HC4052 CD74HC4053 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC740C74HC7405 CD74HC7405 CD74HC7405 CD74HC740C74HC7405 CD7

CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

Maximum ON resistance

between any two channels

 Δr_{ON}

10

6.6 Electrical Characteristics: HCT Devices

						$ \begin{array}{c c c c c c } \hline V_{CC} & T_A & MiN & TYP & MAX \\ \hline V_{EE} & V_{CV} & T_A & 25^\circ C & 2 & & & \\ \hline 4.5 & 25^\circ C & 2 & & & & \\ \hline -40^\circ C to & 2 & & & & \\ \hline -40^\circ C to & 2 & & & & \\ \hline -55^\circ C to & 2 & & & & & \\ \hline -55^\circ C to & 2 & & & & & \\ \hline -40^\circ C to & +85^\circ C & & & & & \\ \hline -55^\circ C to & & & & & & \\ \hline -55^\circ C to & & & & & & \\ \hline -40^\circ C to & -55^\circ C to & & & & & \\ \hline -40^\circ C to & -55^\circ C to & & & & & \\ \hline -40^\circ C to & -55^\circ C to & & & & & \\ \hline -40^\circ C to & -55^\circ C to & & & & & \\ \hline -4.5 & 4.5 & & & & & & \\ \hline -4.5 & 4.5 & & & & & & \\ \hline -4.5 & 4.5 & & & & & & \\ \hline 0 & 4.5 & & & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -4.5 & -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & & & \\ \hline -55^\circ C to & & \\ \hline -55^\circ C t$					
	PARAMET	ER	V _{IS} (V)	V ₁ (V)	V _{EE} (V)	V _{cc} (V)	T _A	MIN	ТҮР	MAX	UNIT
							25°C	2			
VIH	PARAMETER High-level input voltage Low-level input voltage ON resistance Io = 1 mA See Figure 6	it voltage				to		2			V
						5.5	-55°C to +125°C	2			
							25°C			0.8	
V _{IL}	Low-level input voltage	t voltage				to				0.8	V
						5.5				0.8	
							25°C		70	160	
					0	4.5				200	
			., .,							240	
			V_{CC} or V_{EE}				25°C		40	120	
					-4.5	4.5				150	
		I _O = 1 mA		V _{IL}						180	
r _{ON}	ON resistance	See Figure 6		or V _{IH}			25°C		90	180	Ω
					0	4.5				225	
										270	
1			V_{CC} to V_{EE}				25°C		45	130	

-4.5

0

-4.5

4.5

4.5

4.5

TEST CONDITIONS

25°C

-40°C to

+85°C –55°C to

+125°C

25°C

25°C

45

10

5

130

162

195

www.ti.com

Ω

CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

www.ti.com

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

Electrical Characteristics: HCT Devices (continued)

				TEST CO	ONDITION	s					
	PARAMET	ER	V _{IS} (V)	V ₁ (V)	V _{EE} (V)	V _{CC} (V)	T _A	MIN	ТҮР	MAX	UNIT
							25°C			±0.1	
		1 and 2 channels			0	6	–40°C to +85°C			±1	
							–55°C to +125°C			±1	
							25°C			±0.1	
		4053			-5	5	–40°C to +85°C			±1	
							–55°C to +125°C			±1	
							25°C			±0.1	
		4 channels	For switch OFF: When $V_{IS} = V_{CC}$,		0	6	–40°C to +85°C			±1	
	Switch ON/OFF		$V_{OS} = V_{EE};$ When $V_{IS} = V_{EE},$ $V_{OS} = V_{CC}$	V _{IL}			–55°C to +125°C			±1	
I _{IZ}	leakage		$V_{OS} = V_{CC}$ For switch ON:	or V _{IH}			25°C			±0.2	μA
	current	4052	All applicable combinations of V_{IS} and V_{OS}		5	5	–40°C to +85°C			±2	
			voltage levels				–55°C to +125°C			±2	
	8						25°C			±0.2	
		8 channels			0	6	–40°C to +85°C			±2	
							–55°C to +125°C			±2	
							25°C			±0.4	
		4051			-5	5	–40°C to +85°C			±4	
							–55°C to +125°C			±4	
							25°C			±0.1	
I _{IL}	Control input le	eakage current		See ⁽¹⁾		5.5	–40°C to +85°C			±1	μA
							–55°C to +125°C			±1	
							25°C			8	
			When $V_{IS} = V_{EE}$, $V_{OS} = V_{CC}$		0	5.5	-40°C to +85°C			80	μA
	Quiescent		V _{OS} = V _{CC}	V _{cc}			–55°C to +125°C			160	
I _{CC}	device current	I _O = 0		or GND			25°C			16	
			When $V_{IS} = V_{CC}$, $V_{OS} = V_{EE}$		-4.5	5.5	–40°C to +85°C			160	μA
			VOS - VEE				–55°C to +125°C			320	
							25°C		100	360	
ΔI_{CC}	Additional quie device current		$\Delta I_{CC}^{(2)}$	V _{CC} – 2.1		4.5 to 5.5	–40°C to +85°C			450	μA
	1 unit load ⁽²⁾						–55°C to +125°C			490	

(1) Any voltage between V_{CC} and GND. (2) For dual-supply systems, theoretical worst-case ($V_1 = 2.4 \text{ V}$, $V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 ODE 41 10 4050 ODE 41 10 4050 OD54HCT4053 CD74HCT4053 CD54HCT4052 CD74HCT405^ Downloaded From Oneyac.com

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

TEXAS INSTRUMENTS

www.ti.com

6.7 Switching Characteristics, $V_{cc} = 5 V$

 V_{CC} = 5 V, T_A = 25°C, input t_r , t_f = 6 ns

	PARAMETER	TEST CO	NDITIONS	C _L (pF)	MIN TYP MAX	UNIT
			CDx4HC4051		4	
			CDx4HCT4051		4	
		Switch IN to OUT	CDx4HC4052	15	4	20
t _{PHL} , t _{PLH}		Switch IN to OUT	CDx4HCT4052	15	4	ns
			CDx4HC4053		4	
			CDx4HCT4053		4	
			CDx4HC4051		19	
			CDx4HCT4051		19	
	Dranagation dalay	Switch turn-off (S or \overline{E})	CDx4HC4052	15	21	~~
t _{PHZ} , t _{PLZ}	Propagation delay	Switch turn-oir (S or E)	CDx4HCT4052	15	21	ns
			CDx4HC4053		18	
			CDx4HCT4053		18	
			CDx4HC4051		19	
			CDx4HCT4051		23	
		Switch turn-on (S or \overline{E})	CDx4HC4052	15	27	20
t _{PZH} , t _{PZL}		Switch turn-on (S of E)	CDx4HCT4052	15	29	ns
			CDx4HC4053		18	
			CDx4HCT4053		20	
			CDx4HC4051		50	
			CDx4HCT4051		52	
C	Power dissipation		CDx4HC4052		74	۳E
C _{PD}	Power dissipation capacitance ⁽¹⁾		CDx4HCT4052		76	pF
			CDx4HC4053		38	
			CDx4HCT4053		42	

(1) C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD} V_{CC}^2 f_I + \sum (C_L + C_S) V_{CC}^2 f_O$, f_O = output frequency, f_I = input frequency, C_L = output load capacitance, C_S = switch capacitance, V_{CC} = supply voltage

12 Submit Documentation Feedback

Copyright © 1997–2019, Texas Instruments Incorporated

6.8 Switching Characteristics, $C_L = 50 \text{ pF}$

 $C_L = 50 \text{ pF}$, input t_r , $t_f = 6 \text{ ns}$

	PARAMETER		V _{EE} (V)	V _{cc} (V)	TEST CON	DITIONS	MIN MAX	UNIT	
					T _A = 25°C	HC	60		
			0	2	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	75		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	90		
					T _A = 25°C	HC, HCT	12		
			0	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC, HCT	15		
t _{PLH} ,	Propagation dela	av.			$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC, HCT	18		
t _{PHL}	switch in to out	.,,			T _A = 25°C	HC	10	ns	
			0	6	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	13		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	15		
					T _A = 25°C	HC, HCT	8		
			-4.5	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC, HCT	10		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC, HCT	12		
					T _A = 25°C	HC	225		
			0	2	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	280		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	340		
					T _A = 25°C	HC, HCT	45		
	Maximum		0	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC, HCT	56		
touz.	switch turn PHZ [,] OFF delay				$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC, HCT	68		
t _{PLZ}		4051			T _A = 25°C	HC	38	ns	
				0	6	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	48	
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	57		
					T _A = 25°C	HC, HCT	32		
			-4.5	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC, HCT	40	-	
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC, HCT	48		
					T _A = 25°C	HC	250		
			0	2	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	315		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	375		
					T _A = 25°C	HC, HCT	50		
			0	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC, HCT	63		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC, HCT	75		
	Maximum switch turn				T _A = 25°C	HC	43		
t _{PHZ} , ⁺	OFF delay	4052	0	6	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	54	ns	
t _{PLZ}	from S or \overline{E}				T _A = -55°C to +125°C	HC	65		
	to switch output					HC	38		
					$T_A = 25^{\circ}C$	НСТ	38		
					-	HC	48		
			-4.5	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	НСТ	48		
						HC	57		
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	НСТ	57		

Switching Characteristics, C_L = 50 pF (continued)

 $C_L = 50 \text{ pF}$, input t_r , $t_f = 6 \text{ ns}$

	PARAMETER		V _{EE} (V)	V _{CC} (V)	TEST CON	DITIONS	MIN MAX	UNIT
					T _A = 25°C	HC	210	
			0	2	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	265	
					$T_A = -55^{\circ}C$ to +125°C	HC	315	
					T 0500	HC	42	
					$T_A = 25^{\circ}C$	HCT	44	
			0	4.5	T 1000 1 0500	HC	53	
			0	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HCT	53	
	Maximum				T 5500 to 140500	HC	63	
HZ,	switch turn	4050			$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HCT	66	
LZ	OFF dela <u>y</u> from S or E	4053			T _A = 25°C	HC	36	ns
	to switch output		0	6	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	45	
					$T_A = -55^{\circ}C$ to +125°C	HC	54	
					T 0500	HC	29	
					$T_A = 25^{\circ}C$	HCT	31	
				T 1000 1 0700	HC	36		
			-4.5	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HCT	39	
					T	HC	44	
				$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HCT	47		
					T _A = 25°C	HC	225	
			0	2	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	280	
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	340	
		_				HC	45	
					$T_A = 25^{\circ}C$	HCT	55	
			_			HC	56	
			0	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HCT	69	
	Maximum				T	HC	68	
ZL,	switch turn				$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HCT	83	
ZH	ON delay from S or E	4051			T _A = 25°C	HC	38	ns
	to switch output		0	6	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	48	
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	57	
					T 0500	HC	32	
					$T_A = 25^{\circ}C$	HCT	39	
					-	HC	40	
			-4.5	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HCT	49	
					-	HC	48	
					$T_A = -55^{\circ}C$ to $+125^{\circ}C$	НСТ	59	

Copyright © 1997–2019, Texas Instruments Incorporated

Product Folder Links: CD54HC4051 CD74HC4051 CD54HC74051 CD54HC74051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC74UC74UC74DC74HC7405 CD74HC7405 CD74HC7405 CD74HC7405 CD7

Switching Characteristics, $C_L = 50 \text{ pF}$ (continued)

 $C_L = 50 \text{ pF}$, input t_r , $t_f = 6 \text{ ns}$

PARAMETE	R	V _{EE} (V)	V _{cc} (V)	TEST CON	DITIONS	MIN MAX	UNIT
				T _A = 25°C	HC	325	
		0	2	$T_A = -40^{\circ}C$ to +85°C	HC	405	
				$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	490	
				T 0700	HC	65	
				$T_A = 25^{\circ}C$	НСТ	70	
					HC	81	
		0	4.5	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	HCT	68	
Maximum				T	HC	98	
switch turn	1050			$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HCT	105	
^{22L} ON delay ^{22H} from S or E	4052			T _A = 25°C	HC	55	ns
to switch out	out	0	6	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	HC	69	
				$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	HC	83	
					HC	46	
				$T_A = 25^{\circ}C$	НСТ	48	
				T 1000	HC	58	
		-4.5	4.5	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	НСТ	60	
					HC	69	
				$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	НСТ	72	
				T _A = 25°C	HC	220	
		0	2	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	HC	275	
				$T_A = -55^{\circ}C$ to $+125^{\circ}C$	HC	330	
					HC	65 70 81 68 98 105 55 69 83 46 48 58 60 69 72 220 275 330 44 48 55 60 62 72 330 44 48 55 60 66 72 330 44 48 55 60 66 72 37 47 56 31 34 39 43 47 51	
				$T_A = 25^{\circ}C$	НСТ	48	
					HC	55	
		0	4.5	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	НСТ	60	
Maximum				-	HC	66	
switch turn				$T_A = -55^{\circ}C$ to $+125^{\circ}C$	НСТ	72	
^{ZL,} ON delay ^{ZH} from S or E	4053			$T_A = 25^{\circ}C$	HC	37	ns
to switch out	out	0	6	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	HC	47	
				$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	HC	56	
					HC	31	
				$T_A = 25^{\circ}C$	НСТ	34	
				-	HC	39	
		-4.5	4.5	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	НСТ	43	
				_	HC	47	
				$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	НСТ		
				$T_A = 25^{\circ}C$	HC, HCT	10	
Input (control)			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	HC, HCT	10	pF
capacitance				$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$	HC, HCT	10	•

Product Folder Links: CD54HC4051 CD74HC4051 CD54HC74051 CD54HC74051 CD54HC4052 CD74HC4052 CD74HC4053 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC740C74HC7405 CD74HC7405 CD74HC7405 CD74HC740C74HC7405 CD7

6.9 Analog Channel Specifications

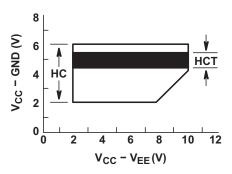
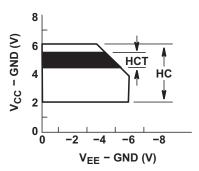
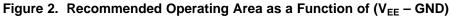
Typical values at $T_A = 25^{\circ}C$

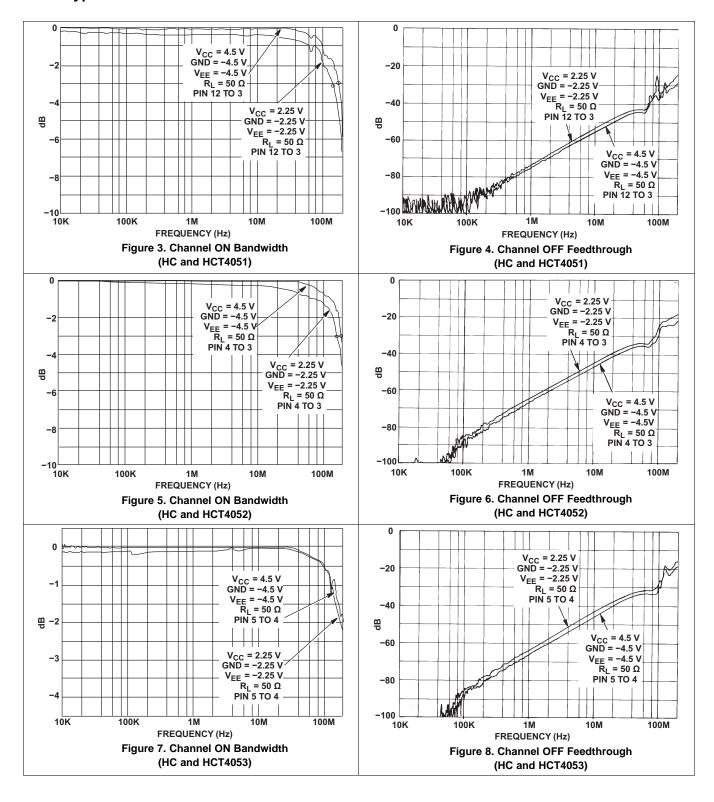
	PARAMETER	TEST CONDITIONS	HC, HCT TYPES	V _{EE} (V)	V _{CC} (V)	ТҮР	UNIT
CI	Switch input capacitance		All			5	pF
			4051			25	
C _{COM}	Common output capacitance		4052			12	pF
			4053			8	
			4051			145	
	Minimum quitch frequency		4052	-2.25	2.25	165	
£	Minimum switch frequency response at –3 dB	See Figure 10 ⁽¹⁾⁽²⁾	4053			200	MHz
f _{MAX}	(see Figure 3, Figure 5, and	Figure 5, and				180	WHZ
	Figure 7)		4052	-4.5	4.5	185	
			4053			200	
	Sine-wave distortion	See Figure 12	All	-2.25%	2.25%	0.035%	
	Sine-wave distortion	See Figure 12	All	-4.5%	4.5%	0.018%	
			4051	-2.25	2.25	-73	
			4052			-65	
	Switch OFF signal feedthrough (see Figure 4, Figure 6, and Figure 8)	$C_{2,2} = \sum_{i=1}^{n} \sum_{j=1}^{n} (2)(3)$	4053			-64	
		See Figure 14 ⁽²⁾⁽³⁾	4051	-4.5	4.5	-75	dB
			4052			-67	
			4053			-66	

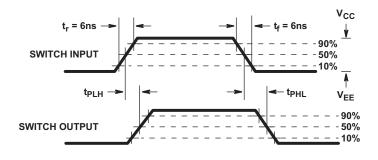
Adjust input voltage to obtain 0 dBm at V_{OS} for $f_{IN} = 1$ MHz. (1)

 V_{IS} is centered at $(V_{CC} - V_{EE}) / 2$. Adjust input for 0 dBm. (2)

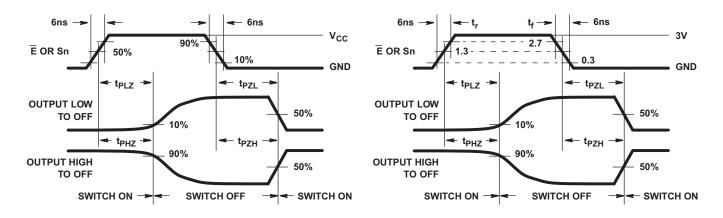
(3)


Figure 1. Recommended Operating Area as a Function of (V_{CC} – V_{EE})

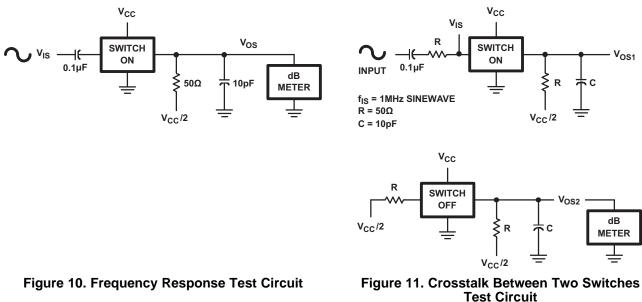


6.10 Typical Characteristics



Product Folder Links: CD54HC4051 CD74HC4051 CD54HC74051 CD54HC74051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC7405 CD74HC74HC7405 CD74HC7405 CD74HC7405 CD7

7 Parameter Measurement Information



(FIGURE B) HC TYPES

(FIGURE C) HCT TYPES

Figure 9. Switch Propagation Delay, Turn-On, Turn-Off Times

Test Circuit

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD74HCT405 0074104050 Downloaded From Oneyac.com

Texas INSTRUMENTS

www.ti.com

CD54HC4051, CD74HC4051 CD54HCT4051, CD74HCT4051, CD54HC4052, CD74HC4052, CD54HCT4052 CD74HCT4052, CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053

www.ti.com

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

Ē

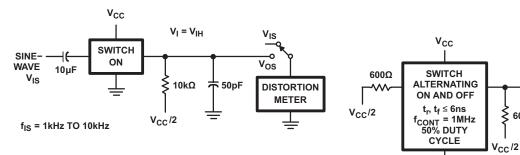
Vos

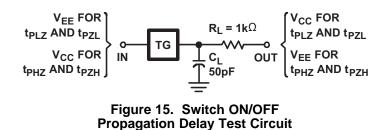
-

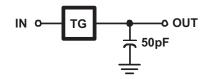
Vos

SCOPE

〒 50pF






Figure 13. Control to Switch Feedthrough Noise Test Circuit

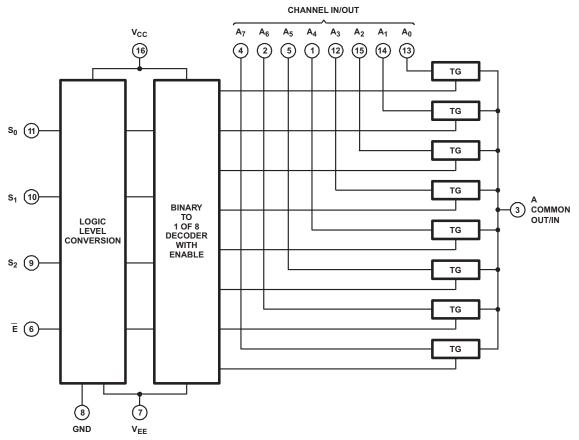
600Ω

Figure 14. Switch OFF Signal Feedthrough

Product Folder Links: CD54HC4051 CD74HC4051 CD54HC74051 CD54HC74051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HC74053 CD74HC7405 CD74HC7405 CD74HC7405 CD74HC74HC7405 CD74HC7405 CD74HC7405 CD7

8 Detailed Description

8.1 Overview

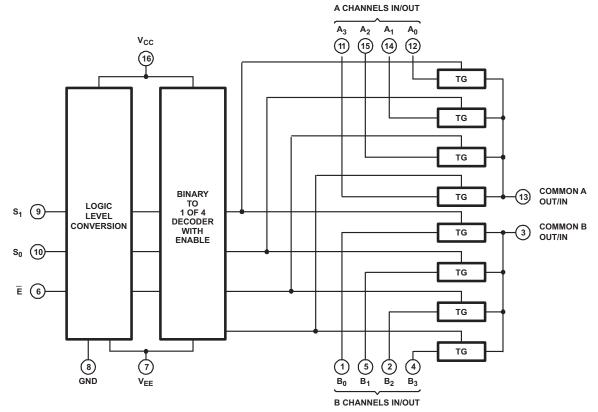

The CD_x4HCx4051 devices are a single 8-channel multiplexer having three binary control inputs, S_0 , S_1 , and S_2 and an ENABLE input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CDx4HCx4052 devices are a differential 4-channel multiplexer having two binary control inputs, S_0 and S_1 , and an ENABLE input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

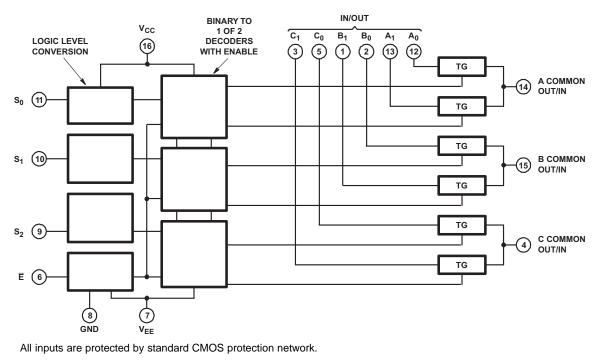
The CDx4HCx4053 devices are a triple 2-channel multiplexer having three separate digital control inputs, S_0 , S_1 , and S_2 and an ENABLE input. Each control input selects one of a pair of channels that are connected in a single-pole, double-throw configuration.

When these devices are used as demultiplexers, the CHANNEL IN/OUT terminals are the outputs and the COMMON OUT/IN terminals are the inputs.

8.2 Functional Block Diagrams


All inputs are protected by standard CMOS protection network.


20



Functional Block Diagrams (continued)

All inputs are protected by standard CMOS protection network.

Figure 19. CDx4HCx4053 Functional Block Diagram

Copyright © 1997-2019, Texas Instruments Incorporated

Submit Documentation Feedback 21

Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD74HCT4051 CD54HC4052 CD74HC4052 CD74HC4052 CD74HCT4053 CD74HCT4053 CD74HCT4053 CD74HCT4053 Downloaded From Oneyac.com

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

8.3 Feature Description

The CDx4HCx405x line of multiplexers and demultiplexers can accept a wide range of analog signal levels from –5 to +5 V. They have low ON resistance, typically 70- Ω for V_{CC} – V_{EE} = 4.5 V and 40- Ω for V_C – V_{EE} = 4.5 V, which allows for very little signal loss through the switch.

Binary address decoding on chip makes channel selection easy. When channels are changed, a break-beforemake system eliminates channel overlap.

8.4 Device Functional Modes

Table 1. CD54HC4051, CD74HC4051, CD54HCT4051, CD74HCT4051 Function Table
--

	INPUT	STATES		ON
ENABLE	S ₂	S ₁	S ₀	CHANNEL
L	L	L	L	A0
L	L	L	Н	A1
L	L	Н	L	A2
L	L	Н	Н	A3
L	Н	L	L	A4
L	Н	L	Н	A5
L	Н	Н	L	A6
L	Н	Н	Н	A7
Н	Х	Х	Х	None

(1) X = Don't care

Table 2. CD54HC4052, CD74HC4052, CD54HCT4052, CD74HCT4052 Function Table⁽¹⁾

	INPUT STATES		ON
ENABLE	S ₁	So	CHANNELS
L	L	L	A0, B0
L	L	Н	A1, B1
L	Н	L	A2, B2
L	Н	Н	A3, B3
Н	Х	Х	None

(1) X = Don't care

Table 3. CD54HC4053, CD74HC4053, CD54HCT4053, CD74HCT4053 Function Table⁽¹⁾

	INPUT S	STATES		ON
ENABLE	S ₂	S ₁	S ₀	CHANNELS
L	L	L	L	C0, B0, A0
L	L	L	Н	C0, B0, A1
L	L	Н	L	C0, B1, A0
L	L	Н	Н	C0, B1, A1
L	Н	L	L	C1, B0, A0
L	Н	L	Н	C1, B0, A1
L	Н	Н	L	C1, B1, A0
L	Н	Н	Н	C1, B1, A1
Н	Х	Х	Х	None

(1) X = Don't care

22 Submit Documentation Feedback

Copyright © 1997–2019, Texas Instruments Incorporated

SCHS122M-NOVEMBER 1997-REVISED MAY 2019

23

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The CDx4HCx405x line of multiplexers and demultiplexers can be used for a wide variety of applications.

9.2 Typical Application

One application of the CD74HC4051 device is used in conjunction with a microcontroller to poll a keypad. Figure 20 shows the basic schematic for such a polling system. The microcontroller uses the channel-select pins to cycle through the different channels while reading the input to see if a user is pressing any of the keys. This is a very robust setup that allows for simultaneous key presses with very little power consumption. It also uses very few pins on the microcontroller. The down side of polling is that the microcontroller must frequently scan the keys for a press.

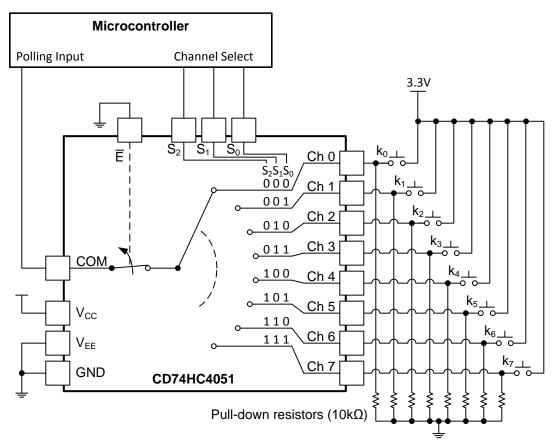


Figure 20. CD74HC4051 Being Used to Help Read Button Presses on a Keypad

9.2.1 Design Requirements

These devices use CMOS technology and have balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions must be considered to prevent ringing.

Copyright © 1997–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: CD54HC4051 CD74HC4051 CD54HCT4051 CD54HCT4051 CD54HC4052 CD74HC4052 CD54HCT4052 CD74HCT4052 CD54HCT4053 CD54HCT4053 CD74HCT4053

Typical Application (continued)

See Table 4 for the input loading details.

Table 4. HCT Input Loading Table

TYPE	INPUT	UNIT LOADS ⁽¹⁾
4051, 4053	All	0.5
4052	All	0.4

(1) Unit load is ΔI_{CC} limit specified in *Specifications*, for example, 360-mA MAX at 25°C.

9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - For switch time specifications, see propagation delay times in *Electrical Characteristics: HC Devices*.
 - Inputs must not be pushed more than 0.5 V above V_{DD} or below V_{EE}.
 - For input voltage level specifications for control inputs, see V_{IH} and V_{IL} in *Electrical Characteristics: HC Devices*.
- 2. Recommended output conditions:
 - Outputs must not be pulled above V_{DD} or below V_{EE}.
- 3. Input and output current consideration:
 - The CDx4HCx405x series of parts do not have internal current-drive circuitry, and thus cannot sink or source current. Any current will be passed through the device.

9.2.3 Application Curve

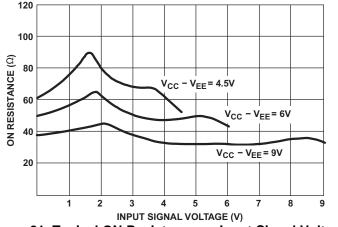


Figure 21. Typical ON Resistance vs Input Signal Voltage

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Electrical Characteristics: HC Devices*.

Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the V_{CC} pins will be tied together internally. For devices with dual-supply pins operating at different voltages, for example V_{CC} and V_{DD}, a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- μ F and a 1- μ F capacitor are commonly used in parallel. For best results, the bypass capacitor or capacitors must be installed as close as possible to the power terminal.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change in width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This change in width upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace, thus resulting in the reflection. Not all PCB traces can be straight, so they will have to turn corners. Figure 22 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

11.2 Layout Example

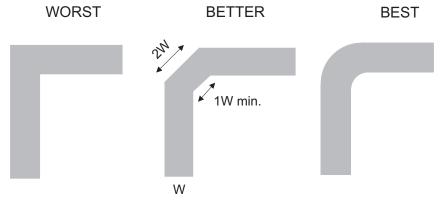


Figure 22. Trace Example

Submit Documentation Feedback 25

SCHS122M - NOVEMBER 1997 - REVISED MAY 2019

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following: Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
CD54HC4051	Click here	Click here	Click here	Click here	Click here
CD74HC4051	Click here	Click here	Click here	Click here	Click here
CD54HCT4051	Click here	Click here	Click here	Click here	Click here
CD74HCT4051	Click here	Click here	Click here	Click here	Click here
CD54HC4052	Click here	Click here	Click here	Click here	Click here
CD74HC4052	Click here	Click here	Click here	Click here	Click here
CD54HCT4052	Click here	Click here	Click here	Click here	Click here
CD74HCT4052	Click here	Click here	Click here	Click here	Click here
CD54HC4053	Click here	Click here	Click here	Click here	Click here
CD74HC4053	Click here	Click here	Click here	Click here	Click here
CD54HCT4053	Click here	Click here	Click here	Click here	Click here
CD74HCT4053	Click here	Click here	Click here	Click here	Click here

Table 5. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

26

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 1997–2019, Texas Instruments Incorporated

Submit Documentation Feedback 27

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Sample
5962-8775401EA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8775401EA CD54HC4053F3A	Samples
5962-8855601EA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8855601EA CD54HC4052F3A	Samples
5962-9065401MEA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9065401ME A CD54HCT4051F3A	Samples
CD54HC4051F	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC4051F	Samples
CD54HC4051F3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC4051F3A	Samples
CD54HC4052F	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC4052F	Samples
CD54HC4052F3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8855601EA CD54HC4052F3A	Samples
CD54HC4053F	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD54HC4053F	Samples
CD54HC4053F3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8775401EA CD54HC4053F3A	Samples
CD54HCT4051F3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9065401ME A CD54HCT4051F3A	Samples
CD74HC4051E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4051E	Samples
CD74HC4051EE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4051E	Samples
CD74HC4051M	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	
CD74HC4051M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HC4051M	Sample
CD74HC4051M96E4	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	
CD74HC4051M96G3	LIFEBUY	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-55 to 125	HC4051M	
CD74HC4051M96G4	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	
CD74HC4051ME4	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	
CD74HC4051MT	LIFEBUY	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	

18-Nov-2023

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HC4051NS	LIFEBUY	SO	NS	16	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		HC4051M	
CD74HC4051NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051NSRE4	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HJ4051	Samples
CD74HC4051PWRG4	LIFEBUY	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4051	
CD74HC4051PWT	LIFEBUY	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4051	
CD74HC4051PWTG4	LIFEBUY	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4051	
CD74HC4052E	LIFEBUY	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4052E	
CD74HC4052M	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	
CD74HC4052M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052M96E4	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	
CD74HC4052M96G4	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	
CD74HC4052MT	LIFEBUY	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	
CD74HC4052NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052PW	LIFEBUY	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	
CD74HC4052PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HJ4052	Samples
CD74HC4052PWRG4	LIFEBUY	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	
CD74HC4052PWT	LIFEBUY	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	
CD74HC4053E	LIFEBUY	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4053E	
CD74HC4053M	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HC4053M	Samples
CD74HC4053M96G3	LIFEBUY	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053M96G4	LIFEBUY	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053ME4	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053MG4	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053MT	LIFEBUY	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053NSR	LIFEBUY	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	
CD74HC4053PW	LIFEBUY	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	

PACKAGE OPTION ADDENDUM

18-Nov-2023

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HC4053PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HJ4053	Samples
CD74HC4053PWRG4	LIFEBUY	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	
CD74HC4053PWT	LIFEBUY	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	
CD74HCT4051E	LIFEBUY	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4051E	
CD74HCT4051M	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	
CD74HCT4051M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051M96E4	ACTIVE	SOIC	D	16	2500	RoHS & Green	reen NIPDAU Level-1-260C-UNLIM -55 to 125 HCT4051M		0C-UNLIM -55 to 125 HCT4051M		Samples
CD74HCT4051M96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051ME4	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	
CD74HCT4051MG4	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	
CD74HCT4051MT	LIFEBUY	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	
CD74HCT4052E	LIFEBUY	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4052E	
CD74HCT4052M	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	
CD74HCT4052M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052M96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052MT	LIFEBUY	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	
CD74HCT4053E	LIFEBUY	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4053E	
CD74HCT4053M	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	
CD74HCT4053M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053M96E4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053M96G4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053ME4	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	
CD74HCT4053MT	LIFEBUY	SOIC	D	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	
CD74HCT4053PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HK4053	Samples
CD74HCT4053PWRE4	LIFEBUY	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HK4053	
CD74HCT4053PWRG4	LIFEBUY	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HK4053	

18-Nov-2023

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CD74HCT4053PWT	LIFEBUY	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HK4053	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

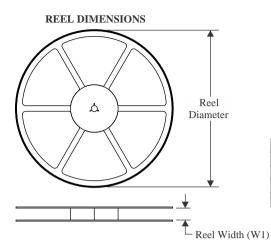
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

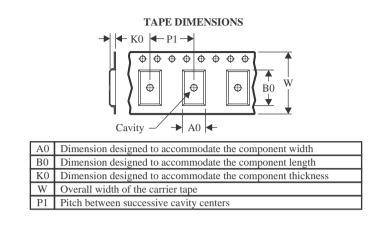
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC4051, CD54HC4052, CD54HC4053, CD54HC4051, CD74HC4051, CD74HC4052, CD74HC4053, CD74HC4051 :

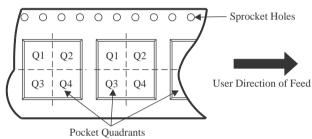
• Catalog : CD74HC4051, CD74HC4052, CD74HC4053, CD74HCT4051

- Automotive : CD74HC4051-Q1, CD74HCT4051-Q1, CD74HC4051-Q1, CD74HCT4051-Q1
- Enhanced Product : CD74HC4051-EP, CD74HC4051-EP
- Military : CD54HC4051, CD54HC4052, CD54HC4053, CD54HCT4051


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

Texas


STRUMENTS

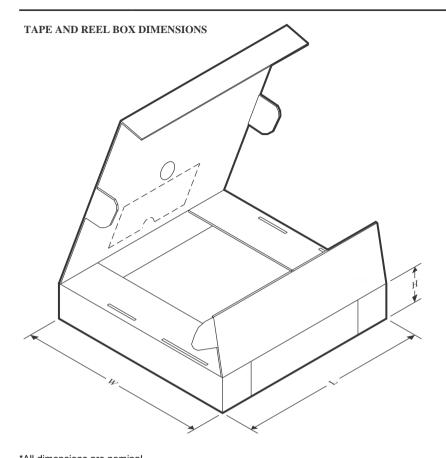
TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing		SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				(mm)	W1 (mm)	· · /	()	()	()	(,	
CD74HC4051M96	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051M96G3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051M96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4051PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4051PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4051PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4052M96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4052NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4052PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4053M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com


15-Dec-2023

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4053M96G3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4053M96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4053NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4053PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4053PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4053PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4051M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT4052M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT4053M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT4053PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4053PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4053PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

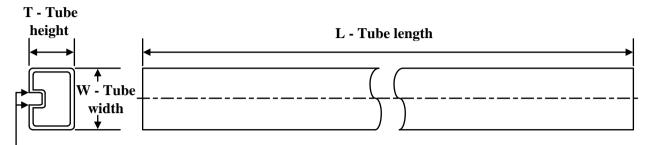
15-Dec-2023

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4051M96	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4051M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4051M96G3	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4051M96G4	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4051NSR	SO	NS	16	2000	367.0	367.0	38.0
CD74HC4051PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4051PWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4051PWT	TSSOP	PW	16	250	356.0	356.0	35.0
CD74HC4052M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4052M96G4	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4052NSR	SO	NS	16	2000	356.0	356.0	35.0
CD74HC4052PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4052PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD74HC4052PWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4052PWT	TSSOP	PW	16	250	356.0	356.0	35.0
CD74HC4053M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4053M96G3	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4053M96G4	SOIC	D	16	2500	340.5	336.1	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com

15-Dec-2023


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4053NSR	SO	NS	16	2000	356.0	356.0	35.0
CD74HC4053PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4053PWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4053PWT	TSSOP	PW	16	250	356.0	356.0	35.0
CD74HCT4051M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HCT4052M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HCT4053M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HCT4053PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HCT4053PWRG4	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HCT4053PWT	TSSOP	PW	16	250	356.0	356.0	35.0

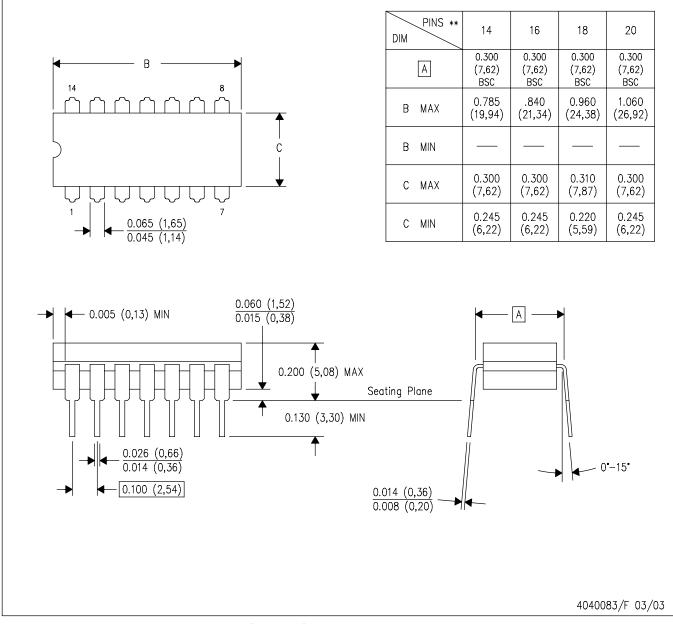
TEXAS INSTRUMENTS

www.ti.com

15-Dec-2023

TUBE

- B - Alignment groove width

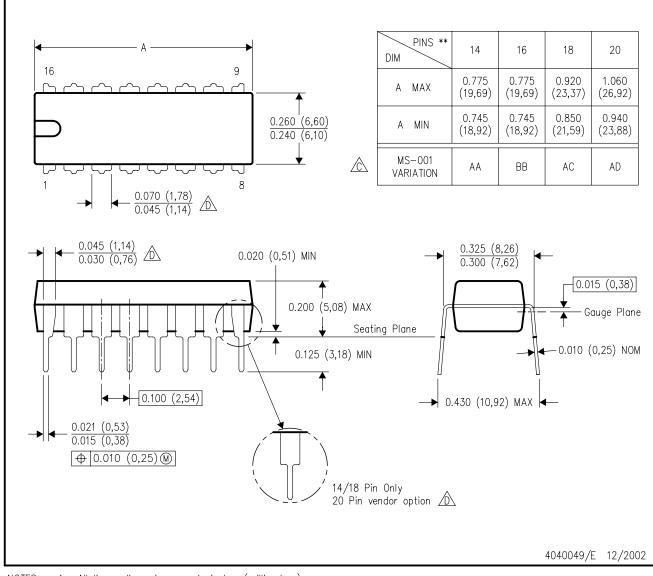

*All dimensions are nomina	al
----------------------------	----

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74HC4051E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4051E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4051EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4051EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4051M	D	SOIC	16	40	507	8	3940	4.32
CD74HC4051ME4	D	SOIC	16	40	507	8	3940	4.32
CD74HC4051NS	NS	SOP	16	50	530	10.5	4000	4.1
CD74HC4052E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4052E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4052M	D	SOIC	16	40	507	8	3940	4.32
CD74HC4052PW	PW	TSSOP	16	90	530	10.2	3600	3.5
CD74HC4053E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4053E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4053M	D	SOIC	16	40	507	8	3940	4.32
CD74HC4053ME4	D	SOIC	16	40	507	8	3940	4.32
CD74HC4053MG4	D	SOIC	16	40	507	8	3940	4.32
CD74HC4053PW	PW	TSSOP	16	90	530	10.2	3600	3.5
CD74HCT4051E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4051E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4051M	D	SOIC	16	40	507	8	3940	4.32
CD74HCT4051ME4	D	SOIC	16	40	507	8	3940	4.32
CD74HCT4051MG4	D	SOIC	16	40	507	8	3940	4.32
CD74HCT4052E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4052E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4052M	D	SOIC	16	40	507	8	3940	4.32
CD74HCT4053E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4053E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4053M	D	SOIC	16	40	507	8	3940	4.32
CD74HCT4053ME4	D	SOIC	16	40	507	8	3940	4.32

Pack Materials-Page 5

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

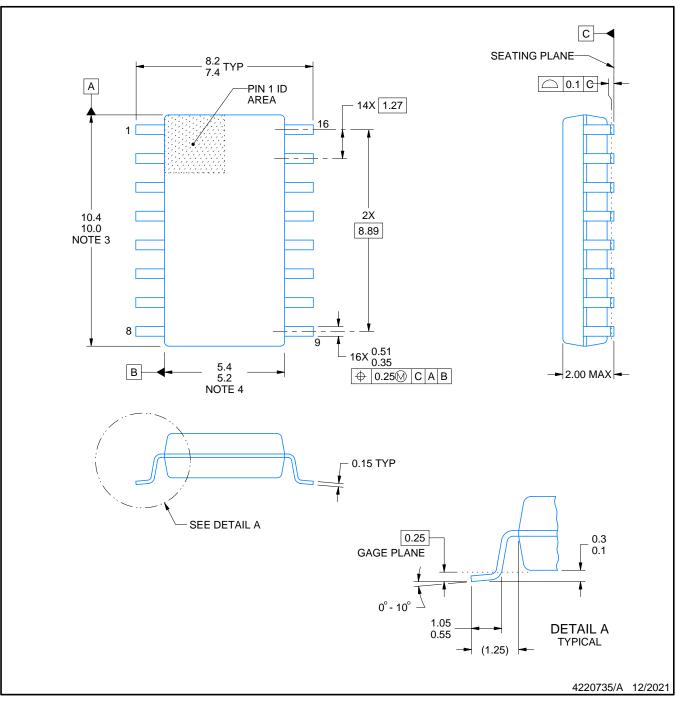
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


NS0016A

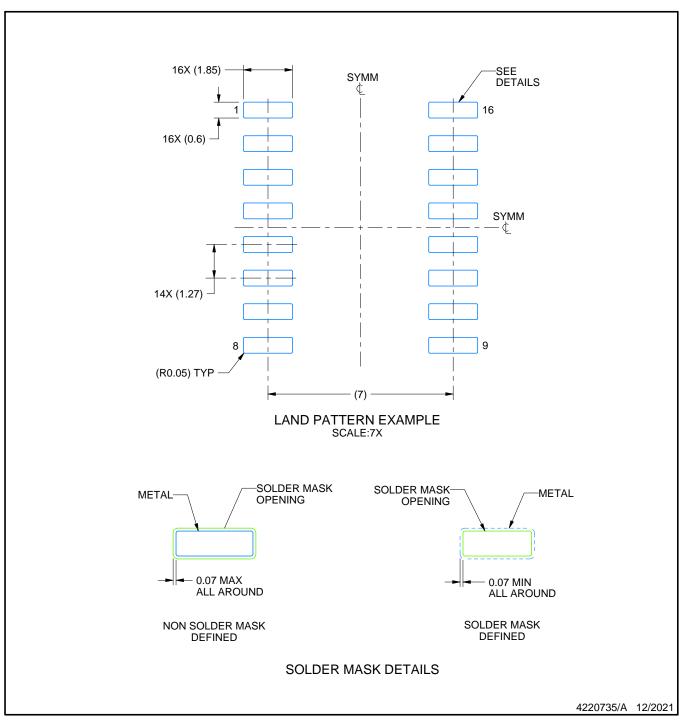
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

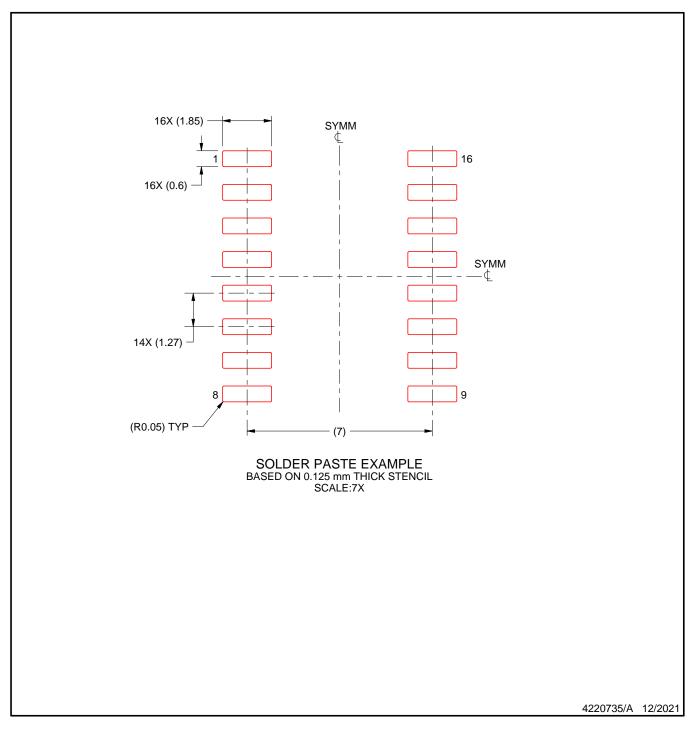
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



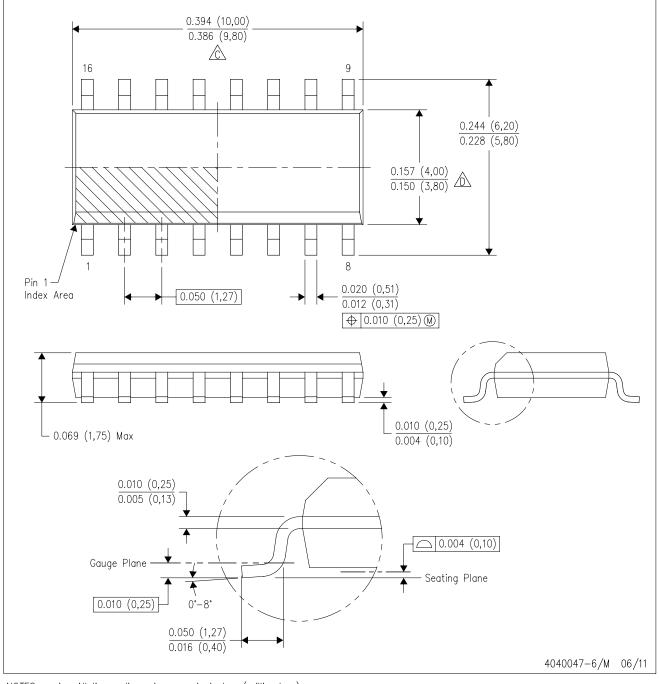
NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)


7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

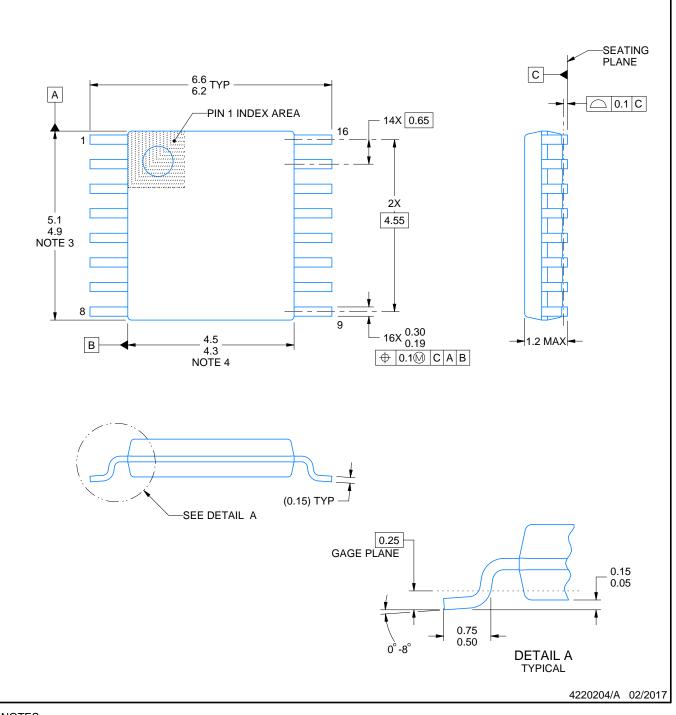
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) -16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

4211283-4/E 08/12

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

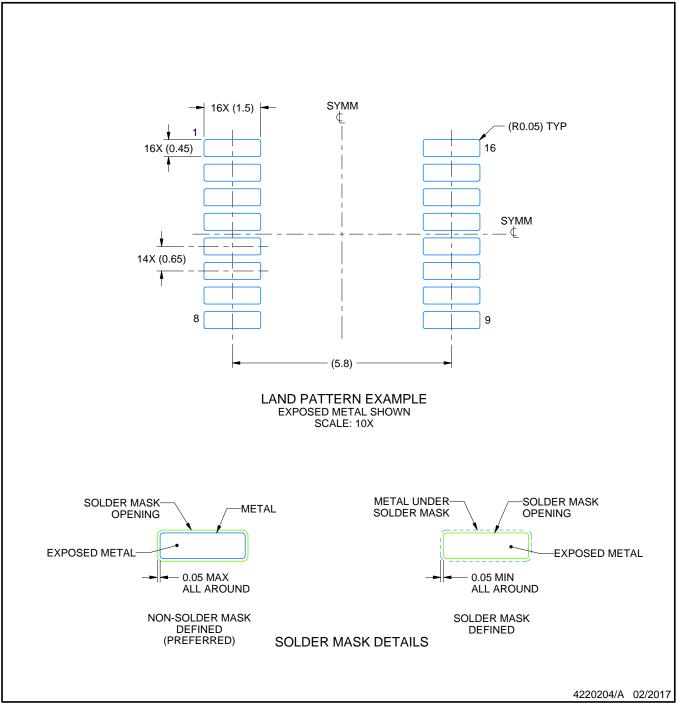

PW0016A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

PW0016A

EXAMPLE BOARD LAYOUT

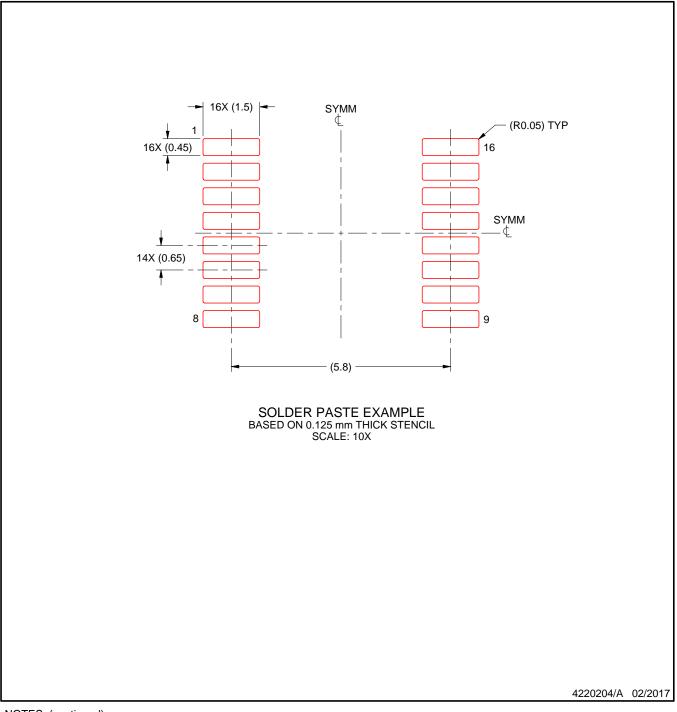
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 7,40 5,00 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° 0,15 0,05 Seating Plane - 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated 单击下面可查看定价,库存,交付和生命周期等信息

>>TI(德州仪器)