

TMS320F2807x Microcontrollers

1 Features

- TMS320C28x 32-bit CPU
 - 120 MHz
 - IEEE 754 single-precision Floating-Point Unit (FPU)
 - Trigonometric Math Unit (TMU)
- Programmable Control Law Accelerator (CLA)
 - 120 MHz
 - IEEE 754 single-precision floating-point instructions
 - Executes code independently of main CPU
- On-chip memory
 - 512KB (256KW) of flash (ECC-protected)
 - 100KB (50KW) of RAM (ECC-protected or parity-protected)
 - Dual-zone security supporting third-party development
 - Unique identification number
- Clock and system control
 - Two internal zero-pin 10-MHz oscillators
 - On-chip crystal oscillator
 - Windowed watchdog timer module
 - Missing clock detection circuitry
- 3.3-V I/O with available internal voltage regulator for 1.2-V core supply
- System peripherals
 - External Memory Interface (EMIF) with ASRAM and SDRAM support
 - 6-channel Direct Memory Access (DMA) controller
 - Up to 97 individually programmable, multiplexed General-Purpose Input/Output (GPIO) pins with input filtering
 - Expanded Peripheral Interrupt controller (ePIE)
 - Multiple Low-Power Mode (LPM) support with external wakeup
 - Communications peripherals
 - USB 2.0 (MAC + PHY)
 - Two Controller Area Network (CAN) modules (pin-bootable)
 - Three high-speed (up to 30-MHz) SPI ports (pin-bootable)
 - Two Multichannel Buffered Serial Ports (McBSPs)
 - Four Serial Communications Interfaces (SCI/ UART) (pin-bootable)

- Two I2C interfaces (pin-bootable)
- Analog subsystem
 - Up to three Analog-to-Digital Converters (ADCs)
 - 12-bit mode
 - 3.1 MSPS each (up to 9.3-MSPS system throughput)
 - Single-ended inputs
 - Up to 17 external channels
 - Single Sample-and-Hold (S/H) on each ADC
 - Hardware-integrated post-processing of ADC conversions
 - Saturating offset calibration
 - Error from setpoint calculation
 - High, low, and zero-crossing compare, with interrupt capability
 - Trigger-to-sample delay capture
 - Eight windowed comparators with 12-bit Digitalto-Analog Converter (DAC) references
 - Three 12-bit buffered DAC outputs
- Enhanced control peripherals
 - 24 PWM channels with enhanced features
 - 16 High-Resolution Pulse Width Modulator (HRPWM) channels
 - High resolution on both A and B channels of 8 PWM modules
 - Dead-band support (on both standard and high resolution)
 - Six Enhanced Capture (eCAP) modules
 - Three Enhanced Quadrature Encoder Pulse (eQEP) modules
 - Up to eight Sigma-Delta Filter Module (SDFM) input channels, 2 parallel filters per channel
 - Standard SDFM data filtering
 - Comparator filter for fast action for out of range
- Configurable Logic Block (CLB)
 - Augments existing peripheral capability
 - Supports position manager solutions
- Functional Safety-Compliant
 - Developed for functional safety applications
 - Documentation available to aid ISO 26262 system design up to ASIL D; IEC 61508 up to SIL 3; IEC 60730 up to Class C; and UL 1998 up to Class 2
 - Hardware integrity up to ASIL B, SIL 2
- Safety-related certification

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

- ISO 26262 certified up to ASIL B and IEC 61508 certified up to SIL 2 by TUV SUD
- Package options:
 - 176-pin PowerPAD[™] Thermally Enhanced Low-Profile Quad Flatpack (HLQFP) [PTP suffix]
 - 100-pin PowerPAD Thermally Enhanced Thin Quad Flatpack (HTQFP) [PZP suffix]
- Temperature options:
 - T: -40°C to 105°C junction
 - S: -40°C to 125°C junction
 - Q: -40°C to 125°C free-air (AEC Q100 qualification for automotive applications)

2 Applications

- Medium/short range radar
- Traction inverter motor control
- HVAC large commercial motor control
- Automated sorting equipment
- CNC control
- AC charging (pile) station
- DC charging (pile) station

3 Description

- EV charging station power module
- Energy storage power conversion system (PCS)
- Central inverter
- Solar power optimizer
- String inverter
- Inverter & motor control
- On-board (OBC) & wireless charger
- AC drive control module
- AC drive power stage module
- Linear motor power stage
- Servo drive control module
- AC-input BLDC motor drive
- DC-input BLDC motor drive
- Industrial AC-DC
- Three phase UPS

C2000[™] 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop performance in real-time control applications such as industrial motor drives; solar inverters and digital power; electrical vehicles and transportation; motor control; and sensing and signal processing. The C2000 line includes the Premium performance MCUs and the Entry performance MCUs.

The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such as industrial motor drives; solar inverters and digital power; electrical vehicles and transportation; and sensing and signal processing. To accelerate application development, the DigitalPower software development kit (SDK) for C2000 MCUs and the MotorControl software development kit (SDK) for C2000[™] MCUs are available.

The F2807x is a 32-bit floating-point microcontroller based on TI's industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations.

The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics.

The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x.

The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units.

Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application.

To learn more about the C2000 MCUs, visit the C2000 Overview at www.ti.com/c2000.

Device Information									
PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE							
TMS320F28076PTP	HLQFP (176)	24.0 mm × 24.0 mm							
TMS320F28075PTP	HLQFP (176)	24.0 mm × 24.0 mm							
TMS320F28076PZP	HTQFP (100)	14.0 mm × 14.0 mm							
TMS320F28075PZP	HTQFP (100)	14.0 mm × 14.0 mm							

(1) For more information, see Mechanical, Packaging, and Orderable Information.

Functional Block Diagram

Figure 4-1 shows the CPU system and associated peripherals.

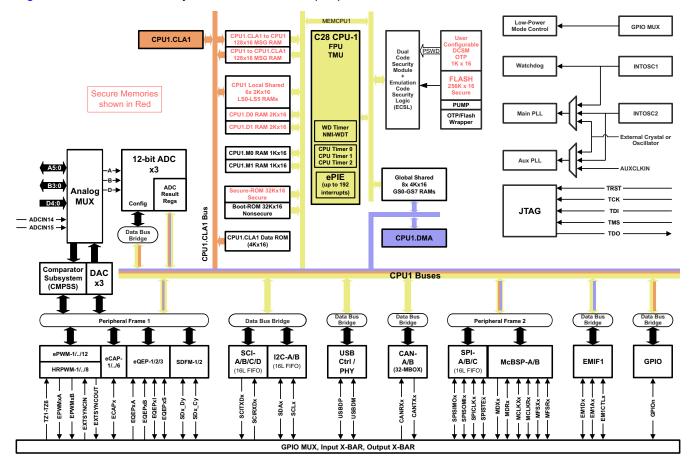


Figure 4-1. Functional Block Diagram

Table of Contents

1	Features1
2	Applications2
	Description2
	Revision History4
5	Device Comparison5
	5.1 Related Products
6	Terminal Configuration and Functions7
	6.1 Pin Diagrams7
	6.2 Signal Descriptions10
	6.3 Pins With Internal Pullup and Pulldown25
	6.4 Pin Multiplexing26
	6.5 Connections for Unused Pins 32
7	Specifications
	7.1 Absolute Maximum Ratings
	7.2 ESD Ratings – Commercial
	7.3 ESD Ratings – Automotive
	7.4 Recommended Operating Conditions35
	7.5 Power Consumption Summary
	7.6 Electrical Characteristics41
	7.7 Thermal Resistance Characteristics42
	7.8 Thermal Design Considerations43
	7.9 System
	7.10 Analog Peripherals
	7.11 Control Peripherals
	7.12 Communications Peripherals
8	Detailed Description
	8.1 Overview
	8.2 Functional Block Diagram
	8.3 Memory153

8.4 Identification	
8.5 Bus Architecture – Peripheral Connectivity	161
8.6 C28x Processor	. 161
8.7 Control Law Accelerator	163
8.8 Direct Memory Access	. 164
8.9 Boot ROM and Peripheral Booting	166
8.10 Dual Code Security Module	. 169
8.11 Timers	. 170
8.12 Nonmaskable Interrupt With Watchdog Timer	
(NMIWD)	
8.13 Watchdog	
8.14 Configurable Logic Block (CLB)	
8.15 Functional Safety	
9 Applications, Implementation, and Layout	
9.1 TI Reference Design	
10 Device and Documentation Support	177
10.1 Device and Development Support Tool	
Nomenclature	
10.2 Markings	
10.3 Tools and Software	
10.4 Documentation Support	
10.5 Support Resources	
10.6 Trademarks	
10.7 Electrostatic Discharge Caution	
10.8 Glossary	182
11 Mechanical, Packaging, and Orderable	
Information	
11.1 Packaging Information	. 183

4 Revision History

Changes from June 25, 2020 to January 15, 2021 (from Revision I (June 2020) to Revision J (January 2021))

•	Device Comparison: Updated part numbers	5
•	ESD Ratings – Commercial: Updated part numbers	34
•	ESD Ratings – Automotive: Updated part numbers	34

Page

5 Device Comparison

Table 5-1 lists the features of each 2807x device.

	Table 5-1. Device C	omparison						
	FEATURE ⁽¹⁾)76 6-Q1	28075 28075-Q1				
Package Type (PTP is a	n HLQFP package. PZP is an HTQFP package.)	176-Pin PTP	100-Pin PZP	176-Pin PTP	100-Pin PZP			
	Processor and Acc	elerators		1	•			
	Number			1				
C287	Frequency (MHz)		12	20				
C28x	Floating-Point Unit (FPU)		Ye	es				
	ТМU – Туре 0		Ye	es				
	Number			1				
CLA – Type 1	Frequency (MHz)		12	20				
6-Channel Direct Memor	y Access (DMA) – Type 0			1				
	Memory							
Flash (16-bit words)			512KB ((256KW)				
	Dedicated and Local Shared RAM		36KB ((18KW)				
RAM (16-bit words)	Global Shared RAM		64KB ((32KW)				
	Total RAM		100KB (50KW)					
Code security for on-chip	o flash, RAM, and OTP blocks		Yes					
Boot ROM			Yes					
	System	1						
Configurable Logic Block	(CLB)	4 ti	4 tiles No					
32-bit CPU timers			3					
Watchdog timers			1					
Nonmaskable Interrupt V	Vatchdog (NMIWD) timers			1				
Crystal oscillator/Externa	I clock input			1				
0-pin internal oscillator			2					
I/O pins	GPIO	97	41	97	41			
External interrupts			Ę	5				
EMIF	EMIF1 (16-bit or 32-bit)	1	_	1	-			
	Analog Periph	erals		1	•			
	MSPS		3	.1				
ADC 12-bit mode	Conversion Time (ns) ⁽²⁾		325					
Input pins		17	14	17	14			
Number of 12-bit ADCs		3	2	3	2			
Temperature sensor				1	•			
CMPSS (each CMPSS h	as two comparators and two internal DACs)	8	4	8	4			
Buffered DAC				3	•			

Table 5-1. Device Comparison

	Table 5-1. Device Comparis	son (contini	led)				
	FEATURE ⁽¹⁾		076 ′6-Q1	28075 28075-Q1			
Package Type (PTP is an H	LQFP package. PZP is an HTQFP package.)	176-Pin PTP	100-Pin PZP	176-Pin PTP	100-Pin PZP		
	Control Periphera	ls ⁽³⁾	1				
eCAP inputs – Type 0			6	3			
ePWM channels – Type 4		24	15	24	15		
eQEP modules – Type 0		3	2	3	2		
High-resolution ePWM chan	nels – Type 4	16	9	16	9		
Sigma-Delta Filter Module (S	SDFM) channels	8	6	8	6		
	Communication Perip	herals ⁽³⁾	I		1		
Controller Area Network (CA	N) – Type 0 ⁽⁴⁾	2					
Inter-Integrated Circuit (I2C)	– Туре 0	2					
Multichannel Buffered Serial	Port (McBSP) – Type 1	2					
SCI – Type 0		4	3	4	3		
Serial Peripheral Interface (S	SPI) – Type 2			3			
Universal Serial Bus (USB) -	- Туре 0			1			
	Temperature and Qual	ification					
	T: -40°C to 105°C	No Yes					
Junction Temperature (T _J)	S: -40°C to 125°C	Yes					
	Q: -40°C to 150°C ⁽⁵⁾	N	lo	Yes			
Free-Air Temperature (T _A)	Q: -40°C to 125°C ⁽⁵⁾	No Yes			es		

Devies

Table F 4

(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time Control Peripherals Reference Guide.

- (2) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.
- (3) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to the largest package offered within a part number. See Section 6 to identify which peripheral instances are accessible on pins in the smaller package.
- (4) The CAN module uses the IP known as *D_CAN*. This document uses the names *CAN* and *D_CAN* interchangeably to reference this peripheral.
- (5) The letter Q refers to AEC Q100 qualification for automotive applications.

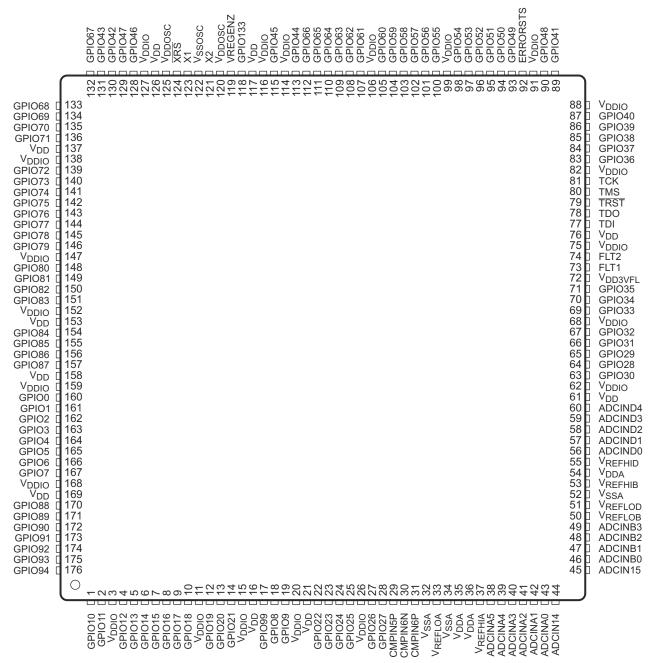
5.1 Related Products

For information about similar products, see the following links:

TMS320F2807x Microcontrollers

The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.

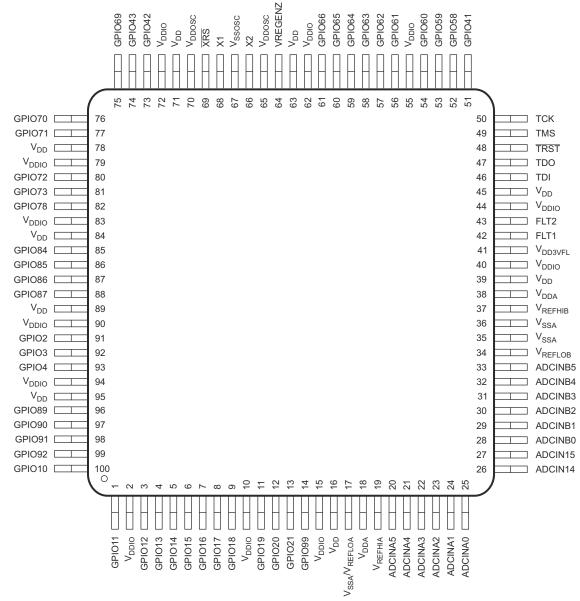
TMS320F28004x Microcontrollers


The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. The F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and configurable logic block (CLB) versions are available.

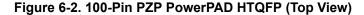
6 Terminal Configuration and Functions


6.1 Pin Diagrams

Figure 6-1 shows the pin assignments on the 176-pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack. Figure 6-2 shows the pin assignments on the 100-pin PZP PowerPAD Thermally Enhanced Thin Quad Flatpack.



A. Only the GPIO function is shown on GPIO pins. See Section 6.2.1 for the complete, muxed signal name.


Figure 6-1. 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View)

www.ti.com

A. Only the GPIO function is shown on GPIO pins. See Section 6.2.1 for the complete, muxed signal name.

Note

The exposed lead frame die pad of the PowerPAD[™] package serves two functions: to remove heat from the die and to provide ground path for the digital ground (analog ground is provided through dedicated pins). Thus, the PowerPAD should be soldered to the ground (GND) plane of the PCB because this will provide both the digital ground path and good thermal conduction path. To make optimum use of the thermal efficiencies designed into the PowerPAD package, the PCB must be designed with this technology in mind. A thermal land is required on the surface of the PCB directly underneath the body of the PowerPAD. The thermal land should be soldered to the exposed lead frame die pad of the PowerPAD package; the thermal land should be as large as needed to dissipate the required heat. An array of thermal vias should be used to connect the thermal pad to the internal GND plane of the board. See PowerPAD[™] Thermally Enhanced Package for more details on using the PowerPAD package.

Note

PCB footprints and schematic symbols are available for download in a vendor-neutral format, which can be exported to the leading EDA CAD/CAE design tools. See the CAD/CAE Symbols section in the product folder for each device, under the Packaging section. These footprints and symbols can also be searched for at http://webench.ti.com/cad/.

9

6.2 Signal Descriptions

Section 6.2.1 describes the signals. The GPIO function is the default at reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions. Some peripheral functions may not be available in all devices. See Table 5-1 for details. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups are not enabled at reset.

6.2.1 Signal Descriptions

TERMINAL						
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
		ADC,	DAC, AN	D COMPARA	ATOR SIGNALS	
Vrefhia		37	19	I	ADC-A high reference. This voltage must be driven into the pin from external circuitry. Place at least a 1- μ F capacitor on this pin. This capacitor should be placed as close to the device as possible between the V _{REFHIA} and V _{REFLOA} pins. NOTE: Do not load this pin externally.	
V _{REFHIB}		53	37	I	ADC-B high reference. This voltage must be driven into the pin from external circuitry. Place at least a 1- μ F capacitor on this pin. This capacitor should be placed as close to the device as possible between the V _{REFHIB} and V _{REFLOB} pins. NOTE: Do not load this pin externally.	
Vrefhid		55	_	I	ADC-D high reference. This voltage must be driven into the pin from external circuitry. Place at least a 1- μ F capacitor on this pin. This capacitor should be placed as close to the device as possible between the V _{REFHID} and V _{REFLOD} pins. NOTE: Do not load this pin externally.	
V _{REFLOA}		33	17	I	ADC-A low reference. On the PZP package, pin 17 is double-bonded to $V_{\rm SSA}$ and $V_{\rm REFLOA}.$ On the PZP package, pin 17 must be connected to $V_{\rm SSA}$ on the system board.	
V _{REFLOB}		50	34	I	ADC-B low reference	
V _{REFLOD}		51	-	I	ADC-D low reference	
ADCIN14		44	26	I	Input 14 to all ADCs. This pin can be used as a general- purpose ADCIN pin or it can be used to calibrate all ADCs together from an external reference.	
CMPIN4P				I	Comparator 4 positive input	
ADCIN15		45	27	I	Input 15 to all ADCs. This pin can be used as a general- purpose ADCIN pin or it can be used to calibrate all ADCs together from an external reference.	
CMPIN4N				I	Comparator 4 negative input	
ADCINA0		43	25	I	ADC-A input 0. There is a 50-k Ω internal pulldown on this pin in both an ADC input or DAC output mode which cannot be disabled.	
DACOUTA				0	DAC-A output	
ADCINA1		42	24	I	ADC-A input 1. There is a 50-k Ω internal pulldown on this pin in both an ADC input or DAC output mode which cannot be disabled.	
DACOUTB				0	DAC-B output	
ADCINA2		41	22	I	ADC-A input 2	
CMPIN1P		41	23		Comparator 1 positive input	
ADCINA3		40	22	I	ADC-A input 3	
CMPIN1N		40	~~~	I	Comparator 1 negative input	
ADCINA4		39	21	I	ADC-A input 4	
CMPIN2P		55	~ ~ 1	I	Comparator 2 positive input	

TERMINAL						
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
ADCINA5		20	20	I	ADC-A input 5	
CMPIN2N		38	20	I	Comparator 2 negative input	
ADCINB0				I	ADC-B input 0. There is a 100-pF capacitor to V _{SSA} on this pin in both ADC input or DAC reference mode which cannot be disabled. If this pin is being used as a reference for the on- chip DACs, place at least a $1-\mu$ F capacitor on this pin.	
VDAC		46	28	I	Optional external reference voltage for on-chip DACs. There is a 100-pF capacitor to V_{SSA} on this pin in both ADC input or DAC reference mode which cannot be disabled. If this pin is being used as a reference for the on-chip DACs, place at least a 1-µF capacitor on this pin.	
ADCINB1		47	29	I	ADC-B input 1. There is a 50-k Ω internal pulldown on this pin in both an ADC input or DAC output mode which cannot be disabled.	
DACOUTC				0	DAC-C output	
ADCINB2		48	30	I	ADC-B input 2	
CMPIN3P		40	30	I	Comparator 3 positive input	
ADCINB3		49	31	I	ADC-B input 3	
CMPIN3N		49	51	I	Comparator 3 negative input	
ADCINB4		-	32	I	ADC-B input 4	
ADCINB5		-	33	I	ADC-B input 5	
CMPIN6P		31	_	I	Comparator 6 positive input	
CMPIN6N		30	_	I	Comparator 6 negative input	
CMPIN5P		29	_	I	Comparator 5 positive input	
ADCIND0		56		I	ADC-D input 0	
CMPIN7P		50	_	1	Comparator 7 positive input	
ADCIND1		57		I	ADC-D input 1	
CMPIN7N		57	_	1	Comparator 7 negative input	
ADCIND2		58		I	ADC-D input 2	
CMPIN8P		50	_	I	Comparator 8 positive input	
ADCIND3		59		I	ADC-D input 3	
CMPIN8N		- 59	_	I	Comparator 8 negative input	
ADCIND4		60	-	I	ADC-D input 4	
		G	PIO AND	PERIPHERA	AL SIGNALS	
GPIO0	0, 4, 8, 12			I/O	General-purpose input/output 0	
EPWM1A	1	160	-	0	Enhanced PWM1 output A (HRPWM-capable)	
SDAA	6			I/OD	I2C-A data open-drain bidirectional port	
GPIO1	0, 4, 8, 12			I/O	General-purpose input/output 1	
EPWM1B	1	161 –	0	Enhanced PWM1 output B (HRPWM-capable)		
MFSRB	3		I/O	McBSP-B receive frame synch		
SCLA	6			I/OD	I2C-A clock open-drain bidirectional port	
GPIO2	0, 4, 8, 12			I/O	General-purpose input/output 2	
EPWM2A	1	162	91	0	Enhanced PWM2 output A (HRPWM-capable)	
OUTPUTXBAR1	5	102	31	0	Output 1 of the output XBAR	
SDAB	6			I/OD	I2C-B data open-drain bidirectional port	

TE	RMINAL																				
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION																
GPIO3	0, 4, 8, 12			I/O	General-purpose input/output 3																
EPWM2B	1			0	Enhanced PWM2 output B (HRPWM-capable)																
OUTPUTXBAR2	2	163	92	0	Output 2 of the output XBAR																
MCLKRB	3	163	92	I/O	McBSP-B receive clock																
OUTPUTXBAR2	5			0	Output 2 of the output XBAR																
SCLB	6			I/OD	I2C-B clock open-drain bidirectional port																
GPIO4	0, 4, 8, 12			I/O	General-purpose input/output 4																
EPWM3A	1	101		0	Enhanced PWM3 output A (HRPWM-capable)																
OUTPUTXBAR3	5	164	93	0	Output 3 of the output XBAR																
CANTXA	6			0	CAN-A transmit																
GPIO5	0, 4, 8, 12			I/O	General-purpose input/output 5																
EPWM3B	1			0	Enhanced PWM3 output B (HRPWM-capable)																
MFSRA	2	165	_	I/O	McBSP-A receive frame synch																
OUTPUTXBAR3	3			0	Output 3 of the output XBAR																
CANRXA	6				CAN-A receive																
GPIO6	0, 4, 8, 12			I/O	General-purpose input/output 6																
EPWM4A	1			0	Enhanced PWM4 output A (HRPWM-capable)																
OUTPUTXBAR4	2			0	Output 4 of the output XBAR																
EXTSYNCOUT	3	166	-	0	External ePWM synch pulse output																
EQEP3A	5			1	Enhanced QEP3 input A																
CANTXB	6			0	CAN-B transmit																
GPI07	-			1/0																	
	0, 4, 8, 12			0	General-purpose input/output 7																
EPWM4B				-	Enhanced PWM4 output B (HRPWM-capable)																
MCLKRA	2	167	_	1/0	McBSP-A receive clock																
OUTPUTXBAR5	3			0	Output 5 of the output XBAR																
EQEP3B	5				Enhanced QEP3 input B																
CANRXB	6			I	CAN-B receive																
GPIO8	0, 4, 8, 12			I/O	General-purpose input/output 8																
EPWM5A	1			0	Enhanced PWM5 output A (HRPWM-capable)																
CANTXB	2	18	_	0	CAN-B transmit																
ADCSOCAO	3									Í										0	ADC start-of-conversion A output for external ADC
EQEP3S	5			I/O	Enhanced QEP3 strobe																
SCITXDA	6			0	SCI-A transmit data																
GPIO9	0, 4, 8, 12			I/O	General-purpose input/output 9																
EPWM5B	1			0	Enhanced PWM5 output B (HRPWM-capable)																
SCITXDB	2	19		0	SCI-B transmit data																
OUTPUTXBAR6	3	19		0	Output 6 of the output XBAR																
EQEP3I	5			I/O	Enhanced QEP3 index																
SCIRXDA	6			I	SCI-A receive data																
GPIO10	0, 4, 8, 12			I/O	General-purpose input/output 10																
EPWM6A	1			0	Enhanced PWM6 output A (HRPWM-capable)																
CANRXB	2			1	CAN-B receive																
ADCSOCBO	3	1	100	0	ADC start-of-conversion B output for external ADC																
EQEP1A	5			I	Enhanced QEP1 input A																
SCITXDB	6			0	SCI-B transmit data																

Copyright © 2021 Texas Instruments Incorporated

-	TERMINAL					
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
GPIO11	0, 4, 8, 12			I/O	General-purpose input/output 11	
EPWM6B	1			0	Enhanced PWM6 output B (HRPWM-capable)	
SCIRXDB	2, 6	2	1	I	SCI-B receive data	
OUTPUTXBAR7	3			0	Output 7 of the output XBAR	
EQEP1B	5			I	Enhanced QEP1 input B	
GPIO12	0, 4, 8, 12			I/O	General-purpose input/output 12	
EPWM7A	1			0	Enhanced PWM7 output A (HRPWM-capable)	
CANTXB	2	4	2	0	CAN-B transmit	
MDXB	3	4	3	0	McBSP-B transmit serial data	
EQEP1S	5			I/O	Enhanced QEP1 strobe	
SCITXDC	6			0	SCI-C transmit data	
GPIO13	0, 4, 8, 12			I/O	General-purpose input/output 13	
EPWM7B	1			0	Enhanced PWM7 output B (HRPWM-capable)	
CANRXB	2	_		I	CAN-B receive	
MDRB	3	5	4	I	McBSP-B receive serial data	
EQEP1I	5			I/O	Enhanced QEP1 index	
SCIRXDC	6			I	SCI-C receive data	
GPIO14	0, 4, 8, 12			I/O	General-purpose input/output 14	
EPWM8A	1			0	Enhanced PWM8 output A (HRPWM-capable)	
SCITXDB	2	6	5	0	SCI-B transmit data	
MCLKXB	3			I/O	McBSP-B transmit clock	
OUTPUTXBAR3	6			0	Output 3 of the output XBAR	
GPIO15	0, 4, 8, 12			I/O	General-purpose input/output 15	
EPWM8B	1			0	Enhanced PWM8 output B (HRPWM-capable)	
SCIRXDB	2	7	6		SCI-B receive data	
MFSXB	3		-	I/O	McBSP-B transmit frame synch	
OUTPUTXBAR4	6			0	Output 4 of the output XBAR	
GPIO16	0, 4, 8, 12			I/O	General-purpose input/output 16	
SPISIMOA	1			I/O	SPI-A slave in, master out	
CANTXB	2			0	CAN-B transmit	
OUTPUTXBAR7	3	8	7	0	Output 7 of the output XBAR	
EPWM9A	5			0	Enhanced PWM9 output A	
SD1_D1	7				Sigma-Delta 1 channel 1 data input	
GPIO17	0, 4, 8, 12			I/O	General-purpose input/output 17	
SPISOMIA	1			1/O	SPI-A slave out, master in	
CANRXB	2			1	CAN-B receive	
OUTPUTXBAR8	3	9	8	0	Output 8 of the output XBAR	
EPWM9B	5			0	Enhanced PWM9 output B	
SD1_C1	7			1	Sigma-Delta 1 channel 1 clock input	
GPIO18	0, 4, 8, 12			I/O	General-purpose input/output 18	
SPICLKA	1			1/O	SPI-A clock	
SCITXDB	2			0	SCI-B transmit data	
CANRXA	3	10	9		CAN-A receive	
EPWM10A	5			0	Enhanced PWM10 output A	
SD1_D2	7				Sigma-Delta 1 channel 2 data input	

TERMINAL					
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION
GPIO19	0, 4, 8, 12			I/O	General-purpose input/output 19
SPISTEA	1			I/O	SPI-A slave transmit enable
SCIRXDB	2	12	11	I	SCI-B receive data
CANTXA	3	12		0	CAN-A transmit
EPWM10B	5			0	Enhanced PWM10 output B
SD1_C2	7			I	Sigma-Delta 1 channel 2 clock input
GPIO20	0, 4, 8, 12			I/O	General-purpose input/output 20
EQEP1A	1			I	Enhanced QEP1 input A
MDXA	2	10	10	0	McBSP-A transmit serial data
CANTXB	3	13	12	0	CAN-B transmit
EPWM11A	5			0	Enhanced PWM11 output A
SD1_D3	7			I	Sigma-Delta 1 channel 3 data input
GPIO21	0, 4, 8, 12			I/O	General-purpose input/output 21
EQEP1B	1			I	Enhanced QEP1 input B
MDRA	2			I	McBSP-A receive serial data
CANRXB	3	14	13	I	CAN-B receive
EPWM11B	5			0	Enhanced PWM11 output B
SD1_C3	7			I	Sigma-Delta 1 channel 3 clock input
GPIO22	0, 4, 8, 12			I/O	General-purpose input/output 22
EQEP1S	1			I/O	Enhanced QEP1 strobe
MCLKXA	2			I/O	McBSP-A transmit clock
SCITXDB	3	22	-	0	SCI-B transmit data
EPWM12A	5			0	Enhanced PWM12 output A
SPICLKB	6			I/O	SPI-B clock
SD1_D4	7			I	Sigma-Delta 1 channel 4 data input
GPIO23	0, 4, 8, 12			I/O	General-purpose input/output 23
EQEP1I	1			I/O	Enhanced QEP1 index
MFSXA	2			I/O	McBSP-A transmit frame synch
SCIRXDB	3	23	_	1	SCI-B receive data
EPWM12B	5			0	Enhanced PWM12 output B
SPISTEB	6			I/O	SPI-B slave transmit enable
SD1_C4	7			1	Sigma-Delta 1 channel 4 clock input
 GPIO24	0, 4, 8, 12			I/O	General-purpose input/output 24
OUTPUTXBAR1	1			0	Output 1 of the output XBAR
EQEP2A	2				Enhanced QEP2 input A
MDXB	3	24	-	0	McBSP-B transmit serial data
SPISIMOB	6			I/O	SPI-B slave in, master out
SD2_D1	7			1	Sigma-Delta 2 channel 1 data input
GPIO25	0, 4, 8, 12			I/O	General-purpose input/output 25
OUTPUTXBAR2	1			0	Output 2 of the output XBAR
EQEP2B	2				Enhanced QEP2 input B
MDRB	3	25	-		McBSP-B receive serial data
SPISOMIB	6			I/O	SPI-B slave out, master in
SD2_C1	7			1	Sigma-Delta 2 channel 1 clock input
	'			'	Signa Bola z onanior i olook input

GPI027 0, 4, 8, 12 I/O General-purpose input/output 27 OUTPUTXBAR4 1 0 Output 4 of the output XBAR EGEP2S 2 I/O Enhanced OEP2 strobe MFSXB 3 28 - I/O McBSP-B transmit frame synch OUTPUTXBAR4 5 0 Output 4 of the output XBAR SSIRSTEB 6 SDI2, C2 7 1 Sigma-Delta 2 channel 2 clock input General-purpose input/output 28 SCIRXDA 1 1 SCI-A receive data Columput Stars OUTPUTXBAR5 5 - 0 Output 3 of the output XBAR EOEP3A 6 1 Enhanced OEP3 input A SD2, D3 7 1 Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 - 0 SCI-A transmit data CAPR3 6 1 Enhanced OEP3 input A Sigma-Delta 2 channel 3 data input GPI030 0, 4, 8, 12 - 0 Sigma-Delta 2 channel 3 data input GPI031 0, 4, 8, 12 -	TERMINAL					
OUTPUTXBAR3110Output 3 of the output XBAREGEP21210Enhanced QEP2 indexMCLKX8327-10Output 3 of the output XBAROUTPUTXBAR35115100Output 3 of the output XBARSPICLK86100SPI-B dock100GPI0270,4,8,12115Sigma-Deta 2 channel 2 data inputGPI0270,4,8,12-100Output 4 of the output XBARGDITPUTXBAR41-0Output 4 of the output XBARGDEP28328-100Output 4 of the output XBARGDITPUTXBAR45-0Output 4 of the output XBARSD2_C27-1Sigma-Deta 2 channel 2 dock inputGPI0280,4,8,12-100General-purpose input/output 28SCRX0A1-1Sigma-Deta 2 channel 2 dock inputGPI0280,4,8,12-100General-purpose input/output 28SCRX0A10Output 5 of the output XBARGPI0290,4,8,12-100General-purpose input/output 28SCRX0A10Output 5 of the output XBARGPI0290,4,8,12-0SCL4 mannel 3 data inputGPI0290,4,8,12-0SCL4 mannel 3 clock inputGPI0290,4,8,12-0ScL4 mannel 3 clock inputGPI0290,4,8,12-0ScL4 mannel 3 clock input	NAME	-	PIN	PIN	I/O/Z ⁽¹⁾	DESCRIPTION
EGEP21 2 2 I/O Enhanced QEP2 index MCLKXB 3 27 I/O McBSP-B transmit clock OUTPUTXBAR3 6 I/O McBSP-B transmit clock SPICLKB 6 I Sigma-Delta 2 channel 2 data input GPI027 0, 4, 8, 12 I/O General-purpose input/output 27 OUTPUTXBAR4 1 I/O Enhanced QEP2 strobe MFSXB 3 28 I/O McBSP-B transmit frame synch OUTPUTXBAR4 5 I/O McBSP-B transmit frame synch OUTPUTXBAR4 5 I/O Sigma-Delta 2 channel 2 clock input SPISTEB 6 I/O Sigma-Delta 2 channel 2 clock input SQL202 7 I/O General-purpose input/output 28 SCIRXDA 1 I SCLA I Sigma-Delta 2 channel 3 clock input GPI029 0,4,8,12 O Cuput 5 of the output XBAR	GPIO26	0, 4, 8, 12			I/O	General-purpose input/output 26
MCLKXB 3 27 1/0 McBSP-B transmit clock OUTPUTXBAR3 5 0 Output 3 of the output XBAR SPICLKB 6 10 Sigma-Delta 2 channel 2 data input GPIO27 0, 4, 8, 12 1 Sigma-Delta 2 channel 2 data input GPIO27 0, 4, 8, 12 0 Output 4 of the output XBAR GDTPUTXBAR4 1 0 Output 4 of the output XBAR GDTPUTXBAR4 3 28 1/0 General-purpose input/output 27 OUTPUTXBAR4 5 0 Output 4 of the output XBAR 0 Output 4 of the output XBAR SDZ_02 7 - 1 Sigma-Delta 2 channel 2 clock input GPIO28 0, 4, 8, 12 - 0 Cutrut XBAR SCIRXDA 1 SCIA-receive data - GPIO29 0, 4, 8, 12 - 0 External memory interface 1 SDRAM clock enable OUTPUTXBAR5 5 - 0 External memory interface 1 SDRAM clock enable OUTPUTXBAR6 5 65	OUTPUTXBAR3	1			0	Output 3 of the output XBAR
OUTPUTXBAR3 5 6 0 Output 3 of the output XBAR SPICLKB 6 100 SPI-B clock S02_D2 7 1 Sigma-Delta 2 channel 2 data input GPIO27 0,4,8,12 100 General-purpose input/output 27 OUTPUTXBAR4 1 1 General-purpose input/output 27 OUTPUTXBAR4 5 0 Output 4 of the output XBAR SPISTEB 6 0 Output 4 of the output XBAR SPISTEB 6 0 Output 4 of the output XBAR SPISTEB 6 0 Output 4 of the output XBAR SPISTEB 6 1 Sigma-Delta 2 channel 2 clock input GPIO28 0,4,8,12 - 1 Sigma-Delta 2 channel 2 clock input GPIO28 0,4,8,12 - 1 Sigma-Delta 2 channel 2 clock input GPIO29 0,4,8,12 - 1 Sigma-Delta 2 channel 3 clock input GPIO29 0,4,8,12 - 1 Sigma-Delta 2 channel 3 clock input GPIO29 0,4,8,12 - <	EQEP2I	2			I/O	Enhanced QEP2 index
SPICLKB 6 // // SPI-B clock SD2_D2 7 I Sigma-Deta 2 channel 2 data input GPI027 0, 4, 8, 12 // General-purpose input/output 27 OUTPUTXBAR4 1 0 Output 4 of the output XBAR EOEP2S 2 //O Enhanced DEP2 strobe MFSXB 3 28 - 0 Output 4 of the output XBAR OUTPUTXBAR4 5 0 Output 4 of the output XBAR SPISTEB 6 //O SPI-B slave transmit frame synch SOIZ_C2 7 - 1 Sigma-Deta 2 channel 2 clock input GPI028 0, 4, 8, 12 - 1 SCI-A receive data SCIRXDA 1 - 1 Sigma-Deta 2 channel 3 clock input GPI029 0, 4, 8, 12 - 0 External memory interface 1 chip select 4 OUTPUTXBAR6 5 - 0 External memory interface 1 chip select 4 SOIZ_D3 7 - 1 Sigma-Deta 2 channel 3 clock input GPI029 0, 4, 8, 12 - 0 SCI-A transmit data SOIZ_D3 7 - 1 Sigma-Deta 2 channel 3 clock input GPI030 0, 4, 8, 12 - 0	MCLKXB	3	27	-	I/O	
SD2_D2 7 I I Sigma-Delta 2 channel 2 data input GPIO27 0, 4, 8, 12 0 General-purpose input/output 27 OUTPUTXBAR4 1 0 Output 4 of the output XBAR DECEP2S 2 0 MESNB 3 28 - I/O Mesneed GEP2 stobe MFSXB 3 28 - I/O McBSP-B transmit frame synch OUTPUTXBAR4 5 0 Output 4 of the output XBAR SD2_C2 7 1 Sigma-Delta 2 channel 2 clock input GPIO28 0, 4, 8, 12 - I Sigma-Delta 2 channel 2 clock input GPIO28 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO28 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO28 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO29 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO29 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO30 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO30 0, 4, 8, 12 - I Sigma-Delta 2 channel 3 clock input GPIO31	OUTPUTXBAR3	5			0	Output 3 of the output XBAR
GPI027 0, 4, 8, 12 I/O General-purpose input/output 27 OUTPUTXBAR4 1 0 Output 4 of the output XBAR EQEP2S 2 I/O Enhanced QEP2 strobe MFSXB 3 28 - I/O McSP-B tansmit frame synch OUTPUTXBAR4 5 0 Output 4 of the output XBAR 0 SPISTEB 6 I/O Sigma-Delta 2 channel 2 clock input GPI028 0, 4, 8, 12 I Sigma-Delta 2 channel 2 clock input GPI028 0, 4, 8, 12 I Sigma-Delta 2 channel 2 clock input GPI029 0, 4, 8, 12 I Sigma-Delta 2 channel 2 clock input OUTPUTXBAR5 5 - O Output 5 of the output XBAR SD2_D3 7 I Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 - O SCI-A transmit data SD2_D3 7 I Sigma-Delta 2 channel 3 data input GPI030 0, 4, 8, 12 - O External memory interface 1 SDAM clock enable OUTPUTXBA	SPICLKB	6			I/O	SPI-B clock
OUTPUTXBAR411ECEP2S22MFSXB3284WFXB3284VOEnhanced QEP2 strobeOUTPUTXBAR45SPISTEB6VOSD2_C271GPI0280,4,8,121SCIRXDA11EMTCS4264CD2271SCIRXDA11EMTCS4264CD2271CD2271GPI0280,4,8,121EMTCS4264CD220371SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11SCIRXDA11GPI0290,4,8,121CONCE20CLARXA11SD2_C371SIGNED41Sigma-Delta 2 channel 3 data inputGPI0300,4,8,121CANRXA11SD2_C371GPI0310,4,8,121CANRXA11SIGNED41SIGNED41GPI0310,4,8,121GPI0310,4,8,121 <t< td=""><td>SD2_D2</td><td></td><td></td><td></td><td>I</td><td>Sigma-Delta 2 channel 2 data input</td></t<>	SD2_D2				I	Sigma-Delta 2 channel 2 data input
EQEP2S 2 2 1/0 Enhanced QEP2 strobe MFSXB 3 28 - 1/0 McBSP-B transmit frame synch OUTPUTXBAR4 5 0 Output 4 of the output XBAR Strong SPISTEE 6 10 Spin-Delta 2 channel 2 clock input SD2_C2 7 1 Sigma-Delta 2 channel 2 clock input GPI028 0, 4, 8, 12	GPIO27	0, 4, 8, 12			I/O	General-purpose input/output 27
MFSXB328-1/0McBSP-B transmit frame synchOUTPUTXBAR450Output 4 of the output XBARSPISTEB60VIOSPI-B slave transmit enableGPI0280, 4, 8, 12IISigma-Delta 2 channel 2 dock inputGPI0280, 4, 8, 12ISCI-Xtock inputSCIRXDA1ISCI-A transmit frame synchCIPUTVEXBAR560Output 5 of the output XBAREQEP3A60Output 5 of the output XBARSD2_C27-0Output 5 of the output XBAREQEP3A61Enhanced QEP3 input ASD2_D37-0Output 5 of the output XBARSOITXDA1ISigma-Delta 2 channel 3 data inputGPI0290, 4, 8, 12-0SCI-A transmit dataEQEP3B6-0Output 5 of the output XBARCOTTUTXBAR65-0Sci-A transmit dataEQEP3B6-1Sigma-Delta 2 channel 3 dock inputGPI0300, 4, 8, 12	OUTPUTXBAR4	1			0	Output 4 of the output XBAR
OUTPUTXBAR4 5 6 0 Output 4 of the output XBAR SPISTEE 6 100 SPI-B slave transmit enable Sigma-Delta 2 channel 2 clock input GPI028 0, 4, 8, 12 1 Sigma-Delta 2 channel 2 clock input GPI028 0, 4, 8, 12 1 SCI-A receive data EMICS4 2 64 1 Inscription 2 clock input GPI029 0, 4, 8, 12 1 SCI-A receive data SO2_D3 7 1 Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 1 Enhanced QEP3 input A SOLTDAA 1 Sigma-Delta 2 channel 3 data input GPI039 0, 4, 8, 12 0 SCI-A transmit data OUTPUTXBAR6 5 0 Output 6 of the output XBAR EQEP38 6 1 Enhanced QEP3 input B S02_C3 7 1 Sigma-Delta 2 channel 3 clock input GPI030 0, 4, 8, 12 0 External memory interface 1 SDRAM clock enable OUTPUTXBAR6 5 64 1 Enhanced QEP3 in	EQEP2S	2			I/O	Enhanced QEP2 strobe
SPISTEB 6 //O SPI-B slave transmit enable SD2_C2 7 - I Sigma-Delta 2 channel 2 clock input GPI028 0, 4, 8, 12 1 SGRADA 1 SGLANDA 1 SCIANDA 1 SCI-A receive data SCI-A receive data GUTPUTXBAR5 5 - O External memory interface 1 chip select 4 OUTPUTXBAR5 6 - O Output 5 of the output XBAR SO2_D3 7 - I Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12	MFSXB	3	28	-	I/O	McBSP-B transmit frame synch
SD2_C271Sigma-Delta 2 channel 2 clock inputGPI0280, 4, 8, 12SCIRXDA1EMTCS420External memory interface 1 chip select 4OUTPUTXBAR550Output 5 of the output XBAREQEP3A61Enhanced QEP3 input ASD2_D371Sigma-Delta 2 channel 3 data inputGPI0290, 4, 8, 12SCITXDA1GM150220SCITXDA1GM15022GUTPUTXBAR650SCITXDA1GUTPUTXBAR650SCITXDA1GUTPUTXBAR650SUTPUTXBAR650SUTPUTXBAR650GPI0300, 4, 8, 12CANRXA1EMTCLK263GPI0310, 4, 8, 12GPI0310, 4, 8, 12GPI0310, 4, 8, 12GUTPUTXBAR850SD2_C471GPI0320, 4, 8, 12GUTPUTXBAR850GUTPUTXBAR85GOUTPUTXBAR85GOUTPUTXBAR86GUTPUTXBAR81GUTPUTXBAR86GUTPUTXBAR86GUTPUTXBAR86GUTPUTXBAR86GUTPUTXBAR86GUTPUTXBAR86GUTPUTXBAR8<	OUTPUTXBAR4	5			0	Output 4 of the output XBAR
GPI028 0, 4, 8, 12 I I/O General-purpose input/output 28 SCIRXDA 1 I SCI-A receive data I SCI-A receive data EMTCS4 2 64 - O Output 5 of the output XBAR EQEP3A 6 I Enhanced QEP3 input A SCI-A receive data SD2_D3 7 I Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 I I/O General-purpose input/output 29 SCITXDA 1 Sigma-Delta 2 channel 3 data input O SCI-A transmit data EMTSDCKE 2 65 - O Output 6 of the output XBAR SD2_D3 7 I Sigma-Delta 2 channel 3 data input O GPI030 0, 4, 8, 12 0 SCI-A transmit data I SD2_D3 7 I Sigma-Delta 2 channel 3 clock input GPI030 0, 4, 8, 12 I CANRXA I SD2_D4 7 I Sigma-Delta 2 channel 3 clock input GPI031 0, 4, 8, 12	SPISTEB	6			I/O	SPI-B slave transmit enable
SCIRXDA11SCI-A receive dataEMICS4264-0External memory interface 1 chip select 4OUTPUTXBAR55000utput 5 of the output XBAREQEP3A661Enhanced QEP3 input ASO2_0371Sigma-Delta 2 channel 3 data inputGPI0290.4.8.12	SD2_C2	7			Ι	Sigma-Delta 2 channel 2 clock input
EMTCSA 2 64 - 0 External memory interface 1 chip select 4 OUTPUTXBAR5 5 5 - 0 Output 5 of the output XBAR EQEP3A 6 1 Enhanced QEP3 input A Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 7 1 Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 6 1 Sigma-Delta 2 channel 3 data input GVID29 0, 4, 8, 12 0 SCI-A transmit data 0 GVID40 1 0 SCI-A transmit data 0 GVID40 1 0 Scima-Delta 2 channel 3 clock input 0 GVID40 0, 4, 8, 12 0 External memory interface 1 clock 0 GVID30 0, 4, 8, 12 1 CAN-A receive 1 CAN-A receive EMTC51 6 - 0 External memory interface 1 clock 0 OUTPUTXBAR7 5 63 - 0 External memory interface 1 vick 1 GPI031 0, 4, 8, 12	GPIO28	0, 4, 8, 12			I/O	General-purpose input/output 28
OUTPUTXBAR5 5 64 - O Output 5 of the output XBAR EQEP3A 6 I Enhanced QEP3 input A SD2_D3 7 I Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 I Sigma-Delta 2 channel 3 data input SCITXDA 1 I Sigma-Delta 2 channel 3 data input CMUTPUTXBAR6 5 - O SCI-A transmit data EQEP3B 6 I Enhanced QEP3 input B SD2_C3 7 O Sigma-Delta 2 channel 3 clock input GPI030 0, 4, 8, 12 E I Enhanced QEP3 input B SD2_C3 7 I Sigma-Delta 2 channel 3 clock input GPI030 0, 4, 8, 12 E I CAN-A receive EMTCLK 2 63 - O External memory interface 1 clock OUTPUTXBAR7 5 63 - I Sigma-Delta 2 channel 4 data input GPI031 0, 4, 8, 12 I I/O General-purpose input/output 31	SCIRXDA	1		_	I	SCI-A receive data
OUTPUTXBARS 5 5 6 0 Output 5 of the output XBAR EQEP3A 6 I Enhanced QEP3 input A SD2_D3 7 I Sigma-Delta 2 channel 3 data input GPI029 0, 4, 8, 12 I/O General-purpose input/output 29 SCITXDA 1 I Sigma-Delta 2 channel 3 data input GMISDCKE 2 0 SCI-A transmit data OUTPUTXBAR6 5 0 External memory interface 1 SDRAM clock enable OUTPUTXBAR6 5 0 External memory interface 1 SDRAM clock input SD2_C3 7 I Sigma-Delta 2 channel 3 clock input GPI030 0, 4, 8, 12 V/O General-purpose input/output 30 CANRXA 1 I CAN-A receive EMICLK 2 0 External memory interface 1 clock OUTPUTXBAR7 5 6 I/O Enhanced QEP3 strobe SD2_D3 6 I Sigma-Delta 2 channel 4 data input GPI031 0, 4, 8, 12 V/O General-purpose input/output 31 <td>EM1CS4</td> <td>2</td> <td>64</td> <td>0</td> <td>External memory interface 1 chip select 4</td>	EM1CS4	2	64		0	External memory interface 1 chip select 4
SD2_D37ISigma-Delta 2 channel 3 data inputGPIO290, 4, 8, 12General-purpose input/output 29SCITXDA1EMISDCKE2OUTPUTXBAR65SD2_C37GPI0300, 4, 8, 12GPI0300, 4, 8, 12GUTPUTXBAR75EQEP386GVID310, 4, 8, 12GPI0310, 4, 8, 12 <td< td=""><td>OUTPUTXBAR5</td><td>5</td><td>04</td><td>0</td><td>Output 5 of the output XBAR</td></td<>	OUTPUTXBAR5	5	04		0	Output 5 of the output XBAR
D O General-purpose input/output 29 SCITXDA 1 0 SCIANDA EMISDCKE 2 0 SCIANDA 1 EMISDCKE 2 0 SCIANDA 1 EQEP3B 6 0 External memory interface 1 SDRAM clock enable OUTPUTXBAR6 5 0 External memory interface 1 SDRAM clock enable OUTPUTXBAR6 5 0 External memory interface 1 SDRAM clock enable GPI030 0, 4, 8, 12 1 Sigma-Delta 2 channel 3 clock input GPI030 0, 4, 8, 12 1 CAN-A receive CANRXA 1 1 CAN-A receive EMICLK 2 0 External memory interface 1 clock OUTPUTXBAR7 5 63 - 0 Output 7 of the output XBAR EQEP3S 6 1/0 Enhanced QEP3 strobe 1 Sigma-Delta 2 channel 4 data input GPI031 0, 4, 8, 12 - 0 CAN-A transmit 0 GANTXA 1 0 CAN-A transmit </td <td>EQEP3A</td> <td>6</td> <td></td> <td>I</td> <td>Enhanced QEP3 input A</td>	EQEP3A	6			I	Enhanced QEP3 input A
SCITXDA11EM1SDCKE26565OUTPUTXBAR6500EQEP3B61Enhanced QEP3 input BSD2_C371Sigma-Delta 2 channel 3 clock inputGPI0300, 4, 8, 121Sigma-Delta 2 channel 3 clock inputCANRXA11IEM1CLK263-OUTPUTXBAR7563SD2_D471GPI0310, 4, 8, 121CANTXA11GPI0310, 4, 8, 12CANTXA1EMTWE2OUTPUTXBAR85SD2_C47GPI0320, 4, 8, 12GPI0330, 4, 8, 12CARXA1GPI0320, 4, 8, 12GPI0330, 4, 8, 12GPI0330, 4, 8, 12GPI0330, 4, 8, 12GPI0332JOAA1GPI0330, 4, 8, 12GPI0332JOAA1GPI0330, 4, 8, 12GPI0332JOAA1GPI0330, 4, 8, 12CANA1GPI0330, 4, 8, 12CANA1GPI033 </td <td>SD2_D3</td> <td>7</td> <td></td> <td>I</td> <td>Sigma-Delta 2 channel 3 data input</td>	SD2_D3	7			I	Sigma-Delta 2 channel 3 data input
EMISDCKE OUTPUTXBAR62 565 5-0External memory interface 1 SDRAM clock enable Output 6 of the output XBAREQEP3B61Enhanced QEP3 input BSD2_C371Sigma-Delta 2 channel 3 clock inputGPI0300, 4, 8, 12 CANRXA11General-purpose input/output 30CANRXA11CAN-A receiveEMICLK2 OUTPUTXBAR760External memory interface 1 clockOUTPUTXBAR7561CAN-A receiveSD2_D471CAN-A receiveGPI0310, 4, 8, 12 CANTXA1Financed QEP3 strobeGUTPUTXBAR8561/OGeneral-purpose input/output 31CANTXA11General-purpose input/output 31CANTXA161/OCAN-A transmitEQEP3161General-purpose input/output 31CANTXA161/OCAN-A transmitEQEP3161Sigma-Delta 2 channel 4 clock inputOUTPUTXBAR851GPI032SD2_C471Sigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12 SDAA167-GPI0330, 4, 8, 12 SDAA167-GPI0330, 4, 8, 12 SCLA169-GPI0330, 4, 8, 12 SCLA160Ceneral-purpose input/output 33SCLA169-1/OGeneral-purpose input/output 33GPI033 <td< td=""><td>GPIO29</td><td>0, 4, 8, 12</td><td></td><td></td><td>I/O</td><td>General-purpose input/output 29</td></td<>	GPIO29	0, 4, 8, 12			I/O	General-purpose input/output 29
OUTPUTXBAR6565-OOutput 6 of the output XBAREQEP3B6IEnhanced QEP3 input BSD2_C37ISigma-Delta 2 channel 3 clock inputGPI0300, 4, 8, 12ISigma-Delta 2 channel 3 clock inputGPI0300, 4, 8, 12ICAN-A receiveEM1CLK263-0OUTPUTXBAR7563-0EQEP3S6I/OExternal memory interface 1 clockOUTPUTXBAR756I/OEnhanced QEP3 strobeSD2_D47ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12IGeneral-purpose input/output 31CANTXA1I0CAN-A transmitEMIWE20External memory interface 1 write enableOUTPUTXBAR850CAN-A transmitEQEP3I6I/OEnhanced QEP3 indexSD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12IOCAN-A transmitGPI0330, 4, 8, 12II/OGeneral-purpose input/output 32SDAA167-I/OGeneral-purpose input/output 33GPI0330, 4, 8, 12II/OGeneral-purpose input/output 33SCLA169-I/OIzc-A clock open-drain bidirectional port	SCITXDA	1			0	SCI-A transmit data
OUTPUTXBAR6561Enhanced QEP3 input 6 of the output XBAREQEP3B6IEnhanced QEP3 input BSD2_C37ISigma-Delta 2 channel 3 clock inputGPI0300, 4, 8, 12IGeneral-purpose input/output 30CANRXA1ICAN-A receiveEM1CLK263-OUTPUTXBAR756I/OEQEP3S6I/OExternal memory interface 1 clockOUTPUTXBAR75I/OEnhanced QEP3 strobeSD2_D47ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12IGeneral-purpose input/output 31CANTXA1IOExternal memory interface 1 write enableOUTPUTXBAR85I/OGeneral-purpose input/output 31CANTXA1IOExternal memory interface 1 write enableOUTPUTXBAR85I/OExternal memory interface 1 write enableOUTPUTXBAR85I/OEnhanced QEP3 indexSD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12II/OGeneral-purpose input/output 32SDAA167-I/OGeneral-purpose input/output 32SDAA167-I/OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12II/OGeneral-purpose input/output 33SCLA169-I/OIzternal memory interface 1 chip select 0	EM1SDCKE	2	65		0	External memory interface 1 SDRAM clock enable
SD2_C37IISigma-Delta 2 channel 3 clock inputGPI0300, 4, 8, 12General-purpose input/output 30CANRXA1ICAN-A receiveEM1CLK263ICAN-A receiveOUTPUTXBAR7564ICAN-A receiveSD2_D47ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12Financed QEP3 strobeCANTXA1IGeneral-purpose input/output 31CANTXA1IGeneral-purpose input/output 31CANTXA1IOCAN-A transmitEMIWE266IOCutput 8 of the output XBAROUTPUTXBAR85II/OExternal memory interface 1 write enableOUTPUTXBAR85II/OExternal memory interface 1 write enableOUTPUTXBAR85II/OEnhanced QEP3 indexSD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12II/OGeneral-purpose input/output 32SDAA167-I/OGeneral-purpose input/output 32GPI0330, 4, 8, 12II/OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12II/OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12II/OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12II/OI/OExternal memory interface 1 chip select 0GPI033<	OUTPUTXBAR6	5	05	_	0	Output 6 of the output XBAR
GPI0300, 4, 8, 12I/OGeneral-purpose input/output 30CANRXA11ICAN-A receiveEM1CLK263-OExternal memory interface 1 clockOUTPUTXBAR756I/OEnhanced QEP3 strobeSD2_D47ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12IGeneral-purpose input/output 31CANTXA1IOExternal memory interface 1 write enableOUTPUTXBAR8566I/OGeneral-purpose input/output 31CANTXA1IOCAN-A transmitEQEP3I6-OOutput 8 of the output XBARSD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12IIGeneral-purpose input/output 32SDAA167-I/OGeneral-purpose input/output 32SDAA167-I/OGeneral-purpose input/output 32SCLA169-I/OGeneral-purpose input/output 33SCLA169-I/OI2C-A clock open-drain bidirectional port	EQEP3B	6			I	Enhanced QEP3 input B
CANRXA1263ICAN-A receiveEM1CLK263-0External memory interface 1 clockOUTPUTXBAR7560Output 7 of the output XBAREQEP3S61Sigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12	SD2_C3	7			I	Sigma-Delta 2 channel 3 clock input
EM1CLK OUTPUTXBAR72 563-0External memory interface 1 clock Output 7 of the output XBAREQEP3S6//OEnhanced QEP3 strobeSD2_D47/ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12 CANTXA1	GPIO30	0, 4, 8, 12			I/O	General-purpose input/output 30
OUTPUTXBAR7563-OOutput 7 of the output XBAREQEP3S6//OEnhanced QEP3 strobeSD2_D47/ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12//OGeneral-purpose input/output 31CANTXA1//OExternal memory interface 1 write enableOUTPUTXBAR8566-OUTPUTXBAR8566EQEP3I6//OExternal memory interface 1 write enableOUTPUTXBAR85//OExternal memory interface 1 write enableOUTPUTXBAR86//OExternal memory interface 1 write enableOUTPUTXBAR86//OEnhanced QEP3 indexSD2_C47//OEnhanced QEP3 indexSDAA167-//OGPI0320, 4, 8, 12//OGeneral-purpose input/output 32SDAA167-//OGPI0330, 4, 8, 12//OGeneral-purpose input/output 33SCLA169-//OI/ODI2C-A clock open-drain bidirectional port	CANRXA	1			I	CAN-A receive
OUTPUTXBAR7560Output 7 of the output XBAREQEP3S6I/OEnhanced QEP3 strobeSD2_D47ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12IGeneral-purpose input/output 31CANTXA1IOCAN-A transmitEM1WE266-OExternal memory interface 1 write enableOUTPUTXBAR8566I/OEnhanced QEP3 indexEQEP3I6-OOutput 8 of the output XBARSD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12II/OEnhanced QEP3 indexSDAA167-I/OGeneral-purpose input/output 32SDAA167-I/OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12I/OEneral-purpose input/output 33SCLA169-I/OI2C-A clock open-drain bidirectional port	EM1CLK	2	62		0	External memory interface 1 clock
SD2_D47ISigma-Delta 2 channel 4 data inputGPI0310, 4, 8, 12	OUTPUTXBAR7	5	03	_	0	Output 7 of the output XBAR
GPI0310, 4, 8, 12I/OGeneral-purpose input/output 31CANTXA10CAN-A transmitEM1WE20External memory interface 1 write enableOUTPUTXBAR8566-0EQEP3I61/OEnhanced QEP3 indexSD2_C471Sigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12167SDAA167-EM1CS020, 4, 8, 12GPI0330, 4, 8, 121/OGPI0330, 4, 8, 121/OGPI0330, 4, 8, 121/OGPI0330, 4, 8, 121/OGPI034169-I/OI2C-A clock open-drain bidirectional portI/OGeneral-purpose input/output 33SCLA169-I/OI2C-A clock open-drain bidirectional port	EQEP3S	6			I/O	Enhanced QEP3 strobe
CANTXA12660CAN-A transmitEMIWE2660External memory interface 1 write enable0OUTPUTXBAR850Output 8 of the output XBAREQEP3I61/0Enhanced QEP3 indexSD2_C471Sigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 121671SDAA167-1/0DI2C-A data open-drain bidirectional portEMICS020, 4, 8, 1210External memory interface 1 chip select 0GPI0330, 4, 8, 12169-1/0DI2C-A clock open-drain bidirectional port	SD2_D4	7			I	Sigma-Delta 2 channel 4 data input
EM1WE2 OUTPUTXBAR82 566-OExternal memory interface 1 write enableEQEP3I650Output 8 of the output XBAREQEP3I61/OEnhanced QEP3 indexSD2_C471Sigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12167-SDAA167-I/OEM1CS020, 4, 8, 120GPI0330, 4, 8, 12I/OSCLA169-I/OI2C-A clock open-drain bidirectional portI/OI2C-A clock open-drain bidirectional portI/OI2C-A clock open-drain bidirectional port	GPIO31	0, 4, 8, 12			I/O	General-purpose input/output 31
OUTPUTXBAR8566-OOutput 8 of the output XBAREQEP3I61I/OEnhanced QEP3 indexSD2_C471Sigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12167-SDAA167-I/OEM1CS020, 4, 8, 120GPI0330, 4, 8, 12I/OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12I/OI/OSCLA169-I/OI/ODI2C-A clock open-drain bidirectional portI/ODI2C-A clock open-drain bidirectional port	CANTXA	1			О	CAN-A transmit
OUTPUTXBAR850Output 8 of the output XBAREQEP3I6I/OEnhanced QEP3 indexSD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12I/OGeneral-purpose input/output 32SDAA167-I/ODEM1CS02OExternal memory interface 1 chip select 0GPI0330, 4, 8, 12I/OGeneral-purpose input/output 33SCLA169-I/ODI/ODI2C-A clock open-drain bidirectional port	EM1WE	2	00		0	External memory interface 1 write enable
SD2_C47ISigma-Delta 2 channel 4 clock inputGPI0320, 4, 8, 12I/OGeneral-purpose input/output 32SDAA167-I/ODEM1CS020External memory interface 1 chip select 0GPI0330, 4, 8, 12I/OGeneral-purpose input/output 33SCLA169-I/OD	OUTPUTXBAR8	5	66	_	О	Output 8 of the output XBAR
GPI032 0, 4, 8, 12 I/O General-purpose input/output 32 SDAA 1 67 - I/O I2C-A data open-drain bidirectional port EM1CS0 2 0 External memory interface 1 chip select 0 GPI033 0, 4, 8, 12 I/O General-purpose input/output 33 SCLA 1 69 - I/O I2C-A clock open-drain bidirectional port	EQEP3I	6			I/O	Enhanced QEP3 index
SDAA 1 67 - I/OD I2C-A data open-drain bidirectional port EMICS0 2 0 External memory interface 1 chip select 0 GPI033 0, 4, 8, 12 I/O General-purpose input/output 33 SCLA 1 69 - I/OD I2C-A clock open-drain bidirectional port	SD2_C4	7			1	Sigma-Delta 2 channel 4 clock input
SDAA 1 67 - I/OD I2C-A data open-drain bidirectional port EM1CS0 2 O External memory interface 1 chip select 0 GPI033 0, 4, 8, 12 I/O General-purpose input/output 33 SCLA 1 69 - I/OD I2C-A clock open-drain bidirectional port	GPIO32	0, 4, 8, 12			I/O	General-purpose input/output 32
EM1CS02OExternal memory interface 1 chip select 0GPIO330, 4, 8, 12I/OGeneral-purpose input/output 33SCLA169-I/ODI2C-A clock open-drain bidirectional port	SDAA		67	_	I/OD	I2C-A data open-drain bidirectional port
GPIO33 0, 4, 8, 12 I/O General-purpose input/output 33 SCLA 1 69 – I/OD I2C-A clock open-drain bidirectional port	EM1CS0	2			О	
SCLA 1 69 – I/OD I2C-A clock open-drain bidirectional port	GPIO33	0, 4, 8, 12			I/O	
			69	_	I/OD	
	EM1RNW	2			0	External memory interface 1 read not write

TERMINAL							
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION		
GPIO34	0, 4, 8, 12			I/O	General-purpose input/output 34		
OUTPUTXBAR1	1	70		0	Output 1 of the output XBAR		
EM1CS2	2	70	-	0	External memory interface 1 chip select 2		
SDAB	6			I/OD	I2C-B data open-drain bidirectional port		
GPIO35	0, 4, 8, 12			I/O	General-purpose input/output 35		
SCIRXDA	1			1	SCI-A receive data		
EM1CS3	2	71	-	0	External memory interface 1 chip select 3		
SCLB	6			I/OD	I2C-B clock open-drain bidirectional port		
GPIO36	0, 4, 8, 12			I/O	General-purpose input/output 36		
SCITXDA	1			0	SCI-A transmit data		
EM1WAIT	2	83	-	I	External memory interface 1 Asynchronous SRAM WAIT		
CANRXA	6			I	CAN-A receive		
GPIO37	0, 4, 8, 12			I/O	General-purpose input/output 37		
OUTPUTXBAR2	1			0	Output 2 of the output XBAR		
EM10E	2	84	-	0	External memory interface 1 output enable		
CANTXA	6			0	CAN-A transmit		
GPIO38	0, 4, 8, 12			I/O	General-purpose input/output 38		
EM1A0	2			0	External memory interface 1 address line 0		
SCITXDC	5	85	-	0	SCI-C transmit data		
CANTXB	6			0	CAN-B transmit		
GPIO39	0, 4, 8, 12			I/O	General-purpose input/output 39		
EM1A1	2			0	External memory interface 1 address line 1		
SCIRXDC	5	86	_	1	SCI-C receive data		
CANRXB	6				CAN-B receive		
GPIO40	0, 4, 8, 12			I/O	General-purpose input/output 40		
EM1A2	2	87	_	0	External memory interface 1 address line 2		
SDAB	6	07		I/OD	I2C-B data open-drain bidirectional port		
GPIO41	0, 4, 8, 12	89	51	1/0	General-purpose input/output 41. For applications using the Hibernate low-power mode, this pin serves as the GPIOHIBWAKE signal. For details, see the Low Power Modes section of the System Control chapter in the <i>TMS320F2807x</i> <i>Microcontrollers Technical Reference Manual</i> .		
EM1A3	2			0	External memory interface 1 address line 3		
SCLB	6			I/OD	I2C-B clock open-drain bidirectional port		
GPIO42	0, 4, 8, 12			I/O	General-purpose input/output 42		
SDAA	6	100		I/OD	I2C-A data open-drain bidirectional port		
SCITXDA	15	130	73	0	SCI-A transmit data		
USB0DM	Analog			I/O	USB PHY differential data		
GPIO43	0, 4, 8, 12			I/O	General-purpose input/output 43		
SCLA	6			I/OD	I2C-A clock open-drain bidirectional port		
SCIRXDA	15	131	74	I	SCI-A receive data		
USB0DP	Analog			I/O	USB PHY differential data		
GPIO44	0, 4, 8, 12			I/O	General-purpose input/output 44		
EM1A4	2	113	-	0	External memory interface 1 address line 4		
GPIO45	0, 4, 8, 12			I/O	General-purpose input/output 45		
EM1A5	2	115	-	0	External memory interface 1 address line 5		

Copyright © 2021 Texas Instruments Incorporated

TERMINAL						
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
GPIO46	0, 4, 8, 12			I/O	General-purpose input/output 46	
EM1A6	2	128	-	0	External memory interface 1 address line 6	
SCIRXDD	6			I	SCI-D receive data	
GPIO47	0, 4, 8, 12			I/O	General-purpose input/output 47	
EM1A7	2	129	-	0	External memory interface 1 address line 7	
SCITXDD	6			0	SCI-D transmit data	
GPIO48	0, 4, 8, 12			I/O	General-purpose input/output 48	
OUTPUTXBAR3	1			0	Output 3 of the output XBAR	
EM1A8	2	90	_	0	External memory interface 1 address line 8	
SCITXDA	6			0	SCI-A transmit data	
SD1_D1	7			I	Sigma-Delta 1 channel 1 data input	
GPIO49	0, 4, 8, 12			I/O	General-purpose input/output 49	
OUTPUTXBAR4	1			0	Output 4 of the output XBAR	
EM1A9	2	93	_	0	External memory interface 1 address line 9	
SCIRXDA	6			I	SCI-A receive data	
SD1_C1	7			I	Sigma-Delta 1 channel 1 clock input	
GPIO50	0, 4, 8, 12			I/O	General-purpose input/output 50	
EQEP1A	1			I	Enhanced QEP1 input A	
EM1A10	2	94	_	0	External memory interface 1 address line 10	
SPISIMOC	6			I/O	SPI-C slave in, master out	
SD1_D2	7			I	Sigma-Delta 1 channel 2 data input	
GPIO51	0, 4, 8, 12			I/O	General-purpose input/output 51	
EQEP1B	1			I	Enhanced QEP1 input B	
EM1A11	2	95	_	0	External memory interface 1 address line 11	
SPISOMIC	6			I/O	SPI-C slave out, master in	
SD1_C2	7			I	Sigma-Delta 1 channel 2 clock input	
GPIO52	0, 4, 8, 12			I/O	General-purpose input/output 52	
EQEP1S	1			I/O	Enhanced QEP1 strobe	
EM1A12	2	96	_	0	External memory interface 1 address line 12	
SPICLKC	6			I/O	SPI-C clock	
SD1_D3	7			I	Sigma-Delta 1 channel 3 data input	
GPIO53	0, 4, 8, 12			I/O	General-purpose input/output 53	
EQEP1I	1			I/O	Enhanced QEP1 index	
EM1D31	2	97	_	I/O	External memory interface 1 data line 31	
SPISTEC	6			I/O	SPI-C slave transmit enable	
SD1_C3	7			I	Sigma-Delta 1 channel 3 clock input	
GPIO54	0, 4, 8, 12			I/O	General-purpose input/output 54	
SPISIMOA	1			I/O	SPI-A slave in, master out	
EM1D30	2	00		I/O	External memory interface 1 data line 30	
EQEP2A	5	98	-	I	Enhanced QEP2 input A	
SCITXDB	6			О	SCI-B transmit data	
SD1_D4	7			I	Sigma-Delta 1 channel 4 data input	

TERMINAL							
NAME	MUX POSITION	PTP PIN NO.	PIN PIN		DESCRIPTION		
GPIO55	0, 4, 8, 12			I/O	General-purpose input/output 55		
SPISOMIA	1			I/O	SPI-A slave out, master in		
EM1D29	2	100		I/O	External memory interface 1 data line 29		
EQEP2B	5	100	-	I	Enhanced QEP2 input B		
SCIRXDB	6			I	SCI-B receive data		
SD1_C4	7			I	Sigma-Delta 1 channel 4 clock input		
GPIO56	0, 4, 8, 12			I/O	General-purpose input/output 56		
SPICLKA	1			I/O	SPI-A clock		
EM1D28	2			I/O	External memory interface 1 data line 28		
EQEP2S	5	101	-	I/O	Enhanced QEP2 strobe		
SCITXDC	6			0	SCI-C transmit data		
SD2_D1	7			I	Sigma-Delta 2 channel 1 data input		
GPIO57	0, 4, 8, 12			I/O	General-purpose input/output 57		
SPISTEA	1			I/O	SPI-A slave transmit enable		
EM1D27	2			I/O	External memory interface 1 data line 27		
EQEP2I	5	102	-	I/O	Enhanced QEP2 index		
SCIRXDC	6			I	SCI-C receive data		
SD2_C1	7			I	Sigma-Delta 2 channel 1 clock input		
GPIO58	0, 4, 8, 12			I/O	General-purpose input/output 58		
MCLKRA	1			I/O	McBSP-A receive clock		
EM1D26	2			I/O	External memory interface 1 data line 26		
OUTPUTXBAR1	5	103	52	0	Output 1 of the output XBAR		
SPICLKB	6			I/O	SPI-B clock		
SD2_D2	7			I	Sigma-Delta 2 channel 2 data input		
SPISIMOA	15			I/O	SPI-A slave in, master out ⁽²⁾		
GPIO59	0, 4, 8, 12			I/O	General-purpose input/output 59 ⁽³⁾		
MFSRA	1			I/O	McBSP-A receive frame synch		
EM1D25	2			I/O	External memory interface 1 data line 25		
OUTPUTXBAR2	5	104	53	0	Output 2 of the output XBAR		
SPISTEB	6			I/O	SPI-B slave transmit enable		
SD2_C2	7			I	Sigma-Delta 2 channel 2 clock input		
SPISOMIA	15			I/O	SPI-A slave out, master in ⁽²⁾		
GPIO60	0, 4, 8, 12			I/O	General-purpose input/output 60		
MCLKRB	1			I/O	McBSP-B receive clock		
EM1D24	2			I/O	External memory interface 1 data line 24		
OUTPUTXBAR3	5	105	54	0	Output 3 of the output XBAR		
SPISIMOB	6			I/O	SPI-B slave in, master out		
SD2_D3	7			I	Sigma-Delta 2 channel 3 data input		
SPICLKA	15			I/O	SPI-A clock ⁽²⁾		

TERMINAL						
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION	
GPIO61	0, 4, 8, 12			I/O	General-purpose input/output 61 ⁽³⁾	
MFSRB	1			I/O	McBSP-B receive frame synch	
EM1D23	2			I/O	External memory interface 1 data line 23	
OUTPUTXBAR4	5	107	56	0	Output 4 of the output XBAR	
SPISOMIB	6			I/O	SPI-B slave out, master in	
SD2_C3	7			I	Sigma-Delta 2 channel 3 clock input	
SPISTEA	15			I/O	SPI-A slave transmit enable ⁽²⁾	
GPIO62	0, 4, 8, 12			I/O	General-purpose input/output 62	
SCIRXDC	1			I	SCI-C receive data	
EM1D22	2	108	57	I/O	External memory interface 1 data line 22	
EQEP3A	5	100	57	I	Enhanced QEP3 input A	
CANRXA	6			I	CAN-A receive	
SD2_D4	7			I	Sigma-Delta 2 channel 4 data input	
GPIO63	0, 4, 8, 12			I/O	General-purpose input/output 63	
SCITXDC	1			0	SCI-C transmit data	
EM1D21	2			I/O	External memory interface 1 data line 21	
EQEP3B	5	109	58	I	Enhanced QEP3 input B	
CANTXA	6			0	CAN-A transmit	
SD2_C4	7			I	Sigma-Delta 2 channel 4 clock input	
SPISIMOB	15			I/O	SPI-B slave in, master out ⁽²⁾	
GPIO64	0, 4, 8, 12			I/O	General-purpose input/output 64 ⁽³⁾	
EM1D20	2			I/O	External memory interface 1 data line 20	
EQEP3S	5	110	59	I/O	Enhanced QEP3 strobe	
SCIRXDA	6			I	SCI-A receive data	
SPISOMIB	15			I/O	SPI-B slave out, master in ⁽²⁾	
GPIO65	0, 4, 8, 12			I/O	General-purpose input/output 65	
EM1D19	2			I/O	External memory interface 1 data line 19	
EQEP3I	5	111	60	I/O	Enhanced QEP3 index	
SCITXDA	6			0	SCI-A transmit data	
SPICLKB	15			I/O	SPI-B clock ⁽²⁾	
GPIO66	0, 4, 8, 12			I/O	General-purpose input/output 66 ⁽³⁾	
EM1D18	2	112	61	I/O	External memory interface 1 data line 18	
SDAB	6	112		I/OD	I2C-B data open-drain bidirectional port	
SPISTEB	15			I/O	SPI-B slave transmit enable ⁽²⁾	
GPIO67	0, 4, 8, 12	132		I/O	General-purpose input/output 67	
EM1D17	2	.02		I/O	External memory interface 1 data line 17	
GPIO68	0, 4, 8, 12	133	_	I/O	General-purpose input/output 68	
EM1D16	2	100		I/O	External memory interface 1 data line 16	
GPIO69	0, 4, 8, 12			I/O	General-purpose input/output 69	
EM1D15	2	134	75	I/O	External memory interface 1 data line 15	
SCLB	6	104	15	I/OD	I2C-B clock open-drain bidirectional port	
SPISIMOC	15			I/O	SPI-C slave in, master out ⁽²⁾	

TERMINAL							
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION		
GPIO70	0, 4, 8, 12			I/O	General-purpose input/output 70 ⁽³⁾		
EM1D14	2			I/O	External memory interface 1 data line 14		
CANRXA	5	135	76	I	CAN-A receive		
SCITXDB	6			0	SCI-B transmit data		
SPISOMIC	15			I/O	SPI-C slave out, master in ⁽²⁾		
GPIO71	0, 4, 8, 12			I/O	General-purpose input/output 71		
EM1D13	2			I/O	External memory interface 1 data line 13		
CANTXA	5	136	77	0	CAN-A transmit		
SCIRXDB	6			1	SCI-B receive data		
SPICLKC	15			I/O	SPI-C clock ⁽²⁾		
GPIO72	0, 4, 8, 12			I/O	General-purpose input/output 72. ⁽³⁾ This is the factory default boot mode select pin 1.		
EM1D12	2			I/O	External memory interface 1 data line 12		
CANTXB	5	139	80	0	CAN-B transmit		
SCITXDC	6			0	SCI-C transmit data		
SPISTEC	15			I/O	SPI-C slave transmit enable ⁽²⁾		
GPIO73	0, 4, 8, 12			I/O	General-purpose input/output 73		
EM1D11	2			I/O	External memory interface 1 data line 11		
XCLKOUT	3	140	81	O/Z	External clock output. This pin outputs a divided-down version of a chosen clock signal from within the device. The clock signal is chosen using the CLKSRCCTL3.XCLKOUTSEL bit field while the divide ratio is chosen using the XCLKOUTDIVSEL.XCLKOUTDIV bit field.		
CANRXB	5			I	CAN-B receive		
SCIRXDC	6			I	SCI-C receive		
GPIO74	0, 4, 8, 12	141		I/O	General-purpose input/output 74		
EM1D10	2	141	_	I/O	External memory interface 1 data line 10		
GPIO75	0, 4, 8, 12	142		I/O	General-purpose input/output 75		
EM1D9	2	142	_	I/O	External memory interface 1 data line 9		
GPIO76	0, 4, 8, 12			I/O	General-purpose input/output 76		
EM1D8	2	143	-	I/O	External memory interface 1 data line 8		
SCITXDD	6			0	SCI-D transmit data		
GPIO77	0, 4, 8, 12			I/O	General-purpose input/output 77		
EM1D7	2	144	-	I/O	External memory interface 1 data line 7		
SCIRXDD	6			1	SCI-D receive data		
GPIO78	0, 4, 8, 12			I/O	General-purpose input/output 78		
EM1D6	2	145	82	I/O	External memory interface 1 data line 6		
EQEP2A	6			I	Enhanced QEP2 input A		
GPIO79	0, 4, 8, 12			I/O	General-purpose input/output 79		
EM1D5	2	146	_	I/O	External memory interface 1 data line 5		
EQEP2B	6			I	Enhanced QEP2 input B		
GPIO80	0, 4, 8, 12			I/O	General-purpose input/output 80		
EM1D4	2	148	_	I/O	External memory interface 1 data line 4		
EQEP2S	6			I/O	Enhanced QEP2 strobe		

TERMINAL							
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION		
GPIO81	0, 4, 8, 12			I/O	General-purpose input/output 81		
EM1D3	2	149	-	I/O	External memory interface 1 data line 3		
EQEP2I	6			I/O	Enhanced QEP2 index		
GPIO82	0, 4, 8, 12	150	_	I/O	General-purpose input/output 82		
EM1D2	2	100		I/O	External memory interface 1 data line 2		
GPIO83	0, 4, 8, 12	151	_	I/O	General-purpose input/output 83		
EM1D1	2			I/O	External memory interface 1 data line 1		
GPIO84	0, 4, 8, 12			I/O	General-purpose input/output 84. This is the factory default boot mode select pin 0.		
SCITXDA	5	154	85	0	SCI-A transmit data		
MDXB	6			0	McBSP-B transmit serial data		
MDXA	15			0	McBSP-A transmit serial data		
GPIO85	0, 4, 8, 12			I/O	General-purpose input/output 85		
EM1D0	2			I/O	External memory interface 1 data line 0		
SCIRXDA	5	155	86	I	SCI-A receive data		
MDRB	6			I	McBSP-B receive serial data		
MDRA	15			I	McBSP-A receive serial data		
GPIO86	0, 4, 8, 12			I/O	General-purpose input/output 86		
EM1A13	2	156	87	0	External memory interface 1 address line 13		
EM1CAS	3			0	External memory interface 1 column address strobe		
SCITXDB	5			0	SCI-B transmit data		
MCLKXB	6			I/O	McBSP-B transmit clock		
MCLKXA	15			I/O	McBSP-A transmit clock		
GPIO87	0, 4, 8, 12			I/O	General-purpose input/output 87		
EM1A14	2			0	External memory interface 1 address line 14		
EM1RAS	3	157	88	0	External memory interface 1 row address strobe		
SCIRXDB	5	157	88	I	SCI-B receive data		
MFSXB	6			I/O	McBSP-B transmit frame synch		
MFSXA	15			I/O	McBSP-A transmit frame synch		
GPIO88	0, 4, 8, 12			I/O	General-purpose input/output 88		
EM1A15	2	170	-	0	External memory interface 1 address line 15		
EM1DQM0	3			0	External memory interface 1 Input/output mask for byte 0		
GPIO89	0, 4, 8, 12			I/O	General-purpose input/output 89		
EM1A16	2	171	96	0	External memory interface 1 address line 16		
EM1DQM1	3	17.1	30	0	External memory interface 1 Input/output mask for byte 1		
SCITXDC	6			0	SCI-C transmit data		
GPIO90	0, 4, 8, 12			I/O	General-purpose input/output 90		
EM1A17	2	172	97	0	External memory interface 1 address line 17		
EM1DQM2	3	172		0	External memory interface 1 Input/output mask for byte 2		
SCIRXDC	6			I	SCI-C receive data		
GPIO91	0, 4, 8, 12			I/O	General-purpose input/output 91		
EM1A18	2	173	98	0	External memory interface 1 address line 18		
EM1DQM3	3	173	90	0	External memory interface 1 Input/output mask for byte 3		
SDAA	6			I/OD	I2C-A data open-drain bidirectional port		

TERMINAL							
NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION		
GPIO92	0, 4, 8, 12			I/O	General-purpose input/output 92		
EM1A19	2	174 99		0	External memory interface 1 address line 19		
EM1BA1	3			0	External memory interface 1 bank address 1		
SCLA	6			I/OD	I2C-A clock open-drain bidirectional port		
GPIO93	0, 4, 8, 12			I/O	General-purpose input/output 93		
EM1BA0	3	175	-	0	External memory interface 1 bank address 0		
SCITXDD	6			0	SCI-D transmit data		
GPIO94	0, 4, 8, 12	176		I/O	General-purpose input/output 94		
SCIRXDD	6	170	_	I	SCI-D receive data		
GPIO99	0, 4, 8, 12	17	14	I/O	General-purpose input/output 99		
EQEP1I	5	17	14	I/O	Enhanced QEP1 index		
GPIO133/AUXCLKIN	0, 4, 8, 12	118	_	I/O	General-purpose input/output 133. The AUXCLKIN function of this GPIO pin could be used to provide a single-ended 3.3-V level clock signal to the Auxiliary Phase-Locked Loop (AUXPLL), whose output is used for the USB module. The AUXCLKIN clock may also be used for the CAN module.		
SD2_C2	7			I	Sigma-Delta 2 channel 2 clock input		
				RESET			
XRS		124	69	I/OD	Device Reset (in) and Watchdog Reset (out). The devices have a built-in power-on reset (POR) circuit. During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset or NMI watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from 2.2 k Ω to 10 k Ω should be placed between XRS and V _{DDIO} . If a capacitor is placed between XRS is within 512 OSCCLK cycles will allow the watchdog to properly drive the XRS pin to V _{OL} within 512 OSCCLK cycles when the watchdog reset is asserted. The output buffer of this pin is an open drain with an internal pullup. If this pin is driven by an external device, it should be done using an open-drain device.		
				CLOCKS			
X1		123	68	I	On-chip crystal-oscillator input. To use this oscillator, a quartz crystal must be connected across X1 and X2. If this pin is not used, it must be tied to GND. This pin can also be used to feed a single-ended 3.3-V level clock. In this case, X2 is a No Connect (NC).		
X2		121	66	0	On-chip crystal-oscillator output. A quartz crystal may be connected across X1 and X2. If X2 is not used, it must be left unconnected.		

TDI 77 46 1 JTAG test data input (TDI) with internal pullup, TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. TDO 78 47 O/Z JTAG test data input (TDI) with internal pullup, TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. TDO 78 47 O/Z JTAG test data input (TDI), the contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. TMS 80 49 1 JTAG test reset with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. TMS 80 49 1 JTAG test reset with internal pullup. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: TRST must be maintained low at all times during normal device operation. An external pulldown resistor is required on this pin. The value of this resistor should be base required on the value of the resistor generally offers adequate to receive the value of the resistor general pulldown. To enable the 1.2-V VREG pull on the value of the resistor is application. This pin has ar internal 50-ns (nominal) giltch filter. VREGENZ VALCO, DIGITAL, AND I/O PO/VER Value of the close part on the set end pullation. This pin has ar internal solution internal value of the close part on the application. This pin has ar internal solutis to Vpop. Div. VALO	TERMINAL							
TCK 81 50 I JTAG test clock with internal pullup (see Section 7.6) TDI 77 46 I JTAG test clock with internal pullup. TDI is clocked in the selected register (instruction or data) on a rising edge of TCK. TDO 78 47 O/Z JTAG test clock with internal pullup. TDO contents of the selected register (instruction or data) are shifted out of TDO on the failing edge of TCK. TMS 80 49 I JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. TMS 80 49 I JTAG test reset with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. TRST 79 48 I JTAG test reset with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. TRST 79 48 I Internal value of the internal pullup. This ential control index experiation. A text and the text reset value of the reset signals are ignored. No trait is easion system control of the operations of the debugger pods applicable to the device operates in its functional mode, and the test reset value of the reset or solution. The value of the reset value of the reset or solution. The value of the reset v	NAME		PIN	PIN	I/O/Z ⁽¹⁾	DESCRIPTION		
TDI TT 46 1 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. TDO 78 47 O/Z Selected register (instruction or data) are shifted out of TDO on the failing edge of TCK. TMS 80 49 JTAG test-mode select (TMS) with internal pullup. TDi is clocked into the selected register (instruction or data) are shifted out of TDO on the failing edge of TCK. TMS 80 49 JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. TRS 80 49 JTAG test-mode select (TMS) with internal pullown. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is driven low, the device operates in its functional mode, and the test terned vice operates in its functional mode. If this signal is driven low, the device operates in its functional mode. If this signal is driven low the device operates in its functional mode. If this signal is driven low the device operates in its functional mode. If this signal is driven low the selected for poper operation. A the debugger and the application. This pin has ar internal 30-ns (nominal) glich filter. VREGENZ 119 64 1 Internal voltage regulator enable with internal 12-V VREG is used, place a decoupling capacitor on each pin. Vadob 1126 78 72 44				1	JTAG			
TDI 77 46 I into the selected register (instruction or data) on a rising edge of TCK. TDO 78 47 O/Z JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO in the falling edge of TCK. ¹⁹ TMS 80 49 I JTAG test-mode select (TMS) with internal pullop. This serial control input is clocked into the TAP controller on the rising edge of TCK. ¹⁹ TMS 80 49 I JTAG test-mode select (TMS) with internal pullop. This serial control input is clocked into the TAP controller on the rising edge of TCK. ¹⁰ TRS 79 48 I JTAG test reset with internal pullow. TRST, when driven normal device, and the test reset signals are ignored. NOTE: TRST must be mained low at all times during normal device, and the test reset signals are ignored. NOTE: TRST must be mained low at all times during normal device operation. An evalue of the resistor is application-specific. TI TRS 79 48 I Internal voltage regulator enable with internal pulldown. To require the resistor is application-specific. TI TRST 19 64 I Internal voltage regulator enable with internal pulldown. To enable the 12-V VREC, pull tow to V _{SS} . To disable, pull high to V _{DDO} . VECENTION VREGENZ 119 64 I 126 78 12.V digital logic power pins. If the internal 1.2-V VREC is used, place a decoupling	ТСК		81	50	I	JTAG test clock with internal pullup (see Section 7.6)		
TDO 78 47 O/Z selected register (instruction or data) are shifted out of TDO on the faling edge of TCK." TMS 80 49 I JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. TRS 80 49 I JTAG test reset with internal pulluor. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is driven low, the device operation. An external pulldown resistor is required on this pin. The value of this resistor should be base on drive strength of the debugger pods applicable to the design. A 2:4K or smaller resistor generally offers adequade for proper operation of the debugger pods applicable to the design. A 2:4K or smaller resistor generally offers adequade. This pin has ar internal 50-ns (normal) glitch filter. INTERNAL VOLTAGE REGULATOR CONTROL VREGENZ 119 64 I Internal voltage regulator enable with internal pulldown. To enable the 12-V VREG, pull low to Vss. To disable, pull high to V _{DDO} . VPDD 119 64 I Internal voltage regulator enable with internal 1.2.V VREG is used, place a decoupling capacitor near each V _{OD} pin and distribute 12 µF to 26 µF eventy across all V _{DD} pins. If an external supply is used. The exact value of the decouger regulator should be based. VDD 117 71 128 78 1.2.V digital logic power pins. If the internal 1.2.V VREG is used, place a decoupling capacitor near each V _{DD} pins. If an external supply is used. The commends a minimum total capacitance of 20 µF. The exact valu	ТЛ		77	46	I	into the selected register (instruction or data) on a rising edge		
TMS 80 49 1 control input is clocked into the TAP controller on the rising edge of TCK. TRST 79 48 JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: TRST must be maintained low at all times during normal device operation. An external pulldown resistor is projectable to the device or strength of the debugger pods applicable to the design. A 2.2-KD or smaller resistor is generally offers adequate protection. The value of the resistor is application. The value of the resistor is application. The value of the resistor is application. The scale of the debugger pods application. This pin has are internal 50-ns (nominal giltch filter. INTERNAL VOLTAGE REGULATOR CONTROL VREGENZ 119 64 I Internal 50-ns (nominal) giltch filter. VALOG, DIGITAL, AND I/O POWER 121 39 61 45 76 63 1117 71 126 78 137 84 1189 - 121 39 61 45 76 63 1177 71 126 78 137 84 169 - 1200 121	TDO		78	47	O/Z	selected register (instruction or data) are shifted out of TDO		
FRST 79 48 I Initial device operation of the operations of the device operation of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on drive strength of the debugger post should be bases on the application-specific. The value of the resistor is application of the operations of the debugger post should be bases on the application. This pin has an internal 50-ns (nominal) glitch filter. VREGENZ 119 64 I Internal voltage regulator enable with internal pulldown. To enable the 1.2-V VREG, pull low to V _{SS} . To disable, pull high to V _{DOIO} . VPDD 1117 71 12.4 139 61 14.5 VDD 1117 71 12.6 78 3.3-V Flash power pins. If the internal 1.2-V VREG is used, place a decoupling capacitor enable with internal 1.2-V VREG is used, place a decoupling capacitor enable with endecoupling capacitance of 20 µF. The exact value of the decoupling capacitance of 20 µF. The exact value of the decoupling capacitance of 20 µF. The exact value of the decoupling capacitance of 20 µF. The exact value of the decoupling capacitance of 20 µF. The exact value of the decoupling capacitance on each p	тмѕ		80	49	I	control input is clocked into the TAP controller on the rising		
VREGENZ 119 64 I Internal voltage regulator enable with internal pulldown. To enable the 1.2-V VREG, pull low to V _{SS} . To disable, pull high to V _{DDIO} . ANALOG, DIGITAL, AND I/O POWER Image: Colspan="2">Image: Colspan="2" Colspan="	TRST		79	48	I	high, gives the scan system control of the operations of the device. If this signal is driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: TRST must be maintained low at all times during normal device operation. An external pulldown resistor is required on this pin. The value of this resistor should be base on drive strength of the debugger pods applicable to the design. A 2.2 -k Ω or smaller resistor generally offers adequat protection. The value of the resistor is application-specific. T recommends that each target board be validated for proper operation of the debugger and the application. This pin has a		
VREGENZ 119 64 I enable the 1.2-V VREG, pull low to V _{SS} . To disable, pull high to V _{DDIO} . ANALOG, DIGITAL, AND I/O POWER Image: Colspan="4">Image: Colspan="4" VDD Image: Colspan="4">Image: Colspan="4" Image: Cols			INTERN	AL VOLT	AGE REGUL	ATOR CONTROL		
VDD161621396145766311771126781378415389169-169-7241351836383.3-V Flash power pins. Place a minimum 0.1-µF decoupling capacitor on each pin.3.3-V analog power pins. Place a minimum 2.2-µF decoupling capacitor on each pin.	VREGENZ		119	64	I	enable the 1.2-V VREG, pull low to V_{SS} . To disable, pull high		
V_{DD} V_{D			A	ALOG, D	IGITAL, AND	DI/O POWER		
VDD61457663117711267812678137841538915895169-			16	16				
VDDT663117711267812678137841538915895169-72413518363836383638			21	39				
VDD7663117711267812678137841538915895169-72413518363836383638			61	45				
VDD117711267812678137841538915395169-VDD3VFL72413.3-V Flash power pin. Place a minimum 0.1-μF decoupling capacitor on each pin.351836383638			76	63		used, place a decoupling capacitor near each V _{DD} pin and		
126 78 137 84 137 84 153 89 158 95 169 - VDD3VFL 72 41 35 18 36 38 36 38 3.3-V analog power pins. Place a minimum 2.2-μF decoupling capacitor to V _{SSA} on each pin.			117	71		distribute 12 μF to 26 μF evenly across all V_{DD} pins. If an		
137 84 153 89 153 89 158 95 169 - VDD3VFL 72 41 35 18 36 38 36 38 3.3-V analog power pins. Place a minimum 2.2-µF decoupling capacitor to V _{SSA} on each pin.	V _{DD}		126	78				
153 89 158 95 169 $ V_{DD3VFL}$ 72 41 3.3 -V Flash power pin. Place a minimum 0.1-µF decoupling capacitor on each pin. 35 18 36 38 3.3 -V analog power pins. Place a minimum 2.2-µF decoupling capacitor to V_{SSA} on each pin.			137	84		capacitance should be determined by your system voltage		
15895169 $ V_{DD3VFL}$ 72413.3-V Flash power pin. Place a minimum 0.1-µF decoupling capacitor on each pin. V_{DDA} 35183.3-V analog power pins. Place a minimum 2.2-µF decoupling capacitor to V _{SSA} on each pin.			153	89		regulation solution.		
169 - V _{DD3VFL} 72 41 3.3-V Flash power pin. Place a minimum 0.1-µF decoupling capacitor on each pin. V _{DDA} 35 18 36 38 3.3-V analog power pins. Place a minimum 2.2-µF decoupling capacitor to V _{SSA} on each pin.								
VDD3VFL 72 41 capacitor on each pin. VDD3VFL 35 18 36 38 36 38								
V _{DDA} 3.3-V analog power pins. Place a minimum 2.2-μF decoupling capacitor to V _{SSA} on each pin.	V _{DD3VFL}		72	41				
VDDA 30 38 capacitor to V _{SSA} on each pin.			35	18				
	V _{DDA}		36	38	-	3.3-V analog power pins. Place a minimum 2.2-µF decoupling		
			54	_		capacitor to VSSA on each pin.		

NAME	MUX POSITION	PTP PIN NO.	PZP PIN NO.	I/O/Z ⁽¹⁾	DESCRIPTION			
		3	2					
		11	10					
		15	15					
		20	40					
		26	44	-				
		62	55					
		68	62	-				
		75	72	-				
		82	79					
		88	83		3.3-V digital I/O power pins. Place a minimum 0.1-µF			
V _{DDIO}		91	90		decoupling capacitor on each pin. The exact value of the			
55.0		99	94		decoupling capacitance should be determined by your system voltage regulation solution.			
		106	_					
		114	_	-				
		116	_	-				
		127	_	-				
		138	_	-				
		147	_	-				
		152	_					
		159	_	-				
		168	_	-				
		120	65		Power pins for the 3.3-V on-chip crystal oscillator (X1 and X2)			
V _{DDOSC}		125	70		and the two zero-pin internal oscillators (INTOSC). Place a 0.1-µF (minimum) decoupling capacitor on each pin.			
V _{SS}		PWR PAD	PWR PAD		Device ground. For Quad Flatpacks (QFPs), the PowerPAD on the bottom of the package must be soldered to the ground plane of the PCB.			
V _{SSOSC}		122	67		Crystal oscillator (X1 and X2) ground pin. When using an external crystal, do not connect this pin to the board ground. Instead, connect it to the ground reference of the external crystal oscillator circuit. If an external crystal is not used, this pin may be connected to the board ground.			
		32	17		Analog ground.			
V _{SSA}		34	35	-	On the PZP package, pin 17 is double-bonded to V _{SSA} and			
		52	36	-	V_{REFLOA} . This pin must be connect to V_{SSA} .			
	1		SPE	CIAL FUNCT	IONS			
ERRORSTS		92	_	0	Error status output. This pin has an internal pulldown.			
<u> </u>	I		1	TEST PINS				
FLT1		73	42	I/O	Flash test pin 1. Reserved for TI. Must be left unconnected.			
FLT2		74	43	I/O	Flash test pin 2. Reserved for TI. Must be left unconnected.			

(1) I = Input, O = Output, OD = Open Drain, Z = High Impedance

(2) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).

This pin has output impedance that can be as low as 22 Ω . This output could have fast edges and ringing depending on the system (3) PCB characteristics. If this is a concern, the user should take precautions such as adding a 39Ω (10% tolerance) series termination resistor or implement some other termination scheme. It is also recommended that a system-level signal integrity analysis be performed with the provided IBIS models. The termination is not required if this pin is used for input function.

TMS320F28076, TMS320F28075 SPRS902J - OCTOBER 2014 - REVISED FEBRUARY 2021

TERMINAL

6.3 Pins With Internal Pullup and Pulldown

Some pins on the device have internal pullups or pulldowns. Table 6-1 lists the pull direction and when it is active. The pullups on GPIO pins are disabled by default and can be enabled through software. In order to avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular package. Other pins noted in Table 6-1 with pullups and pulldowns are always on and cannot be disabled.

Table 6-1. Pins With Internal Pullup and Pulldow	n
--	---

PIN	RESET (XRS = 0)	DEVICE BOOT	APPLICATION SOFTWARE							
GPIOx	Pullup disabled	Pullup disabled ⁽¹⁾	Pullup enable is application- defined							
TRST		Pulldown active								
тск		Pullup active								
TMS		Pullup active								
TDI		Pullup active								
XRS		Pullup active								
VREGENZ		Pulldown active								
ERRORSTS		Pulldown active								
Other pins		No pullup or pulldown present								

(1) Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.

6.4 Pin Multiplexing

6.4.1 GPIO Muxed Pins

Table 6-2 shows the GPIO muxed pins. The default for each pin is the GPIO function, secondary functions can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured prior to the GPyMUXn to avoid transient pulses on GPIO's from alternate mux selections. Columns not shown and blank cells are reserved GPIO Mux settings.

GPIO Mux Selection ⁽¹⁾ ⁽²⁾											
GPIO Index	0, 4, 8, 12										
GPyGMUXn. 00b, 01b, GPIOz = 10b, 11b			00b			I	11b				
GPyMUXn. GPIOz =	00b	01b	10b	11b	01b	10b	11b	11b			
	GPIO0	EPWM1A (O)				SDAA (I/OD)					
	GPIO1	EPWM1B (O)		MFSRB (I/O)		SCLA (I/OD)					
	GPIO2	EPWM2A (O)			OUTPUTXBAR1 (O)	SDAB (I/OD)					
	GPIO3	EPWM2B (O)	OUTPUTXBAR2 (O)	MCLKRB (I/O)	OUTPUTXBAR2 (O)	SCLB (I/OD)					
	GPIO4	EPWM3A (O)			OUTPUTXBAR3 (O)	CANTXA (O)					
	GPIO5	EPWM3B (O)	MFSRA (I/O)	OUTPUTXBAR3 (O)		CANRXA (I)					
	GPIO6	EPWM4A (O)	OUTPUTXBAR4 (O)	EXTSYNCOUT (O)	EQEP3A (I)	CANTXB (O)					
	GPIO7	EPWM4B (O)	MCLKRA (I/O)	OUTPUTXBAR5 (O)	EQEP3B (I)	CANRXB (I)					
	GPIO8	EPWM5A (O)	CANTXB (O)	ADCSOCAO (O)	EQEP3S (I/O)	SCITXDA (O)					
	GPIO9	EPWM5B (O)	SCITXDB (O)	OUTPUTXBAR6 (O)	EQEP3I (I/O)	SCIRXDA (I)					
	GPIO10	EPWM6A (O)	CANRXB (I)	ADCSOCBO (O)	EQEP1A (I)	SCITXDB (O)					
	GPIO11	EPWM6B (O)	SCIRXDB (I)	OUTPUTXBAR7 (O)	EQEP1B (I)	SCIRXDB (I)					
	GPIO12	EPWM7A (O)	CANTXB (O)	MDXB (O)	EQEP1S (I/O)	SCITXDC (O)					
	GPIO13	EPWM7B (O)	CANRXB (I)	MDRB (I)	EQEP1I (I/O)	SCIRXDC (I)					
	GPIO14	EPWM8A (O)	SCITXDB (O)	MCLKXB (I/O)		OUTPUTXBAR3 (O)					
	GPIO15	EPWM8B (O)	SCIRXDB (I)	MFSXB (I/O)		OUTPUTXBAR4 (O)					
	GPIO16	SPISIMOA (I/O)	CANTXB (O)	OUTPUTXBAR7 (O)	EPWM9A (O)		SD1_D1 (I)				
	GPIO17	SPISOMIA (I/O)	CANRXB (I)	OUTPUTXBAR8 (O)	EPWM9B (O)		SD1_C1 (I)				
	GPIO18	SPICLKA (I/O)	SCITXDB (O)	CANRXA (I)	EPWM10A (O)		SD1_D2 (I)				
	GPIO19	SPISTEA (I/O)	SCIRXDB (I)	CANTXA (O)	EPWM10B (O)		SD1_C2 (I)				
	GPIO20	EQEP1A (I)	MDXA (O)	CANTXB (O)	EPWM11A (O)		SD1_D3 (I)				
	GPIO21	EQEP1B (I)	MDRA (I)	CANRXB (I)	EPWM11B (O)		SD1_C3 (I)				
	GPIO22	EQEP1S (I/O)	MCLKXA (I/O)	SCITXDB (O)	EPWM12A (O)	SPICLKB (I/O)	SD1_D4 (I)				
	GPIO23	EQEP1I (I/O)	MFSXA (I/O)	SCIRXDB (I)	EPWM12B (O)	SPISTEB (I/O)	SD1_C4 (I)				
	GPIO24	OUTPUTXBAR1 (O)	EQEP2A (I)	MDXB (O)		SPISIMOB (I/O)	SD2_D1 (I)				
	GPIO25	OUTPUTXBAR2 (O)	EQEP2B (I)	MDRB (I)		SPISOMIB (I/O)	SD2_C1 (I)				
	GPIO26	OUTPUTXBAR3 (O)	EQEP2I (I/O)	MCLKXB (I/O)	OUTPUTXBAR3 (O)	SPICLKB (I/O)	SD2_D2 (I)				
	GPIO27	OUTPUTXBAR4 (O)	EQEP2S (I/O)	MFSXB (I/O)	OUTPUTXBAR4 (O)	SPISTEB (I/O)	SD2_C2 (I)				
	GPIO28	SCIRXDA (I)	EM1CS4 (0)		OUTPUTXBAR5 (O)	EQEP3A (I)	SD2_D3 (I)				
	GPIO29	SCITXDA (O)	EM1SDCKE (O)		OUTPUTXBAR6 (O)	EQEP3B (I)	SD2_C3 (I)				
	GPIO30	CANRXA (I)	EM1CLK (O)		OUTPUTXBAR7 (O)	EQEP3S (I/O)	SD2_D4 (I)				
	GPIO31	CANTXA (O)	EM1WE (O)		OUTPUTXBAR8 (O)	EQEP3I (I/O)	SD2_C4 (I)				
	GPIO32	SDAA (I/OD)	EM1CS0 (0)								
	GPIO33	SCLA (I/OD)	EM1RNW (O)								
	GPIO34	OUTPUTXBAR1 (O)	EM1CS2 (0)			SDAB (I/OD)					
	GPIO35	SCIRXDA (I)	EM1CS3 (0)			SCLB (I/OD)					
	GPIO36	SCITXDA (O)	EM1WAIT (I)			CANRXA (I)					
	GPIO37	OUTPUTXBAR2 (O)	EM10E (0)			CANTXA (O)					
	GPIO38		EM102 (0)		SCITXDC (O)	CANTXB (O)					
	GPIO38 GPIO39		EM1A0 (0)		SCIRXDC (I)	CANRXB (I)					
	GPIO39 GPIO40		EM1A1 (0) EM1A2 (0)			SDAB (I/OD)					
	GPIO40 GPIO41		EM1A2 (0)			SCLB (I/OD)					
	GPIO41 GPIO42					SCLB (I/OD) SDAA (I/OD)		SCITXDA (O			

Table 6-2. GPIO Muxed Pins

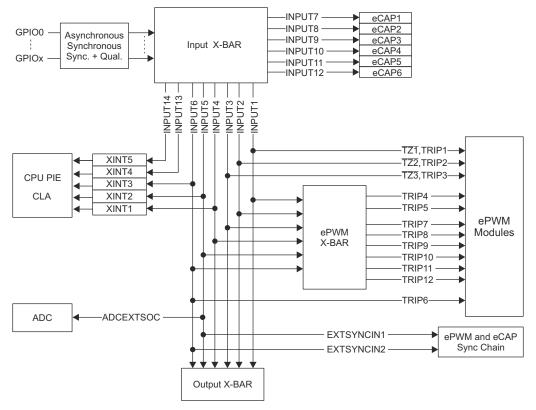
Table 6-2. GPIO Muxed Pins (continued)

	GPIO Mux Selection ^{(1) (2)}							
GPIO Index	0, 4, 8, 12	1	2	3	5	6	7	15
GPyGMUXn. GPIOz =	00b, 01b, 10b, 11b					01b		
GPyMUXn. GPIOz =	00b	01b	10b	11b	01b	10b	11b	11b
	GPIO43					SCLA (I/OD)		SCIRXDA (I)
	GPIO44		EM1A4 (O)					
	GPIO45		EM1A5 (O)					
	GPIO46		EM1A6 (O)			SCIRXDD (I)		
	GPIO47		EM1A7 (O)			SCITXDD (O)		
	GPIO48	OUTPUTXBAR3 (O)	EM1A8 (O)			SCITXDA (O)	SD1_D1 (I)	
	GPIO49	OUTPUTXBAR4 (O)	EM1A9 (O)			SCIRXDA (I)	SD1_C1 (I)	
	GPIO50	EQEP1A (I)	EM1A10 (O)			SPISIMOC (I/O)	SD1_D2 (I)	
	GPIO51	EQEP1B (I)	EM1A11 (O)			SPISOMIC (I/O)	SD1_C2 (I)	
	GPIO52	EQEP1S (I/O)	EM1A12 (O)			SPICLKC (I/O)	SD1_D3 (I)	
	GPIO53	EQEP1I (I/O)	EM1D31 (I/O)			SPISTEC (I/O)	SD1_C3 (I)	
	GPIO54	SPISIMOA (I/O)	EM1D30 (I/O)		EQEP2A (I)	SCITXDB (O)	SD1_D4 (I)	
	GPIO55	SPISOMIA (I/O)	EM1D29 (I/O)		EQEP2B (I)	SCIRXDB (I)	SD1_C4 (I)	
	GPIO56	SPICLKA (I/O)	EM1D28 (I/O)		EQEP2S (I/O)	SCITXDC (O)	SD2_D1 (I)	
	GPIO57	SPISTEA (I/O)	EM1D27 (I/O)		EQEP2I (I/O)	SCIRXDC (I)	SD2_C1 (I)	
	GPIO58	MCLKRA (I/O)	EM1D26 (I/O)		OUTPUTXBAR1 (O)	SPICLKB (I/O)	SD2_D2 (I)	SPISIMOA ⁽³⁾ (I/
								SPISOMIA ⁽³⁾ (I/C
	GPIO59	MFSRA (I/O)	EM1D25 (I/O)		OUTPUTXBAR2 (O)	SPISTEB (I/O)	SD2_C2 (I)	
	GPIO60	MCLKRB (I/O)	EM1D24 (I/O)		OUTPUTXBAR3 (O)	SPISIMOB (I/O)	SD2_D3 (I)	SPICLKA ⁽³⁾ (I/C
	GPIO61	MFSRB (I/O)	EM1D23 (I/O)		OUTPUTXBAR4 (O)	SPISOMIB (I/O)	SD2_C3 (I)	SPISTEA (3) (I/C
	GPIO62	SCIRXDC (I)	EM1D22 (I/O)		EQEP3A (I)	CANRXA (I)	SD2_D4 (I)	
	GPIO63	SCITXDC (O)	EM1D21 (I/O)		EQEP3B (I)	CANTXA (O)	SD2_C4 (I)	SPISIMOB ⁽³⁾ (I/
	GPIO64		EM1D20 (I/O)		EQEP3S (I/O)	SCIRXDA (I)		SPISOMIB ⁽³⁾ (I/
	GPIO65		EM1D19 (I/O)		EQEP3I (I/O)	SCITXDA (O)		SPICLKB ⁽³⁾ (I/C
	GPIO66		EM1D18 (I/O)			SDAB (I/OD)		SPISTEB (3) (I/C
	GPIO67		EM1D17 (I/O)					
	GPIO68		EM1D16 (I/O)					
	GPIO69		EM1D15 (I/O)			SCLB (I/OD)		SPISIMOC ⁽³⁾ (I/
	GPIO70		EM1D14 (I/O)		CANRXA (I)	SCITXDB (O)		SPISOMIC ⁽³⁾ (I/0
	GPIO71		EM1D13 (I/O)		CANTXA (O)	SCIRXDB (I)		SPICLKC ⁽³⁾ (I/C
	GPIO72		EM1D12 (I/O)		CANTXB (O)	SCITXDC (O)		SPISTEC (3) (I/C
	GPIO73		EM1D11 (I/O)	XCLKOUT (O)	CANRXB (I)	SCIRXDC (I)		
	GPIO74		EM1D10 (I/O)					
	GPIO75		EM1D9 (I/O)					
	GPIO76		EM1D8 (I/O)			SCITXDD (O)		
	GPIO77		EM1D7 (I/O)			SCIRXDD (I)		
	GPIO78		EM1D6 (I/O)			EQEP2A (I)		
	GPIO79		EM1D5 (I/O)			EQEP2B (I)		
	GPIO79 GPIO80		EM1D3 (I/O) EM1D4 (I/O)			EQEP2B (I) EQEP2S (I/O)		
	GPIO80 GPIO81		EM1D4 (I/O) EM1D3 (I/O)			EQEP23 (1/0) EQEP2I (1/0)		
	-							
	GPIO82		EM1D2 (I/O)					
	GPIO83		EM1D1 (I/O)					
	GPIO84				SCITXDA (O)	MDXB (O)		MDXA (O)
	GPIO85		EM1D0 (I/O)		SCIRXDA (I)	MDRB (I)		MDRA (I)
	GPIO86		EM1A13 (O)	EM1CAS (O)	SCITXDB (O)	MCLKXB (I/O)		MCLKXA (I/O)
	GPIO87		EM1A14 (O)	EM1RAS (O)	SCIRXDB (I)	MFSXB (I/O)		MFSXA (I/O)
	GPIO88		EM1A15 (O)	EM1DQM0 (O)				
	GPIO89		EM1A16 (O)	EM1DQM1 (O)		SCITXDC (O)		
	GPIO90		EM1A17 (O)	EM1DQM2 (O)		SCIRXDC (I)		
	GPIO91		EM1A18 (O)	EM1DQM3 (O)		SDAA (I/OD)		
	GPIO92		EM1A19 (O)	EM1BA1 (O)		SCLA (I/OD)		
	GPIO93			EM1BA0 (O)		SCITXDD (O)		

Table 6-2. GPIO Muxed Pins (continued)

		GPIO Mux Selection ^{(1) (2)}								
GPIO Index	0, 4, 8, 12	1	2	3	5	6	7	15		
GPyGMUXn. GPIOz =	00b, 01b, 10b, 11b			00b		01b				
GPyMUXn. GPIOz =	00b	01b	10b	11b	01b	10b	11b	11b		
	GPIO94					SCIRXDD (I)				
	GPIO99				EQEP1I (I/O)					
	GPIO133/ AUXCLKIN						SD2_C2 (I)			

(1) I = Input, O = Output, OD = Open Drain


(2) GPIO Index settings of 9, 10, 11, 13, and 14 are reserved.

(3) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).

6.4.2 Input X-BAR

The Input X-BAR is used to route any GPIO input to the ADC, eCAP, and ePWM peripherals as well as to external interrupts (XINT) (see Figure 6-3). Table 6-3 shows the input X-BAR destinations. For details on configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the *TMS320F2807x Microcontrollers Technical Reference Manual*.

Figure 6-3. Input X-BAR

	Table 6-3. Input X-BAR Destinations					
INPUT	DESTINATIONS					
INPUT1	EPWM[TZ1,TRIP1], EPWM X-BAR, Output X-BAR					
INPUT2	EPWM[TZ2,TRIP2], EPWM X-BAR, Output X-BAR					
INPUT3	EPWM[TZ3,TRIP3], EPWM X-BAR, Output X-BAR					
INPUT4	XINT1, EPWM X-BAR, Output X-BAR					
INPUT5	XINT2, ADCEXTSOC, EXTSYNCIN1, EPWM X-BAR, Output X-BAR					
INPUT6	XINT3, EPWM[TRIP6], EXTSYNCIN2, EPWM X-BAR, Output X-BAR					
INPUT7	ECAP1					
INPUT8	ECAP2					
INPUT9	ECAP3					
INPUT10	ECAP4					
INPUT11	ECAP5					
INPUT12	ECAP6					
INPUT13	XINT4					
INPUT14	XINT5					

6.4.3 Output X-BAR and ePWM X-BAR

The Output X-BAR has eight outputs which can be selected on the GPIO mux as OUTPUTXBARx. The ePWM X-BAR has eight outputs which are connected to the TRIPx inputs of the ePWM. The sources for both the Output X-BAR and ePWM X-BAR are shown in Figure 6-4. For details on the Output X-BAR and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the *TMS320F2807x Microcontrollers Technical Reference Manual*.

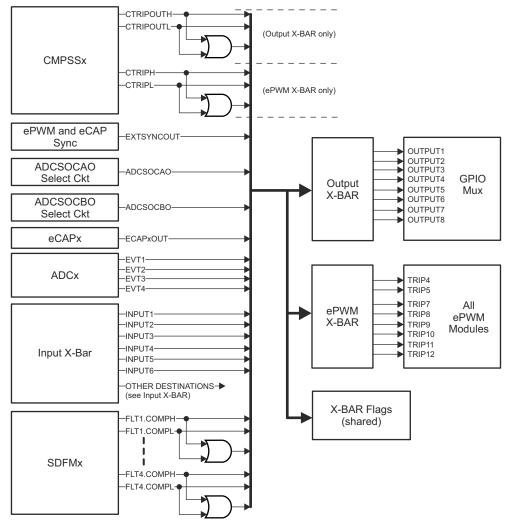


Figure 6-4. Output X-BAR and ePWM X-BAR

6.4.4 USB Pin Muxing

Table 6-4 shows assignment of the alternate USB function mapping. These can be configured with the GPBAMSEL register.

Table 6-4: Alternate OSB Function							
GPIO	GPBAMSEL SETTING	USB FUNCTION					
GPIO42	GPBAMSEL[10] = 1b	USB0DM					
GPIO43	GPBAMSEL[11] = 1b	USB0DP					

Table 6-4. Alternate USB Function

6.4.5 High-Speed SPI Pin Muxing

The SPI module on this device has a high-speed mode. To achieve the highest possible speed, a special GPIO configuration is used on a single GPIO mux option for each SPI. These GPIOs may also be used by the SPI when not in high-speed mode (HS_MODE = 0).

To select the mux options that enable the SPI high-speed mode, configure the GPyGMUX and GPyMUX registers as shown in Table 6-5.

Table 6-5. GPIO Configuration for High-Speed SPI

GPIO	SPI SIGNAL	MUX CONFIGURATION			
		SPIA			
GPIO58	SPISIMOA	GPBGMUX2[21:20]=11b	GPBMUX2[21:20]=11b		
GPIO59	SPISOMIA	GPBGMUX2[23:22]=11b	GPBMUX2[23:22]=11b		
GPIO60	SPICLKA	GPBGMUX2[25:24]=11b	GPBMUX2[25:24]=11b		
GPIO61	SPISTEA	GPBGMUX2[27:26]=11b	GPBMUX2[27:26]=11b		
		SPIB			
GPIO63	SPISIMOB	GPBGMUX2[31:30]=11b	GPBMUX2[31:30]=11b		
GPIO64	SPISOMIB	GPCGMUX1[1:0]=11b	GPCMUX1[1:0]=11b		
GPIO65	SPICLKB	GPCGMUX1[3:2]=11b	GPCMUX1[3:2]=11b		
GPIO66	SPISTEB	GPCGMUX1[5:4]=11b	GPCMUX1[5:4]=11b		
		SPIC			
GPIO69	SPISIMOC	GPCGMUX1[11:10]=11b	GPCMUX1[11:10]=11b		
GPIO70	SPISOMIC	GPCGMUX1[13:12]=11b	GPCMUX1[13:12]=11b		
GPIO71	SPICLKC	GPCGMUX1[15:14]=11b	GPCMUX1[15:14]=11b		
GPIO72	SPISTEC	GPCGMUX1[17:16]=11b	GPCMUX1[17:16]=11b		

6.5 Connections for Unused Pins

For applications that do not need to use all functions of the device, Table 6-6 lists acceptable conditioning for any unused pins. When multiple options are listed in Table 6-6, any are acceptable. Pins not listed in Table 6-6 must be connected according to Section 6.2.1.

Table 6-6. Connections for Unused Pins				
SIGNAL NAME	ACCEPTABLE PRACTICE			
	Analog			
V _{REFHIx}	Tie to V _{DDA}			
V _{REFLOx}	Tie to V _{SSA}			
ADCINx	No Connect Tie to V _{SSA}			
	Digital			
GPIOx	 No connection (input mode with internal pullup enabled) No connection (output mode with internal pullup disabled) Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled) 			
X1	Tie to V _{SS}			
X2	No Connect			
тск	No Connect Pullup resistor			
TDI	No Connect Pullup resistor			
TDO	No Connect			
TMS	No Connect			
TRST	Pulldown resistor (2.2 kΩ or smaller)			
VREGENZ	Tie to V _{DDIO}			
ERRORSTS	No Connect			
FLT1	No Connect			
FLT2	No Connect			
	Power and Ground			
V _{DD}	All V _{DD} pins must be connected per Section 6.2.1.			
V _{DDA}	If a dedicated analog supply is not used, tie to V _{DDIO} .			
V _{DDIO}	All V _{DDIO} pins must be connected per Section 6.2.1.			
V _{DD3VFL}	Must be tied to V _{DDIO}			
V _{DDOSC}	Must be tied to V _{DDIO}			
V _{SS}	All V _{SS} pins must be connected to board ground.			
V _{SSA}	If a dedicated analog ground is not used, tie to V _{SS} .			
V _{SSOSC}	If an external crystal is not used, this pin may be connected to the board ground.			

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX ⁽¹⁾ (2)	UNIT
	V _{DDIO} with respect to V _{SS}	-0.3	4.6	
Supply voltage	V_{DD3VFL} with respect to V_{SS}	-0.3	4.6	v
	V_{DDOSC} with respect to V_{SS}	-0.3	4.6	v
	V_{DD} with respect to V_{SS}	-0.3	1.5	
Analog voltage	V _{DDA} with respect to V _{SSA}	-0.3	4.6	V
Input voltage	V _{IN} (3.3 V)	-0.3	4.6	V
Output voltage	Vo	-0.3	4.6	V
Input clamp current	Digital/analog input (per pin), I_{IK} ($V_{IN} < V_{SS}/V_{SSA}$ or $V_{IN} > V_{DDIO}/V_{DDA}$) ⁽³⁾	-20		
	Total for all inputs, I _{IKTOTAL} (V _{IN} < V _{SS} /V _{SSA} or V _{IN} > V _{DDIO} /V _{DDA})	-20	20	mA
Output current	Digital output (per pin), I _{OUT}	-20	20	mA
Free-Air temperature	T _A	-40	125	°C
Operating junction temperature	TJ	-40	150	°C
Storage temperature ⁽⁴⁾	T _{stg}	-65	150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to V_{SS} , unless otherwise noted.

(3) Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as V_{DDIO}/V_{DDA} voltage may internally rise and impact other electrical specifications.

(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see *Semiconductor and IC Package Thermal Metrics*.

7.2 ESD Ratings – Commercial

			VALUE	UNIT
TMS320	F28076-Q1 in 176-pin PTP packa	ge	·	
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD) Electrostatic discharge (ESD)		Charged-device model (CDM), per JEDEC specification JESD22- C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	V
TMS320	F28076-Q1 in 100-pin PZP packa	ge		
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
$V_{(ESD)}$	Electrostatic discharge (ESD)	Charged-device model (CDM), per JEDEC specification JESD22- C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 ESD Ratings – Automotive

				VALUE	UNIT
TMS320	F28075-Q1 in 176-pin PTP pa	ckage			
V(ESD) Electrostatic discharge AEC Q100-002 ⁽¹⁾ Charged device model per AEC Q100-011 TMS320F28075-Q1 in 100-pin PZP package Human body model (H AEC Q100-002 ⁽¹⁾)		Human body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000	
	Charged device model (CDM),	All pins	±500	V	
	per AEC Q100-011 Corner pins on 176-pin PTP: ±75 1, 44, 45, 88, 89, 132, 133, 176	±750			
TMS320	F28075-Q1 in 100-pin PZP pa	ckage	•		
		Human body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM),	All pins	±500	V
		per AEC Q100-011	Corner pins on 100-pin PZP: 1, 25, 26, 50, 51, 75, 76, 100	±750	

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.4 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
Device supply voltage, I/O, V _{DDIO} ⁽¹⁾		3.14	3.3	3.47	V
Device supply voltage, V _{DD}		1.14	1.2	1.26	V
Supply ground, V _{SS}			0		V
Analog supply voltage, V _{DDA}		3.14	3.3	3.47	V
Analog ground, V _{SSA}			0		V
	T version	-40		105	
Junction temperature, T _J	S version ⁽²⁾	-40		125	°C
	Q version (AEC Q100 qualification) ⁽²⁾	-40		150	
Free-Air temperature, T _A	Q version (AEC Q100 qualification)	-40		125	°C

(1) V_{DDIO}, V_{DD3VFL} , and V_{DDOSC} should be maintained within 0.3 V of each other.

(2) Operation above $T_J = 105^{\circ}C$ for extended duration will reduce the lifetime of the device. See *Calculating Useful Lifetimes of Embedded Processors* for more information.

7.5 Power Consumption Summary

Current values listed in this section are representative for the test conditions given and not the absolute maximum possible. The actual device currents in an application will vary with application code and pin configurations. Section 7.5.1 shows the device current consumption at 120-MHz SYSCLK. Section 7.5.2 shows the device current consumption at 120-MHz SYSCLK with the internal VREG enabled.

7.5.1 Device Current Consumption at 120-MHz SYSCLK

MODE	TEST CONDITIONS	I _{DD}		I _{DDIO} ⁽¹⁾		I _{DDA}		IDD3VFL	
MODE	TEST CONDITIONS	TYP ⁽³⁾	MAX ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	ΤΥΡ⁽³⁾ 33 mA 10 μA 10 μA	MAX ⁽²⁾
Operational	 Code is running out of RAM.⁽⁴⁾ All I/O pins are left unconnected. Peripherals not active have their clocks disabled. FLASH is read and in active state. XCLKOUT is enabled at SYSCLK/4. 	140 mA	295 mA	25 mA		13 mA	20 mA	33 mA	40 mA
IDLE	CPU1 is in IDLE mode.Flash is powered down.XCLKOUT is turned off.	50 mA	185 mA	3 mA	10 mA	10 µA	150 µA	10 µA	150 µA
STANDBY	CPU1 is in STANDBY mode.Flash is powered down.XCLKOUT is turned off.	25 mA	170 mA	3 mA	10 mA	5 μΑ	150 µA	10 µA	150 µA
HALT	CPU1 watchdog is running.Flash is powered down.XCLKOUT is turned off.	1.5 mA	120 mA	750 µA	2 mA	5 μΑ	150 µA	10 µA	150 µA
HIBERNATE	CPU1.M0 and CPU1.M1 RAMs are in low-power data retention mode.	300 µA	5 mA	750 µA	2 mA	5 μΑ	75 µA	1 µA	50 µA
Flash Erase/Program ⁽⁵⁾	 CPU1 is running from RAM. All I/O pins are left unconnected. Peripheral clocks are disabled. CPU1 is performing Flash Erase and Programming. XCLKOUT is turned off. 	97 mA	145 mA	3 mA	10 mA	10 µA	150 µA	45 mA	55 mA

(1) I_{DDIO} current is dependent on the electrical loading on the I/O pins.

- (2) MAX: V_{max}, 125°C
- (3) TYP: V_{nom}, 30°C
- (4) The following is executed in a loop on CPU1:
 - All of the communication peripherals are exercised in loop-back mode: CAN-A to CAN-B; SPI-A to SPI-C; SCI-A to SCI-D; I2C-A to I2C-B; McBSP-A to McBSP-B; USB
 - ePWM1 to ePWM12 generate 400-kHz PWM output on 24 pins
 - CPU TIMERs active
 - DMA does 32-bit burst transfers
 - CLA1 does multiply-accumulate tasks
 - All ADCs perform continuous conversion
 - All DACs ramp voltage up/down at 150 kHz
 - CMPSS1 to CMPSS8 active
 - TMU calculates a cosine
 - FPU does multiply/accumulate with parallel load
- (5) Brownout events during flash programming can corrupt flash data. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions.

7.5.2 Device Current Consumption at 120-MHz SYSCLK With the Internal VREG Enabled

MODE ⁽¹⁾	TEST CONDITIONS	I _{DDIO} ⁽²⁾		I _{DDA}		I _{DD3VFL}	
MODE	TEST CONDITIONS	TYP ⁽⁴⁾	MAX ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾
Operational (RAM)	 Code is running out of RAM.⁽⁵⁾ All I/O pins are left unconnected. Peripherals not active have their clocks disabled. FLASH is read and in active state. XCLKOUT is enabled at SYSCLK/4. 	165 mA	375 mA	13 mA	25 mA	33 mA	40 mA
IDLE	 CPU1 is in IDLE mode. Flash is powered down. XCLKOUT is turned off. 	53 mA	200 mA	10 µA	150 µA	10 µA	150 µA
STANDBY	 CPU1 is in STANDBY mode. Flash is powered down. XCLKOUT is turned off. 	28 mA	185 mA	5 μΑ	150 µA	10 µA	150 µA
HALT	 CPU1 watchdog is running. Flash is powered down. XCLKOUT is turned off. 	2.25 mA	125 mA	5 μΑ	150 µA	10 µA	150 µA
HIBERNATE	CPU1.M0 and CPU1.M1 RAMs are in low- power data retention mode.	1.2 mA	8 mA	5 μΑ	75 µA	1 µA	50 µA

(1) The internal voltage regulator is described in Section 7.9.1.1.

(2) I_{DDIO} current is dependent on the electrical loading on the I/O pins.

- (3) MAX: V_{max}, 125°C
- (4) TYP: V_{nom}, 30°C
- (5) The following is executed in a loop on CPU1:
 - All of the communication peripherals are exercised in loop-back mode: CAN-A to CAN-B; SPI-A to SPI-C; SCI-A to SCI-D; I2C-A to I2C-B; McBSP-A to McBSP-B; USB
 - ePWM1 to ePWM12 generate 400-kHz PWM output on 24 pins
 - CPU TIMERs active
 - DMA does 32-bit burst transfers
 - CLA1 does multiply-accumulate tasks
 - All ADCs perform continuous conversion
 - All DACs ramp voltage up/down at 150 kHz
 - CMPSS1 to CMPSS8 active
 - TMU calculates a cosine
 - FPU does multiply/accumulate with parallel load

7.5.3 Current Consumption Graphs

Figure 7-1 and Figure 7-2 are a typical representation of the relationship between frequency and current consumption/power on the device. The operational test from Section 7.5.1 was run across frequency at V_{max} and high temperature. Actual results will vary based on the system implementation and conditions.

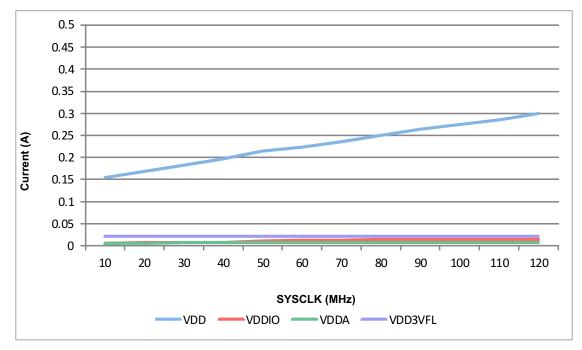


Figure 7-1. Operational Current Versus Frequency

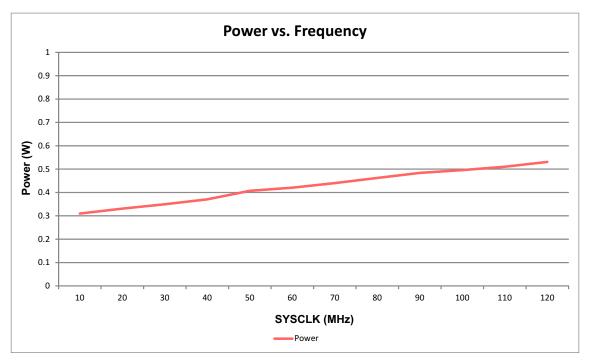


Figure 7-2. Power Versus Frequency

Leakage current will increase with operating temperature in a nonlinear manner. The difference in V_{DD} current between TYP and MAX conditions can be seen in Figure 7-3. The current consumption in HALT mode is primarily leakage current as there is no active switching if the internal oscillator has been powered down.

Figure 7-3 shows the typical leakage current across temperature. The device was placed into HALT mode under nominal voltage conditions.

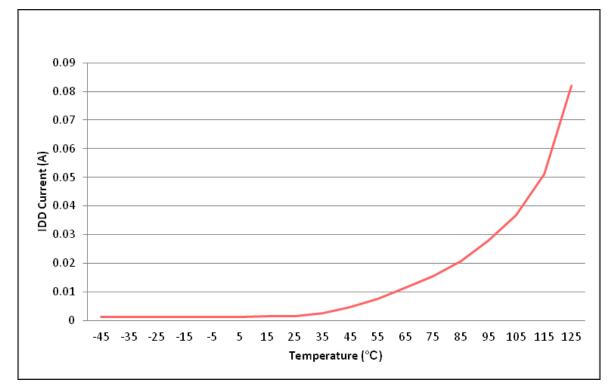


Figure 7-3. I_{DD} Leakage Current Versus Temperature

7.5.4 Reducing Current Consumption

The F2807x devices provide some methods to reduce the device current consumption:

- Any one of the four low-power modes—IDLE, STANDBY, HALT, and HIBERNATE—could be entered during idle periods in the application.
- The flash module may be powered down if the code is run from RAM.
- Disable the pullups on pins that assume an output function.
- Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be achieved by turning off the clock to any peripheral that is not used in a given application. Table 7-1 indicates the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register.
- To realize the lowest V_{DDA} current consumption in a low-power mode, see the respective analog chapter of the *TMS320F2807x Microcontrollers Technical Reference Manual* to ensure each module is powered down as well.

Peripherals (at 120 MHz)			
PERIPHERAL MODULE ⁽¹⁾ (2)	I _{DD} CURRENT REDUCTION (mA)		
ADC ⁽³⁾	2.1		
CAN	2.1		
CLA	0.9		
CMPSS ⁽³⁾	0.9		
CPUTIMER	0.2		
DAC ⁽³⁾	0.4		
DMA	1.8		
eCAP	0.4		
EMIF1	1.8		
ePWM1 to ePWM4 ⁽⁴⁾	2.8		
ePWM5 to ePWM12 ⁽⁴⁾	1.1		
HRPWM ⁽⁴⁾	1.1		
I2C	0.9		
McBSP	1		
SCI	0.6		
SDFM	1.3		
SPI	0.4		
USB and AUXPLL at 60 MHz	14.8		

Table 7-1. Current on V_{DD} Supply by Various

(1) At V_{max} and 125°C.

- (2) All peripherals are disabled upon reset. Use the PCLKCRx register to individually enable peripherals. For peripherals with multiple instances, the current quoted is for a single module.
- (3) This number represents the current drawn by the digital portion of the ADC, CMPSS, and DAC modules.
- (4) The ePWM is at /2 of SYSCLK.

7.6 Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
\ <i>\</i>	High-level output voltage		I _{OH} = I _{OH} MIN	V _{DDIO} * 0.8			V
V _{OH}	nigh-level output voltage		I _{OH} = −100 μA	$V_{DDIO} - 0.2$			v
V _{OL}	Low-level output voltage		I _{OL} = I _{OL} MAX			0.4	V
V OL	Low-level output voltage		I _{OL} = 100 μA			0.2	v
I _{OH}	High-level output source	current for all output pins		-4			mA
I _{OL}	Low-level output sink cur	rent for all output pins				4	mA
V _{IH}	High-level input voltage (3.3 V)	GPIO0–GPIO7, GPIO42–GPIO43, GPIO46–GPIO47		V _{DDIO} * 0.7		V _{DDIO} + 0.3	V
		All other pins		2.0		V _{DDIO} + 0.3	
V _{IL}	Low-level input voltage (3.3 V)		V _{SS} – 0.3		0.8	V
V _{HYSTERESIS}	Input hysteresis				150		mV
I _{pulldown}	Input current	Digital inputs with pulldown ⁽¹⁾	$V_{DDIO} = 3.3 V$ $V_{IN} = V_{DDIO}$	120			μA
I _{pullup}	Input current	Digital inputs with pullup enabled ⁽¹⁾	V _{DDIO} = 3.3 V V _{IN} = 0 V		150		μA
		Digital	Pullups disabled 0 V ≤ V _{IN} ≤ V _{DDIO}			2	
I _{LEAK}	Pin leakage	Analog (except ADCINB0 or DACOUTx)				2	μA
		ADCINB0	$0 V \le V_{IN} \le V_{DDA}$		2	11 ⁽²⁾	
	DACOUTx		1		66		
CI	Input capacitance	1			2		pF
V _{DDIO-POR}	V _{DDIO} power-on reset vo	Itage			2.3		V

(1) See Table 6-1 for a list of pins with a pullup or pulldown.

(2) The MAX input leakage shown on ADCINB0 is at high temperature.

7.7 Thermal Resistance Characteristics

7.7.1 PTP Package

		°C/W ⁽¹⁾	AIR FLOW (Ifm) ⁽²⁾
RO _{JC}	Junction-to-case thermal resistance	6.97	N/A
RO _{JB}	Junction-to-board thermal resistance	6.05	N/A
RO _{JA} (High k PCB)	Junction-to-free air thermal resistance	17.8	0
		12.8	150
RO _{JMA}	Junction-to-moving air thermal resistance	11.4	250
		10.1	500
		0.11	0
Dei	lunction to neckage ten	0.24	150
Psi _{JT}	Junction-to-package top	0.33	250
		0.42	500
		6.1	0
Dei	Junction-to-board	5.5	150
Psi _{JB}	JUNCTON-TO-DOBIO	5.4	250
		5.3	500

(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RO_{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards:

- JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
- JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
- (2) Ifm = linear feet per minute

7.7.2 PZP Package

		°C/W ⁽¹⁾	AIR FLOW (Ifm) ⁽²⁾
RO _{JC}	Junction-to-case thermal resistance	4.3	N/A
RO _{JB}	Junction-to-board thermal resistance	5.9	N/A
RO _{JA} (High k PCB)	Junction-to-free air thermal resistance	19.1	0
		14.3	150
RO _{JMA}	Junction-to-moving air thermal resistance	12.8	250
		11.4 0.03	500
		0.03	0
Dei	lunction to neckage ten	0.09	150
Psi _{JT}	Junction-to-package top	0.12	250
		0.20	500
		6.0	0
Dei	lupation to board	5.5	150
Psi _{JB}	Junction-to-board	5.5	250
		5.3	500

(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RO_{JC}] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards:

- JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air)
- JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
- JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements

(2) Ifm = linear feet per minute

7.8 Thermal Design Considerations

Based on the end application design and operational profile, the I_{DD} and I_{DDIO} currents could vary. Systems that exceed the recommended maximum power dissipation in the end product may require additional thermal enhancements. Ambient temperature (T_A) varies with the end application and product design. The critical factor that affects reliability and functionality is T_J , the junction temperature, not the ambient temperature. Hence, care should be taken to keep T_J within the specified limits. T_{case} should be measured to estimate the operating junction temperature T_J . T_{case} is normally measured at the center of the package top-side surface. The thermal application report *Semiconductor and IC Package Thermal Metrics* helps to understand the thermal metrics and definitions.

7.9 System

7.9.1 Power Management

7.9.1.1 Internal 1.2-V VREG

The internal VREG is supplied by V_{DDIO} and generates the 1.2 V required to power the V_{DD} pins. Enable this functionality by pulling the VREGENZ pin low to V_{SS} . Although the internal VREG eliminates the need to use an external power supply for V_{DD} , decoupling capacitors are required on each V_{DD} pin for VREG stability (see the description of V_{DD} in Section 6.2.1). Driving an external load with the internal VREG is not supported.

7.9.1.2 Power Sequencing

7.9.1.2.1 Signal Pin Requirements

Before powering the device, no voltage larger than 0.3 V above V_{DDIO} can be applied to any digital pin, and no voltage larger than 0.3 V above V_{DDA} can be applied to any analog pin (including V_{REFHI}).

7.9.1.2.2 $V_{\text{DDIO}},\,V_{\text{DDA}},\,V_{\text{DD3VFL}},\,\text{and}\,\,V_{\text{DDOSC}}$ Requirements

The 3.3-V supplies should be powered up together and kept within 0.3 V of each other during functional operation.

7.9.1.2.3 V_{DD} Requirements

When VREGENZ is tied to V_{SS} , the V_{DD} sequencing requirements are handled by the device.

When using an external source for V_{DD} (VREGENZ tied to V_{DDIO}), V_{DDOSC} and V_{DD} must be powered on and off at the same time. V_{DDOSC} should not be powered on when V_{DD} is off. During the ramp, V_{DD} should be kept no more than 0.3 V above V_{DDIO} .

For applications not powering V_{DDOSC} and V_{DD} at the same time, see the "INTOSC: VDDOSC Powered Without VDD Can Cause INTOSC Frequency Drift" advisory in the *TMS320F2807x MCUs Silicon Errata*.

There is an internal 12.8-mA current source from V_{DD3VFL} to V_{DD} when the flash is active. When the flash is active and the device is in a low-activity state (for example, a low-power mode), this internal current source can cause V_{DD} to rise to approximately 1.3 V. There will be zero current load to the external system V_{DD} regulator while in this condition. This is not an issue for most regulators; however, if the system voltage regulator requires a minimum load for proper operation, then an external 82 Ω resistor can be added to the board to ensure a minimal current load on V_{DD} . See the "Low-Power Modes: Power Down Flash or Maintain Minimum Device Activity" advisory in the *TMS320F2807x MCUs Silicon Errata*.

7.9.1.2.4 Supply Ramp Rate

The supplies should ramp to full rail within 10 ms. Section 7.9.1.2.4.1 shows the supply ramp rate.

7.9.1.2.4.1 Supply Ramp Rate

		MIN	MAX	UNIT
Supply ramp rate	$V_{DDIO},V_{DD},V_{DDA},V_{DD3VFL},V_{DDOSC}$ with respect to V_{SS}	330	10 ⁵	V/s

7.9.1.2.5 Supply Supervision

An internal power-on-reset (POR) circuit keeps the I/Os in a high-impedance state during power up. External supply voltage supervisors (SVS) can be used to monitor the voltage on the 3.3-V and 1.2-V rails and drive XRS low when supplies are outside operational specifications.

Note

If the supply voltage is held near the POR threshold, then the device may drive periodic resets onto the \overline{XRS} pin.

7.9.2 Reset Timing

 \overline{XRS} is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on reset (POR). During power up, the POR circuit drives the \overline{XRS} pin low. A watchdog or NMI watchdog reset also drives the pin low. An external circuit may drive the pin to assert a device reset.

A resistor with a value from 2.2 k Ω to 10 k Ω should be placed between \overline{XRS} and V_{DDIO} . A capacitor should be placed between \overline{XRS} and V_{SS} for noise filtering; the capacitance should be 100 nF or smaller. These values will allow the watchdog to properly drive the \overline{XRS} pin to V_{OL} within 512 OSCCLK cycles when the watchdog reset is asserted. Figure 7-4 shows the recommended reset circuit.

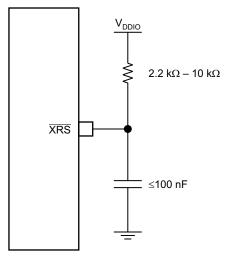


Figure 7-4. Reset Circuit

7.9.2.1 Reset Sources

The following reset sources exist on this device: XRS, WDRS, NMIWDRS, SYSRS, SCCRESET, and HIBRESET. See the Reset Signals table in the System Control chapter of the *TMS320F2807x Microcontrollers Technical Reference Manual*.

The parameter $t_{h(boot-mode)}$ must account for a reset initiated from any of these sources.

CAUTION

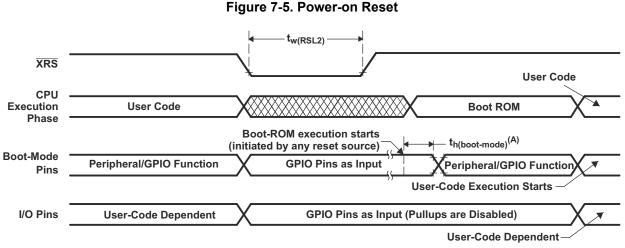
Some reset sources are internally driven by the device. Some of these sources will drive \overline{XRS} low. Use this to disable any other devices driving the boot pins. The $\overline{SCCRESET}$ and debugger reset sources do not drive \overline{XRS} ; therefore, the pins used for boot mode should not be actively driven by other devices in the system. The boot configuration has a provision for changing the boot pins in OTP; for more details, see the *TMS320F2807x Microcontrollers Technical Reference Manual*.

7.9.2.2 Reset Electrical Data and Timing

Section 7.9.2.2.1 shows the reset (\overline{XRS}) timing requirements. Section 7.9.2.2.2 shows the reset (\overline{XRS}) switching characteristics. Figure 7-5 shows the power-on reset. Figure 7-6 shows the warm reset.

7.9.2.2.1 Reset (XRS) Timing Requirements

			MIN MAX	UNIT
t _{h(boot-mode)}	Hold time for boot-mode pins		1.5	ms
	Pulse duration, XRS low on	All cases	3.2	
t _{w(RSL2)}	warm reset	Low-power modes used in application and SYSCLKDIV > 16	3.2 * (SYSCLKDIV/16)	μs



7.9.2.2.2 Reset (XRS) Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT
w(RSL1)	Pulse duration, XRS driven low by device after supplies are stable		100		μs
w(WDRS)	Pulse duration, reset pulse generated by watchdog	51	2t _{c(OSCCLK)}		cycle
V _{DDIO} , V _{DDA} (3.3 V) - V _{DD} (1.2 V) -					
XRS ^(A)	▲ t _{w(RSL1)}				
_		oot ROM —	\backslash		
CPU Execution -	¥B.	oot ROM —			$\chi_{}$
	B	oot ROM —	User	-code —	X×
Execution - Phase	th(boot-mode) ^(B)		User User-code dep		Xz
Execution -					
Execution - Phase Boot-Mode -	t _{h(boot-mode)} (B)		User-code dep ▶////////////////////////////////////		
Execution - Phase Boot-Mode -	th(boot-mode) ^(B) GPIO pins as input		User-code dep	oendent -	

- A. The XRS pin can be driven externally by a supervisor or an external pullup resistor, see Section 6.2.1.
- B. After reset from any source (see Section 7.9.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.

A. After reset from any source (see Section 7.9.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.

Figure 7-6. Warm Reset

7.9.3 Clock Specifications

7.9.3.1 Clock Sources

Table 7-2 lists four possible clock sources. Figure 7-7 provides an overview of the device's clocking system.

CLOCK SOURCE	MODULES CLOCKED	COMMENTS
INTOSC1	Can be used to provide clock for: • Watchdog block • CPU-Timer 2	Internal oscillator 1. Zero-pin overhead 10-MHz internal oscillator.
INTOSC2 ⁽¹⁾	Can be used to provide clock for: Main PLL Auxiliary PLL CPU-Timer 2 	Internal oscillator 2. Zero-pin overhead 10-MHz internal oscillator.
XTAL	Can be used to provide clock for: • Main PLL • Auxiliary PLL • CPU-Timer 2	External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1 pin.
AUXCLKIN	Can be used to provide clock for: • Auxiliary PLL • CPU-Timer 2	Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin should be used to provide the input clock.

Table 7-2. Possible Reference Clock Sources

(1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK).

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

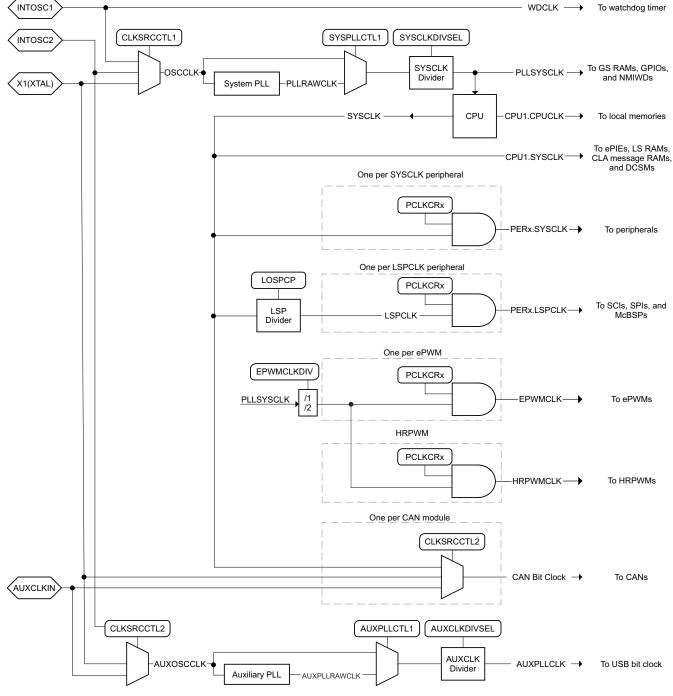


Figure 7-7. Clocking System

EXAS

INSTRUMENTS

www.ti.com

7.9.3.2 Clock Frequencies, Requirements, and Characteristics

This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of the internal clocks, and the frequency and switching characteristics of the output clock.

7.9.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times

Section 7.9.3.2.1.1 shows the frequency requirements for the input clocks. Table 7-3 shows the crystal equivalent series resistance requirements. Section 7.9.3.2.1.2 shows the X1 input level characteristics when using an external clock source. Section 7.9.3.2.1.3 and Section 7.9.3.2.1.4 show the timing requirements for the input clocks. Section 7.9.3.2.1.5 shows the PLL lock times for the Main PLL and the USB PLL.

7.9.3.2.1.1 Input Clock Frequency

		MIN	MAX	UNIT
f _(XTAL)	Frequency, X1/X2, from external crystal or resonator	10	20	MHz
f _(X1)	Frequency, X1, from external oscillator	2	25	MHz
f _(AUXI)	Frequency, AUXCLKIN, from external oscillator	2	60	MHz

7.9.3.2.1.2 X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal)

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
X1 V _{IL}	Valid low-level input voltage	-0.3	0.3 * V _{DDIO}	V
X1 V _{IH}	Valid high-level input voltage	0.7 * V _{DDIO}	V _{DDIO} + 0.3	V

7.9.3.2.1.3 X1 Timing Requirements

		MIN	MAX	UNIT
t _{f(X1)}	Fall time, X1		6	ns
t _{r(X1)}	Rise time, X1		6	ns
t _{w(X1L)}	Pulse duration, X1 low as a percentage of $t_{c(X1)}$	45%	55%	
t _{w(X1H)}	Pulse duration, X1 high as a percentage of $t_{c(X1)} \label{eq:constant}$	45%	55%	

7.9.3.2.1.4 AUXCLKIN Timing Requirements

		MIN	MAX	UNIT
t _{f(AUXI)}	Fall time, AUXCLKIN		6	ns
t _{r(AUXI)}	Rise time, AUXCLKIN		6	ns
t _{w(AUXL)}	Pulse duration, AUXCLKIN low as a percentage of $t_{\mbox{c}(\mbox{XCI})}$	45%	55%	
t _{w(AUXH)}	Pulse duration, AUXCLKIN high as a percentage of $t_{c(XCI)}$	45%	55%	

7.9.3.2.1.5 PLL Lock Times

		MIN	NOM	MAX	UNIT
t _(PLL)	Lock time, Main PLL (X1, from external oscillator)	50 µs +	2500 * t _{c(OSCCLK)} ⁽¹⁾		μs
t _(USB)	Lock time, USB PLL (AUXCLKIN, from external oscillator)	50 µs +	2500 * t _{c(OSCCLK)} ⁽¹⁾		μs

(1) The PLL lock time here defines the typical time of execution for the PLL workaround as defined in the TMS320F2807x MCUs Silicon Errata. Cycle count includes code execution of the PLL initialization routine, which could vary depending on compiler optimizations and flash wait states. TI recommends using the latest example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPII() or SysCtl_setClock(). For the auxillary PLL, see InitAuxPII() or SysCtl_setAuxClock().

7.9.3.2.2 Internal Clock Frequencies

Section 7.9.3.2.2.1 provides the clock frequencies for the internal clocks.

7.9.3.2.2.1 Internal Clock Frequencies

		MIN	NOM	MAX	UNIT
f _(SYSCLK)	Frequency, device (system) clock	2		120	MHz
t _{c(SYSCLK)}	Period, device (system) clock	8.33		500	ns
f _(PLLRAWCLK)	Frequency, system PLL output (before SYSCLK divider)	120		400	MHz
f _(AUXPLLRAWCLK)	Frequency, auxiliary PLL output (before AUXCLK divider)	120		400	MHz
f _(AUXPLL)	Frequency, AUXPLLCLK	2	60	60	MHz
f _(PLL)	Frequency, PLLSYSCLK	2		120	MHz
f _(LSP)	Frequency, LSPCLK	2		120	MHz
t _{c(LSPCLK)}	Period, LSPCLK	8.33		500	ns
f _(OSCCLK)	Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or X1)		See respective clock		MHz
f _(EPWM)	Frequency, EPWMCLK ⁽¹⁾			100	MHz
f _(HRPWM)	Frequency, HRPWMCLK	60		100	MHz

(1) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.

7.9.3.2.3 Output Clock Frequency and Switching Characteristics

Section 7.9.3.2.3.1 provides the frequency of the output clock. Section 7.9.3.2.3.2 shows the switching characteristics of the output clock, XCLKOUT.

7.9.3.2.3.1 Output Clock Frequency

		MIN	MAX	UNIT
f _(XCO)	Frequency, XCLKOUT		50	MHz

7.9.3.2.3.2 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)

over recommended operating conditions (unless otherwise noted)

	PARAMETER ⁽¹⁾ ⁽²⁾	MIN	MAX	UNIT
t _{f(XCO)}	Fall time, XCLKOUT		5	ns
t _{r(XCO)}	Rise time, XCLKOUT		5	ns
t _{w(XCOL)}	Pulse duration, XCLKOUT low	H – 2	H + 2	ns
t _{w(XCOH)}	Pulse duration, XCLKOUT high	H – 2	H + 2	ns

(1) A load of 40 pF is assumed for these parameters.

(2) $H = 0.5t_{c(XCO)}$

7.9.3.3 Input Clocks and PLLs

In addition to the internal 0-pin oscillators, multiple external clock source options are available. Figure 7-8 shows the recommended methods of connecting crystals, resonators, and oscillators to pins X1/X2 (also referred to as XTAL) and AUXCLKIN.

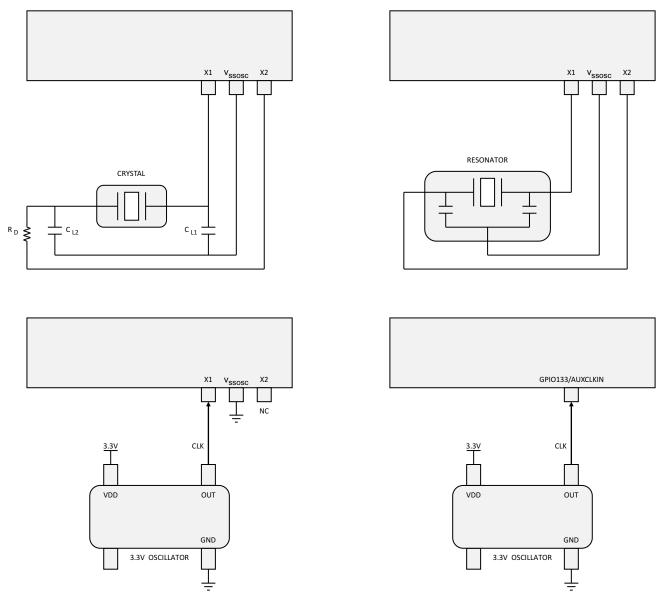


Figure 7-8. Connecting Input Clocks to a 2807x Device

7.9.3.4 Crystal Oscillator

When using a quartz crystal, it may be necessary to include a damping resistor (R_D) in the crystal circuit to prevent over-driving the crystal (drive level can be found in the crystal data sheet). In higher-frequency applications (10 MHz or greater), R_D is generally not required. If a damping resistor is required, R_D should be as small as possible because the size of the resistance affects start-up time (smaller R_D = faster start-up time). TI recommends that the crystal manufacturer characterize the crystal with the application board. Section 7.9.3.4.1 shows the crystal oscillator parameters. Table 7-3 shows the crystal equivalent series resistance (ESR) requirements. Section 7.9.3.4.2 shows the crystal oscillator electrical characteristics.

7.9.3.4.1 Crystal Oscillator Parameters

		MIN	MAX	UNIT
CL1, CL2	Load capacitance	12	24	pF
C0	Crystal shunt capacitance		7	pF

Table 7-3. Crystal Equivalent Series Resistance (ESR) Requirements

CRYSTAL FREQUENCY (MHz) (1) (2)	MAXIMUM ESR (Ω) (CL1 = CL2 = 12 pF)	MAXIMUM ESR (Ω) (CL1 = CL2 = 24 pF)
10	55	110
12	50	95
14	50	90
16	45	75
18	45	65
20	45	50

(1) Crystal shunt capacitance (C0) should be less than or equal to 7 pF.

(2) ESR = Negative Resistance/3

7.9.3.4.2 Crystal Oscillator Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Start-up time ⁽¹⁾	f = 20 MHz ESR MAX = 50 Ω CL1 = CL2 = 24 pF C0 = 7 pF		2		ms
Crystal drive level (DL)				1	mW

(1) Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the application with the chosen crystal.

7.9.3.5 Internal Oscillators

To reduce production board costs and application development time, all F2807x devices contain two independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system reference clock (OSCCLK). Section 7.9.3.5.1 provides the electrical characteristics of the internal oscillators to determine if this module meets the clocking requirements of the application.

Section 7.9.3.5.1 provides the electrical characteristics of the two internal oscillators.

7.9.3.5.1 Internal Oscillator Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(INTOSC)	Frequency, INTOSC1 and INTOSC2		9.7	10.0	10.3	MHz
	Frequency stability at room temperature	30°C, Nominal V _{DD}		±0.1%		
f(INTOSC-STABILITY)	Frequency stability over V _{DD}	30°C		±0.2%		
	Frequency stability		-3.0%		3.0%	
f _(INTOSC-ST)	Start-up and settling time				20	μs

7.9.4 Flash Parameters

The on-chip flash memory is tightly integrated to the CPU, allowing code execution directly from flash through 128-bit-wide prefetch reads and a pipeline buffer. Flash performance for sequential code is equal to execution from RAM. Factoring in discontinuities, most applications will run with an efficiency of approximately 80% relative to code executing from RAM.

This device also has an OTP (One-Time-Programmable) sector used for the dual code security module (DCSM), which cannot be erased after it is programmed.

Table 7-4 shows the minimum required flash wait states at different frequencies. Section 7.9.4.1 shows the flash parameters.

CPUCL	MINIMUM WAIT STATES ⁽¹⁾	
EXTERNAL OSCILLATOR OR CRYSTAL	INTOSC1 OR INTOSC2	
100 < CPUCLK ≤ 120	97 < CPUCLK ≤ 120	2
50 < CPUCLK ≤ 100	48 < CPUCLK ≤ 97	1
CPUCLK ≤ 50	CPUCLK ≤ 48	0

Table 7-4. Flash Wait States

(1) Minimum required FRDCNTL[RWAIT].

7.9.4.1 Flash Parameters

PARAMETER			MIN	TYP	MAX	UNIT
		128 data bits + 16 ECC bits		40	300	μs
	Program Time ⁽¹⁾	8KW sector		100	200	ms
32KW sector		32KW sector		400	800	ms
Γ_{recc} $Time^{(2)}$ at < 25 surplus		8KW sector		35	60	
	Erase Time ⁽²⁾ at < 25 cycles	32KW sector		40	65	ms
	France Time(2) at 2014 avalage	8KW sector		110	4000	200
Erase Time ⁽²⁾ at 20k cycles		32KW sector		120	4000	ms
N _{wec}	Write/erase cycles				20000	cycles
t _{retention}	Data retention duration at $T_J = 85^{\circ}C$		20			years

(1) Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM:

- Code that uses flash API to program the flash
- Flash API itself
- Flash data to be programmed

In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used. Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does. Erase time includes Erase verify by the CPU and does not involve any data transfer.

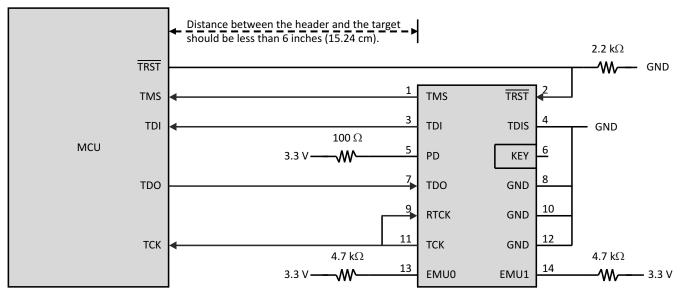
(2) Erase time includes Erase verify by the CPU.

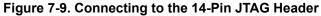
Note

The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word may only be programmed once per write/erase cycle. For more details, see the "Flash: Minimum Programming Word Size" advisory in the *TMS320F2807x MCUs Silicon Errata*.

7.9.5 Emulation/JTAG

The JTAG port has five dedicated pins: TRST, TMS, TDI, TDO, and TCK. The TRST signal should always be pulled down through a 2.2-k Ω pulldown resistor on the board. This MCU does not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 k Ω to 4.7 k Ω (depending on the drive strength of the debugger ports). Typically, a 2.2-k Ω value is used.


See Figure 7-9 to see how the 14-pin JTAG header connects to the MCU's JTAG port signals. Figure 7-10 shows how to connect to the 20-pin header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not used and should be grounded.


The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board 3.3-V supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug probe). Header terminal RESET is an open-drain output from the JTAG debug probe header that enables board components to be reset through JTAG debug probe commands (available only through the 20-pin header).

Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise, each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22- Ω resistors should be placed in series on each JTAG signal.

For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints for C28x in CCS.

For more information about JTAG emulation, see the XDS Target Connection Guide.

TMS320F28076, TMS320F28075 SPRS902J - OCTOBER 2014 - REVISED FEBRUARY 2021

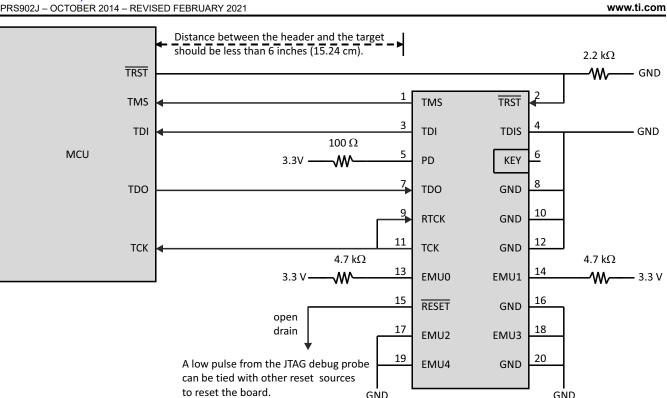


Figure 7-10. Connecting to the 20-Pin JTAG Header

GND

EXAS

GND

Instruments

7.9.5.1 JTAG Electrical Data and Timing

Section 7.9.5.1.1 lists the JTAG timing requirements. Section 7.9.5.1.2 lists the JTAG switching characteristics. Figure 7-11 shows the JTAG timing.

7.9.5.1.1 JTAG Timing Requirements

NO.			MIN	MAX	UNIT
1	t _{c(TCK)}	Cycle time, TCK	66.66		ns
1a	t _{w(TCKH)}	Pulse duration, TCK high (40% of t_c)	26.66		ns
1b	t _{w(TCKL)}	Pulse duration, TCK low (40% of t_c)	26.66		ns
3	t _{su(TDI-TCKH)}	Input setup time, TDI valid to TCK high	13		ns
3	t _{su(TMS-TCKH)}	Input setup time, TMS valid to TCK high	13		ns
4	t _{h(TCKH-TDI)}	Input hold time, TDI valid from TCK high	7		ns
4	t _{h(TCKH-TMS)}	Input hold time, TMS valid from TCK high	7		ns

7.9.5.1.2 JTAG Switching Characteristics

over recommended operating conditions (unless otherwise noted)

NO.	PARAMETER		MIN	MAX	UNIT
2	t _{d(TCKL-TDO)} Delay time, TCK low to TDO valid		6	25	ns
	4	1			

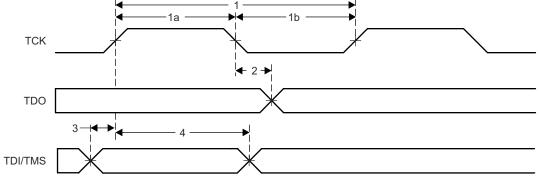


Figure 7-11. JTAG Timing

7.9.6 GPIO Electrical Data and Timing

The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise glitches.

The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADC(s), eCAP(s), ePWM(s), and external interrupts. For more details, see the X-BAR chapter in the *TMS320F2807x Microcontrollers Technical Reference Manual*.

7.9.6.1 GPIO - Output Timing

Section 7.9.6.1.1 shows the general-purpose output switching characteristics. Figure 7-12 shows the general-purpose output timing.

7.9.6.1.1 General-Purpose Output Switching Characteristics

over recommended operating conditions (unless otherwise noted)

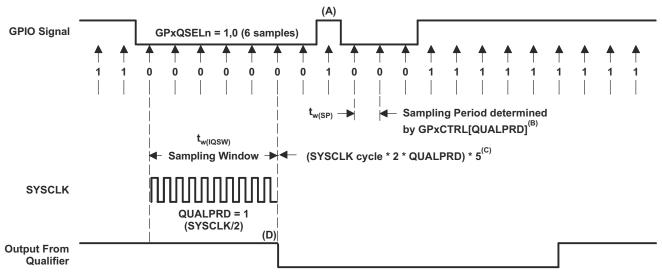
	PARAMETER			UNIT
t _{r(GPO)}	Rise time, GPIO switching low to high	All GPIOs	8(1)	ns
t _{f(GPO)}	Fall time, GPIO switching high to low	All GPIOs	8(1)	ns
t _{fGPO}	Toggling frequency, GPO pins		25	MHz

(1) Rise time and fall time vary with load. These values assume a 40-pF load.

GPIO

Figure 7-12. General-Purpose Output Timing

7.9.6.2 GPIO - Input Timing


Section 7.9.6.2.1 shows the general-purpose input timing requirements. Figure 7-13 shows the sampling mode.

7.9.6.2.1 General-Purpose Input Timing Requirements

			MIN	MAX	UNIT
t _{w(SP)}	Sampling period	QUALPRD = 0	1t _{c(SYSCLK)}		cycles
	Sampling period	QUALPRD ≠ 0	2t _{c(SYSCLK)} * QUALPRD		cycles
t _{w(IQSW)}	Input qualifier sampling window		$t_{w(SP)} * (n^{(1)} - 1)$		cycles
t _{w(GPI)} ⁽²⁾	Pulse duration, GPIO low/high	Synchronous mode	2t _{c(SYSCLK)}		cycles
	Fuise duration, GPIO low/high	With input qualifier	$t_{w(IQSW)} + t_{w(SP)} + 1t_{c(SYSCLK)}$		cycles

(1) "n" represents the number of qualification samples as defined by GPxQSELn register.

(2) For t_{w(GPI)}, pulse width is measured from V_{IL} to V_{IL} for an active low signal and V_{IH} to V_{IH} for an active high signal.

- A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).
- B. The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.
- C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.
- D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.

Figure 7-13. Sampling Mode

7.9.6.3 Sampling Window Width for Input Signals

The following section summarizes the sampling window width for input signals for various input qualifier configurations.

Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.

Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD \neq 0	(1)
Sampling frequency = SYSCLK, if QUALPRD = 0	(2)
Sampling period = SYSCLK cycle \times 2 \times QUALPRD, if QUALPRD \neq 0	(3)

In Equation 1, Equation 2, and Equation 3, SYSCLK cycle indicates the time period of SYSCLK.

Sampling period = SYSCLK cycle, if QUALPRD = 0

In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. This is determined by the value written to GPxQSELn register.

Case 1:

Qualification using 3 samples

Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0

Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0

Case 2:

Qualification using 6 samples

Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0

Sampling window width = (SYSCLK cycle) \times 5, if QUALPRD = 0

Figure 7-14 shows the general-purpose input timing.

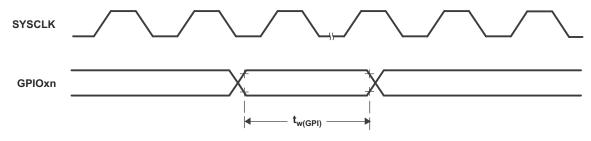


Figure 7-14. General-Purpose Input Timing

7.9.7 Interrupts

Figure 7-15 provides a high-level view of the interrupt architecture.

As shown in Figure 7-15, the devices support five external interrupts (XINT1 to XINT5) that can be mapped onto any of the GPIO pins.

In this device, 16 ePIE block interrupts are grouped into 1 CPU interrupt. In total, there are 12 CPU interrupt groups, with 16 interrupts per group.

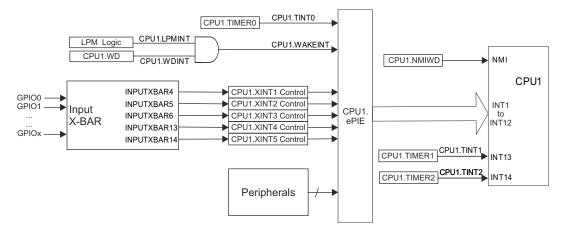


Figure 7-15. External and ePIE Interrupt Sources

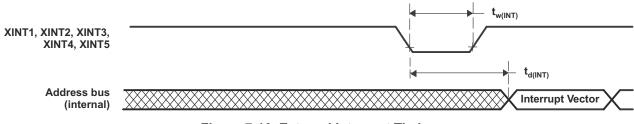
7.9.7.1 External Interrupt (XINT) Electrical Data and Timing

Section 7.9.7.1.1 lists the external interrupt timing requirements. Section 7.9.7.1.2 lists the external interrupt switching characteristics. Figure 7-16 shows the external interrupt timing.

7.9.7.1.1 External Interrupt Timing Requirements

			MIN MAX	UNIT ⁽¹⁾
t	Ty Pulse duration, INT input low/high	Synchronous	2t _{c(SYSCLK)}	cycles
^L w(IN		With qualifier	$t_{w(IQSW)}$ + $t_{w(SP)}$ + $1t_{c(SYSCLK)}$	cycles

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.


7.9.7.1.2 External Interrupt Switching Characteristics

over recommended operating conditions (unless otherwise noted)⁽¹⁾

PARAMETER	MIN	MAX	UNIT
$t_{d(\text{INT})}$ $$ Delay time, INT low/high to interrupt-vector fetch^{(2)}	$t_{w(IQSW)}$ + 14 $t_{c(SYSCLK)}$	$t_{w(IQSW)} + t_{w(SP)} + 14t_{c(SYSCLK)}$	cycles

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

(2) This assumes that the ISR is in a single-cycle memory.

7.9.8 Low-Power Modes

This device has three clock-gating low-power modes and a special power-gating mode.

Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low Power Modes section of the *TMS320F2807x Microcontrollers Technical Reference Manual*.

7.9.8.1 Clock-Gating Low-Power Modes

IDLE, STANDBY, and HALT modes on this device are similar to those on other C28x devices. Table 7-5 describes the effect on the system when any of the clock-gating low-power modes are entered.

MODULES/ CLOCK DOMAIN	CPU1 IDLE	CPU1 STANDBY	HALT
CPU1.CLKIN	Active	Gated	Gated
CPU1.SYSCLK	Active	Gated	Gated
CPU1.CPUCLK	Gated	Gated	Gated
Clock to modules Connected to PERx.SYSCLK	Active	Gated	Gated
CPU1.WDCLK	Active	Active	Gated if CLKSRCCTL1.WDHALTI = 0
AUXPLLCLK	Active	Active	Gated
PLL	Powered	Powered	Software must power down PLL before entering HALT
INTOSC1	Powered	Powered	Powered down if CLKSRCCTL1.WDHALTI = 0
INTOSC2	Powered	Powered	Powered down if CLKSRCCTL1.WDHALTI = 0
Flash	Powered	Powered	Software-Controlled
X1/X2 Crystal Oscillator	Powered	Powered	Powered-Down

 Table 7-5. Effect of Clock-Gating Low-Power Modes on the Device

7.9.8.2 Power-Gating Low-Power Modes

HIBERNATE mode is the lowest power mode on this device. It is a global low-power mode that gates the supply voltages to most of the system. HIBERNATE is essentially a controlled power-down with remote wakeup capability, and can be used to save power during long periods of inactivity. Table 7-6 describes the effects on the system when the HIBERNATE mode is entered.

MODULES/POWER DOMAINS	HIBERNATE	
M0 and M1 memories	 Remain on with memory retention if LPMCR.M0M1MODE = 0x00 Are off when LPMCR.M0M1MODE = 0x01 	
CPU1 digital peripherals	Powered down	
Dx, LSx, GSx memories	Power down, memory contents are lost	
I/Os	On with output state preserved	
Oscillators, PLL, analog peripherals, Flash	Enters Low-Power Mode	

Table 7-6. Effect of Power-Gating Low-Power Mode on the Device

7.9.8.3 Low-Power Mode Wakeup Timing

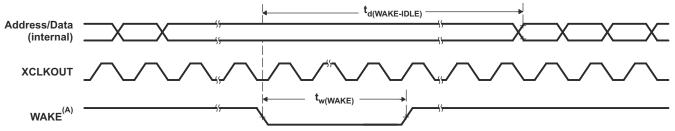
Section 7.9.8.3.1 shows the IDLE mode timing requirements, Section 7.9.8.3.2 shows the switching characteristics, and Figure 7-17 shows the timing diagram for IDLE mode.

7.9.8.3.1 IDLE Mode Timing Requirements

			MIN MA	X UNIT ⁽¹⁾
t Dulas duration autom	Pulse duration, external wake-up signal	Without input qualifier	2t _{c(SYSCLK)}	cvcles
^L w(WAKE)	r uise duration, external wake-up signal	With input qualifier	$2t_{c(SYSCLK)} + t_{w(IQSW)}$	Cycles

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

7.9.8.3.2 IDLE Mode Switching Characteristics


over recommended operating conditions (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{d(WAKE-IDLE)}	Delay time, external wake signal to program	execution resume ⁽²⁾		
	Wakeup from Flash	Without input qualifier	40t _{c(SYSCLK)}	
	 Flash module in active state Wakeup from Flash Flash module in sleep state Wakeup from RAM 	With input qualifier	$40t_{c(SYSCLK)} + t_{w(WAKE)}$	
		Without input qualifier	6700t _{c(SYSCLK)} ⁽³⁾	cycles
		With input qualifier	6700t _{c(SYSCLK)} ⁽³⁾ + t _{w(WAKE)}	
		Without input qualifier	25t _{c(SYSCLK)}	
		With input qualifier	$25t_{c(SYSCLK)} + t_{w(WAKE)}$	

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency.

(3) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2807x Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 120 MHz, RWAIT is 2, and FPAC1[PSLEEP] is 0x860.

A. WAKE can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.

Figure 7-17. IDLE Entry and Exit Timing Diagram

Section 7.9.8.3.3 shows the STANDBY mode timing requirements, Section 7.9.8.3.4 shows the switching characteristics, and Figure 7-18 shows the timing diagram for STANDBY mode.

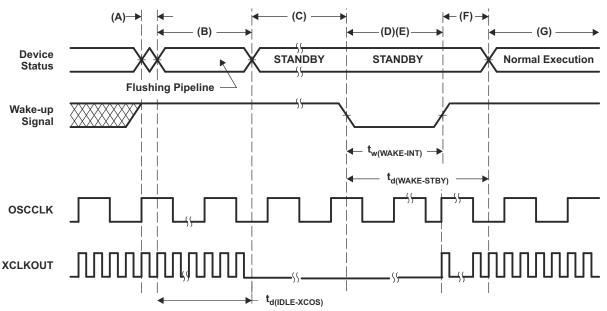
7.9.8.3.3 STANDBY Mode Timing Requirements

			MIN	MAX	UNIT
	Pulse duration, external	QUALSTDBY = $0 \mid 2t_{c(OSCCLK)}$	3t _{c(OSCCLK)}		
t _{w(WAKE-INT)}	wake-up signal	QUALSTDBY > 0 (2 + QUALSTDBY) $t_{c(OSCCLK)}$ ⁽¹⁾	(2 + QUALSTDBY) * t _{c(OSCCLK)}		cycles

(1) QUALSTDBY is a 6-bit field in the LPMCR register.

7.9.8.3.4 STANDBY Mode Switching Characteristics

over recommended operating conditions (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN MA	X UNIT
t _{d(IDLE-XCOS)}	Delay time, IDLE instruction executed to XCLKOUT stop		16t _{c(INTOSC}	1) cycles
t _{d(WAKE-STBY)}	Delay time, external wake signal to program execution resume ⁽¹⁾			
	Wakeup from flash Flash module in active state 		175t _{c(SYSCLK)} + t _{w(WAKE-IN}	
	Wakeup from flash _ Flash module in sleep state		6700t _{c(SYSCLK)} ⁽²⁾ + t _{w(WAK}	
	Wakeup from RAM		3t _{c(OSC)} + 15t _{c(SYSCLK)} t _{w(WAKE-IN}	+ [)

(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency.

(2) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2807x Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 120 MHz, RWAIT is 2, and FPAC1[PSLEEP] is 0x860.

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

- A. IDLE instruction is executed to put the device into STANDBY mode.
- B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.
- C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
- D. The external wake-up signal is driven active.
- E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.
- F. After a latency period, the STANDBY mode is exited.
- G. Normal execution resumes. The device will respond to the interrupt (if enabled).

Figure 7-18. STANDBY Entry and Exit Timing Diagram

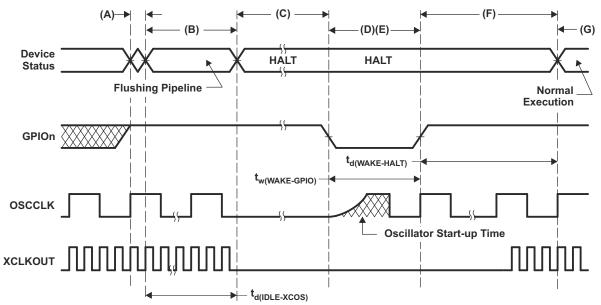
Section 7.9.8.3.5 shows the HALT mode timing requirements, Section 7.9.8.3.6 shows the switching characteristics, and Figure 7-19 shows the timing diagram for HALT mode.

7.9.8.3.5 HALT Mode Timing Requirements

		MIN MA	K UNIT
t _{w(WAKE-GPIO)}	Pulse duration, GPIO wake-up signal ⁽¹⁾	t_{oscst} + $2t_{c(OSCCLK)}$	cycles
t _{w(WAKE-XRS)}	Pulse duration, XRS wake-up signal ⁽¹⁾	$t_{oscst} + 8t_{c(OSCCLK)}$	cycles

(1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/ layout external to the device. See Section 7.9.3.4.2 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK, see Section 7.9.3.5 for t_{oscst}. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is powered externally to the device.

7.9.8.3.6 HALT Mode Switching Characteristics


over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN MAX	UNIT
t _{d(IDLE-XCOS)}	Delay time, IDLE instruction executed to XCLKOUT stop	16t _{c(INTOSC1)}	cycles
t _{d(WAKE-HALT)}	Delay time, external wake signal end to CPU1 program execution resume		
	 Wakeup from flash – Flash module in active state 	75t _{c(OSCCLK)}	cycles
	 Wakeup from flash – Flash module in sleep state 	17500t _{c(OSCCLK)} ⁽¹⁾	-,
	Wakeup from RAM	75t _{c(OSCCLK)}	

(1) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2807x Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 120 MHz, RWAIT is 2, and FPAC1[PSLEEP] is 0x860.

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

- A. IDLE instruction is executed to put the device into HALT mode.
- B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.
- C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing a 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
- D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wakeup sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wakeup procedure, care should be taken to maintain a low noise environment prior to entering and during HALT mode.
- E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.
- F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now exited.
- G. Normal operation resumes.
- H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.

Figure 7-19. HALT Entry and Exit Timing Diagram

Section 7.9.8.3.7 shows the HIBERNATE mode timing requirements, Section 7.9.8.3.8 shows the switching characteristics, and Figure 7-20 shows the timing diagram for HIBERNATE mode.

7.9.8.3.7 HIBERNATE Mode Timing Requirements

		MIN	MAX	UNIT
t _{w(HIBWAKE)}	Pulse duration, HIBWAKE signal	40		μs
t _{w(WAKEXRS)}	Pulse duration, XRS wake-up signal	40		μs

7.9.8.3.8 HIBERNATE Mode Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN MAX	UNIT
t _{d(IDLE-XCOS)}	Delay time, IDLE instruction executed to XCLKOUT stop	30t _{c(SYSCLK)}	cycles
t _{d(WAKE-HIB)}	Delay time, external wake signal to IORestore function start	1.5	ms

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

	(A)	I (B)→		(C)	 ←── (D) ──→ →	י 	←(E) (F)	 ←───($ G)(H) \longrightarrow \left[\longleftarrow (I)(J) \longrightarrow \right] $
Device Status	Device Active CPU1 HIB config	CPU1 IDLE Instruction	X	HIBERNATE		 	CPU1 Boot ROM		loRestore() or Application Specific Operation
GPIOHIBWAKEn,		i i			•	Td(\	NAKE-HIB)	, 	
XRSn		 		tw(HIBWAKEn), tw(XRSn) →		/ ←		 	
I/O Isolation									
PLLs	Enabled			Bypassed & Powered-Down					Application SpecificOperation
INTOSC1,INTOSC X1/X2		On		Powered Down	Powering up	I X	On	 	
XCLKCOUT					Inactive				Application Specific Operation
		td(IDLE-XCOS)-		←					

- A. CPU1 does necessary application-specific context save to M0/M1 memories if required. This includes GPIO state if using I/O Isolation. Configures the LPMCR register of CPU1 for HIBERNATE mode. Powers down Flash Pump/Bank, USB-PHY, CMPSS, DAC, and ADC using their register configurations. The application should also power down the PLL and peripheral clocks before entering HIBERNATE.
- B. IDLE instruction is executed to put the device into HIBERNATE mode.
- C. The device is now in HIBERNATE mode. If configured, I/O isolation is turned on, M0 and M1 memories are retained. CPU1 is powered down. Digital peripherals are powered down. The oscillators, PLLs, analog peripherals, and Flash are in their software-controlled Low-Power modes. Dx, LSx, and GSx memories are also powered down, and their memory contents lost.
- D. A falling edge on the GPIOHIBWAKEn pin will drive the wakeup of the devices clock sources INTOSC1, INTOSC2, and X1/X2 OSC. The wakeup source must keep the GPIOHIBWAKEn pin low long enough to ensure full power-up of these clock sources.
- E. After the clock sources are powered up, the GPIOHIBWAKEn must be driven high to trigger the wakeup sequence of the remainder of the device.
- F. The BootROM will then begin to execute. The BootROM can distinguish a HIBERNATE wakeup by reading the CPU1.REC.HIBRESETN bit. After the TI OTP trims are loaded, the BootROM code will branch to the user-defined loRestore function if it has been configured.
- G. At this point, the device is out of HIBERNATE mode, and the application may continue.
- H. The loRestore function is a user-defined function where the application may reconfigure GPIO states, disable I/O isolation, reconfigure the PLL, restore peripheral configurations, or branch to application code. This is up to the application requirements.
- I. If the application has not branched to application code, the BootROM will continue after completing loRestore. It will disable I/O isolation automatically if it was not taken care of inside of loRestore.
- J. BootROM will then boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral Booting chapter of the TMS320F2807x Microcontrollers Technical Reference Manual for more information.

Figure 7-20. HIBERNATE Entry and Exit Timing Diagram

Note

- If the IORESTOREADDR is configured as the default value, the BootROM will continue its execution to boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral Booting chapter of the TMS320F2807x Microcontrollers Technical Reference Manual for more information.
- 2. The user may choose to disable I/O Isolation at any point in the IoRestore function. Regardless if the user has disabled Isolation in the IoRestore function or if IoRestore is not defined, the BootROM will automatically disable isolation before booting as determined by the HIBBOOTMODE register.

7.9.9 External Memory Interface (EMIF)

The EMIF provides a means of connecting the CPU to various external storage devices like asynchronous memories (SRAM, NOR flash) or synchronous memory (SDRAM).

7.9.9.1 Asynchronous Memory Support

The EMIF supports asynchronous memories:

- SRAMs
- NOR Flash memories

There is an external wait input that allows slower asynchronous memories to extend the memory access. The EMIF module supports up to three chip selects (EMIF_CS[4:2]). Each chip select has the following individually programmable attributes:

- Data bus width
- Read cycle timings: setup, hold, strobe
- Write cycle timings: setup, hold, strobe
- Bus turnaround time
- Extended wait option with programmable time-out
- Select strobe option

7.9.9.2 Synchronous DRAM Support

The EMIF memory controller is compliant with the JESD21-C SDR SDRAMs that use a 32-bit or 16-bit data bus. The EMIF has a single SDRAM chip select ($\overline{EMIF}_{CS[0]}$).

The address space of the EMIF, for the synchronous memory (SDRAM), lies beyond the 22-bit range of the program address bus and can only be accessed through the data bus, which places a restriction on the C compiler being able to work effectively on data in this space. Therefore, when using SDRAM, the user is advised to copy data (using the DMA) from external memory to RAM before working on it. See the examples in C2000Ware (C2000Ware for C2000 MCUs) and the *TMS320F2807x Microcontrollers Technical Reference Manual*.

SDRAM configurations supported are:

- One-bank, two-bank, and four-bank SDRAM devices
- Devices with 8-, 9-, 10-, and 11-column addresses
- CAS latency of two or three clock cycles
- 16-bit/32-bit data bus width
- 3.3-V LVCMOS interface

Additionally, the EMIF supports placing the SDRAM in self-refresh and power-down modes. Self-refresh mode allows the SDRAM to be put in a low-power state while still retaining memory contents because the SDRAM will continue to refresh itself even without clocks from the microcontroller. Power-down mode achieves even lower power, except the microcontroller must periodically wake up and issue refreshes if data retention is required. The EMIF module does not support mobile SDRAM devices.

On this device, the EMIF does not support burst access for SDRAM configurations. This means every access to an external SDRAM device will have CAS latency.

7.9.9.3 EMIF Electrical Data and Timing

Note

This device has one EMIF interface. In this section, EMx denotes EM1.

7.9.9.3.1 Asynchronous RAM

Section 7.9.9.3.1.1 shows the EMIF asynchronous memory timing requirements. Section 7.9.9.3.1.2 shows the EMIF asynchronous memory switching characteristics. Figure 7-21 through Figure 7-24 show the EMIF asynchronous memory timing diagrams.

7.9.9.3.1.1 EMIF Asynchronous Memory Timing Requirements

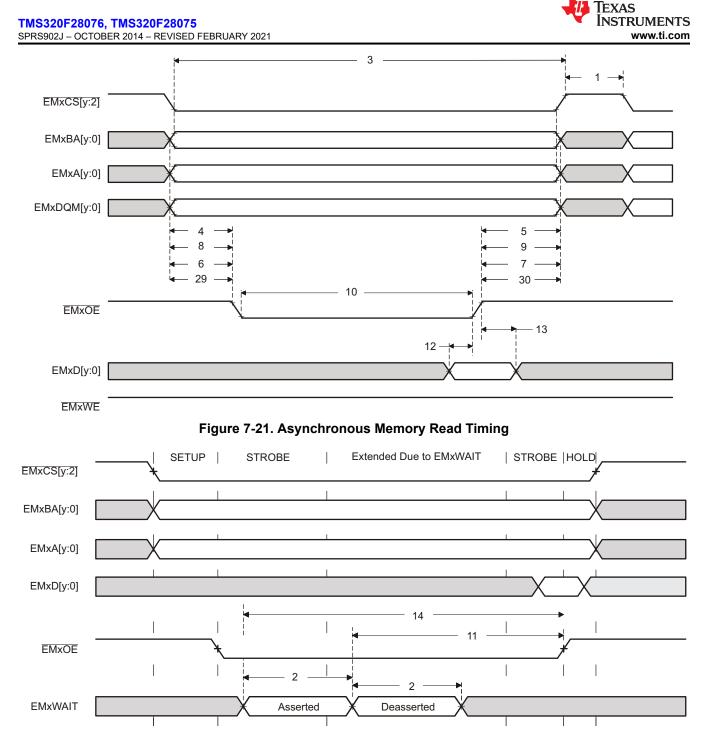
NO. ⁽¹⁾			MIN	MAX UNIT					
		Reads and Writes							
	E	EMIF clock period	t _{c(SYSCLK)}	ns					
2	t _{w(EM_WAIT)}	Pulse duration, EMxWAIT assertion and deassertion	2E	ns					
Reads									
12	t _{su(EMDV-EMOEH)}	Setup time, EMxD[y:0] valid before EMxOE high	15	ns					
13	t _{h(EMOEH-EMDIV)}	Hold time, EMxD[y:0] valid after EMxOE high	0	ns					
14	t _{su(EMOEL-EMWAIT)}	Setup Time, EMxWAIT asserted before end of Strobe Phase ⁽²⁾	4E+20	ns					
	1	Writes							
28	t _{su(EMWEL-EMWAIT)}	Setup Time, EMxWAIT asserted before end of Strobe Phase ⁽²⁾	4E+20	ns					

(1) E = EMxCLK period in ns.

(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMxWAIT must be asserted to add extended wait states. Figure 7-22 and Figure 7-24 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles.

7.9.9.3.1.2 EMIF Asynchronous Memory Switching Characteristics

NO. ⁽¹⁾ (2) (3)		PARAMETER	MIN	МАХ	UNIT						
Reads and Writes											
1	t _{d(TURNAROUND)}	Turn around time	(TA)*E–3	(TA)*E+2	ns						
	Reads										
		EMIF read cycle time (EW = 0)	(RS+RST+RH)*E–3	(RS+RST+RH)*E+2	ns						
3	t _c (EMRCYCLE)	EMIF read cycle time (EW = 1)	(RS+RST+RH+ (EWC*16))*E–3	(RS+RST+RH+ (EWC*16))*E+2	ns						
4	t _{su(EMCEL-EMOEL)}	Output setup time, $\overline{EMxCS[y:2]}$ low to \overline{EMxOE} low (SS = 0)	(RS)*E–3	(RS)*E+2	ns						
4		Output setup time, <u>EMxCS[y:2]</u> low to <u>EMxOE</u> low (SS = 1)	-3	2	ns						
5	t _h (EMOEH-EMCEH)	Output hold time, EMxOE high to EMxCS[y:2] high (SS = 0)	(RH)*E–3	(RH)*E	ns						
5		Output hold time, EMxOE high to EMxCS[y:2] high (SS = 1)	-3	0	ns						
6	t _{su(EMBAV-EMOEL)} Output setup time, EMxBA[y:0] valid to EMxOE low		(RS)*E–3	(RS)*E+2	ns						
7	t _{h(EMOEH-EMBAIV)}	Output hold time, EMxOE high to EMxBA[y:0] invalid	(RH)*E–3	(RH)*E	ns						
8	t _{su(EMAV-EMOEL)} Output setup time, EMxA[y:0] valid to EMxOE low		(RS)*E–3	(RS)*E+2	ns						



NO. ⁽¹⁾ (2) (3)	PARAMETER		MIN	МАХ	UNIT
9	t _{h(EMOEH-EMAIV)}	Output hold time, EMxOE high to EMxA[y:0] invalid	(RH)*E–3	(RH)*E	ns
10		EMxOE active low width (EW = 0)	(RST)*E–1	(RST)*E+1	ns
10	t _{w(EMOEL)}	EMxOE active low width (EW = 1)	(RST+(EWC*16))*E-1	(RST+(EWC*16))*E+1	ns
11	t _{d(EMWAITH-EMOEH)}	Delay time from EMxWAIT deasserted to EMxOE high	4E+10	5E+15	ns
29	t _{su(EMDQMV-EMOEL)}	Output setup time, EMxDQM[y:0] valid to EMxOE low	(RS)*E–3	(RS)*E+2	ns
30	t _{h(EMOEH-EMDQMIV)}	Output hold time, EMxOE high to EMxDQM[y:0] invalid	(RH)*E–3	(RH)*E	ns
		Writes			
		EMIF write cycle time (EW = 0)	(WS+WST+WH)*E–3	(WS+WST+WH)*E+1	ns
15	t _c (EMWCYCLE)	EMIF write cycle time (EW = 1)	(WS+WST+WH+ (EWC*16))*E–3	(WS+WST+WH+ (EWC*16))*E+1	ns
16		Output setup time, EMxCS[y:2] low to EMxWE low (SS = 0)	(WS)*E–3	(WS)*E+1	ns
16	t _{su} (EMCEL-EMWEL)	Output setup time, $\overline{EMxCS[y:2]}$ low to \overline{EMxWE} low (SS = 1)	-3	1	ns
17	+	Output hold time, \overline{EMxWE} high to $\overline{EMxCS[y:2]}$ high (SS = 0)	(WH)*E–3	(WH)*E	ns
	t _h (EMWEH-EMCEH)	Output hold time, EMxWE high to EMxCS[y:2] high (SS = 1)	-3	0	ns
18	$t_{su(EMDQMV-EMWEL)}$	Output setup time, EMxDQM[y:0] valid to EMxWE low	(WS)*E–3	(WS)*E+1	ns
19	t _{h(EMWEH-EMDQMIV)}	Output hold time, EMxWE high to EMxDQM[y:0] invalid	(WH)*E–3	(WH)*E	ns
20	t _{su(EMBAV-EMWEL)}	Output setup time, EMxBA[y:0] valid to EMxWE low	(WS)*E–3	(WS)*E+1	ns
21	t _{h(EMWEH-EMBAIV)}	Output hold time, EMxWE high to EMxBA[y:0] invalid	(WH)*E–3	(WH)*E	ns
22	t _{su(EMAV-EMWEL)}	Output setup time, EMxA[y:0] valid to EMxWE low	(WS)*E–3	(WS)*E+1	ns
23	t _{h(EMWEH-EMAIV)}	Output hold time, EMxWE high to EMxA[y:0] invalid	(WH)*E–3	(WH)*E	ns
24	t	EMxWE active low width (EW = 0)	(WST)*E–1	(WST)*E+1	ns
24	t _{w(EMWEL)}	EMxWE active low width (EW = 1)	(WST+(EWC*16))*E-1	(WST+(EWC*16))*E+1	ns
25	t _{d(EMWAITH-EMWEH)}	Delay time from EMxWAIT deasserted to EMxWE high	4E+10	5E+15	ns
26	t _{su(EMDV-EMWEL)}	Output setup time, EMxD[y:0] valid to EMxWE low	(WS)*E–3	(WS)*E+1	ns
27	t _{h(EMWEH-EMDIV)}	Output hold time, EMxWE high to EMxD[y:0] invalid	(WH)*E–3	(WH)*E	ns

(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–4], RH[8–1], WS[16–1], WST[64–1], WH[8–1], and MEWC[1–256]. See the *TMS320F2807x Microcontrollers Technical Reference Manual* for more information.

(2) E = EMxCLK period in ns.

(3) EWC = external wait cycles determined by EMxWAIT input signal. EWC supports the following range of values. EWC[256–1]. The maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the TMS320F2807x Microcontrollers Technical Reference Manual for more information.



Figure 7-24. EMxWAIT Write Timing Requirements

7.9.9.3.2 Synchronous RAM

Section 7.9.9.3.2.1 shows the EMIF synchronous memory timing requirements. Section 7.9.9.3.2.2 shows the EMIF synchronous memory switching characteristics. Figure 7-25 and Figure 7-26 show the synchronous memory timing diagrams.

7.9.9.3.2.1 EMIF Synchronous Memory Timing Requirements

NO.			MIN	MAX	UNIT
19	t _{su(EMIFDV-EM_CLKH)}	Input setup time, read data valid on EMxD[y:0] before EMxCLK rising	2		ns
20	t _{h(CLKH-DIV)}	Input hold time, read data valid on EMxD[y:0] after EMxCLK rising	1.5		ns

7.9.9.3.2.2 EMIF Synchronous Memory Switching Characteristics

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{c(CLK)}	Cycle time, EMIF clock EMxCLK	10		ns
2	t _{w(CLK)}	Pulse width, EMIF clock EMxCLK high or low	3		ns
3	t _{d(CLKH-CSV)}	Delay time, EMxCLK rising to EMxCS[y:2] valid		8	ns
4	t _{oh(CLKH-CSIV)}	Output hold time, EMxCLK rising to EMxCS[y:2] invalid	1		ns
5	t _{d(CLKH-DQMV)}	Delay time, EMxCLK rising to EMxDQM[y:0] valid		8	ns
6	t _{oh(CLKH-DQMIV)}	Output hold time, EMxCLK rising to EMxDQM[y:0] invalid	1		ns
7	t _{d(CLKH-AV)}	Delay time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] valid		8	ns
8	t _{oh(CLKH-AIV)}	Output hold time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] invalid	1		ns
9	t _{d(CLKH-DV)}	Delay time, EMxCLK rising to EMxD[y:0] valid		8	ns
10	t _{oh(CLKH-DIV)}	Output hold time, EMxCLK rising to EMxD[y:0] invalid	1		ns
11	t _{d(CLKH-RASV)}	Delay time, EMxCLK rising to EMxRAS valid		8	ns
12	t _{oh(CLKH-RASIV)}	Output hold time, EMxCLK rising to EMxRAS invalid	1		ns
13	t _{d(CLKH-CASV)}	Delay time, EMxCLK rising to EMxCAS valid		8	ns
14	t _{oh(CLKH-CASIV)}	Output hold time, EMxCLK rising to EMxCAS invalid	1		ns
15	t _{d(CLKH-WEV)}	Delay time, EMxCLK rising to EMxWE valid		8	ns
16	t _{oh(CLKH-WEIV)}	Output hold time, EMxCLK rising to EMxWE invalid	1		ns
17	t _{d(CLKH-DHZ)}	Delay time, EMxCLK rising to EMxD[y:0] tri-stated		8	ns
18	t _{oh(CLKH-DLZ)}	Output hold time, EMxCLK rising to EMxD[y:0] driving	1		ns

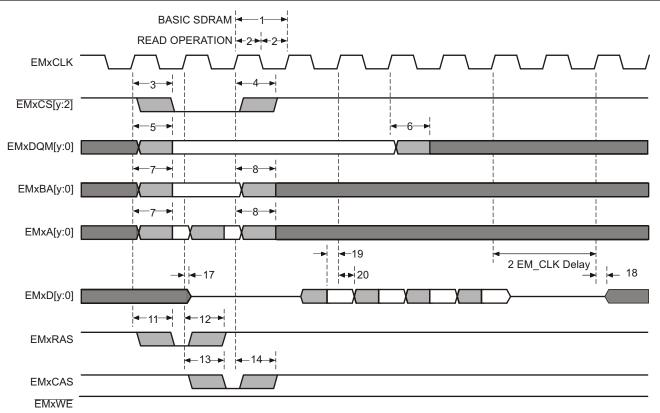


Figure 7-25. Basic SDRAM Read Operation

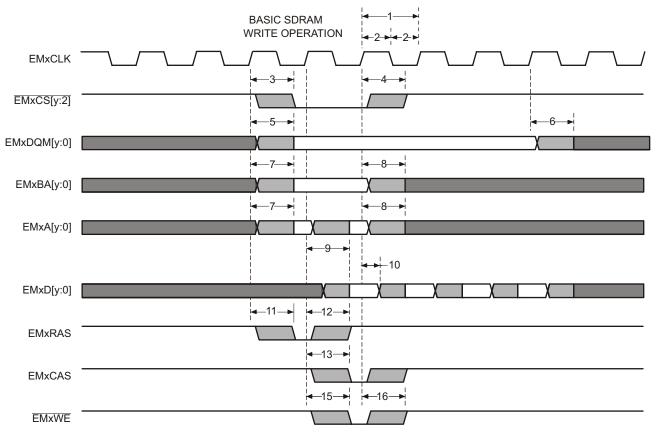


Figure 7-26. Basic SDRAM Write Operation

7.10 Analog Peripherals

The analog subsystem module is described in this section.

The analog modules on this device include the ADC, temperature sensor, buffered DAC, and CMPSS.

The analog subsystem has the following features:

- Flexible voltage references
 - The ADCs are referenced to V_{REFHIx} and V_{REFLOx} pins.
 - V_{REFHIx} pin voltage must be driven in externally.
- The buffered DACs are referenced to V_{REFHIx} and V_{SSA}.
 - Alternately, these DACs can be referenced to the VDAC pin and V_{SSA} .
- The comparator DACs are referenced to V_{DDA} and V_{SSA}.
- Alternately, these DACs can be referenced to the VDAC pin and V_{SSA}.
- Flexible pin usage
 - Buffered DAC and comparator subsystem functions multiplexed with ADC inputs
- Internal connection to V_{REFLO} on all ADCs for offset self-calibration

Figure 7-27 shows the Analog Subsystem Block Diagram for the 176-pin PTP package. Figure 7-28 shows the Analog Subsystem Block Diagram for the 100-pin PZP package.

TMS320F28076, TMS320F28075

SPRS902J - OCTOBER 2014 - REVISED FEBRUARY 2021

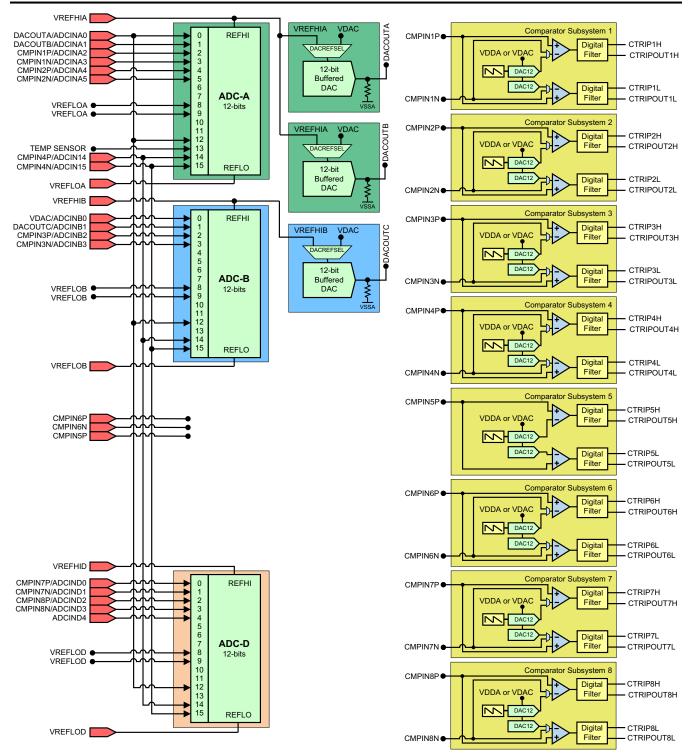


Figure 7-27. Analog Subsystem Block Diagram (176-Pin PTP)

Texas

INSTRUMENTS

www.ti.com

TMS320F28076, TMS320F28075

SPRS902J - OCTOBER 2014 - REVISED FEBRUARY 2021

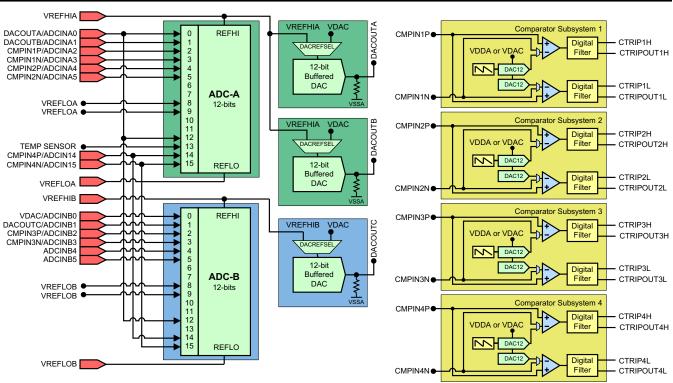


Figure 7-28. Analog Subsystem Block Diagram (100-Pin PZP)

7.10.1 Analog-to-Digital Converter (ADC)

The ADCs on this device are successive approximation (SAR) style ADCs with 12-bit resolution. There are multiple ADC modules which allow simultaneous sampling. The ADC wrapper is start-of-conversion (SOC) based [see the SOC Principle of Operation section of the *TMS320F2807x Microcontrollers Technical Reference Manual*.

Each ADC has the following features:

- 12-bit resolution
- Ratiometric external reference set by V_{REFHI} and V_{REFLO}
- Single-ended signal conversions
- Input multiplexer with up to 16 channels
- 16 configurable SOCs
- 16 individually addressable result registers
- Multiple trigger sources
 - Software immediate start
 - All ePWMs
 - GPIO XINT2
 - CPU timers
 - ADCINT1 or 2
- Four flexible PIE interrupts
- Burst mode
- Four post-processing blocks, each with:
 - Saturating offset calibration
 - Error from setpoint calculation
 - High, low, and zero-crossing compare, with interrupt and ePWM trip capability
 - Trigger-to-sample delay capture

Figure 7-29 shows the ADC module block diagram.

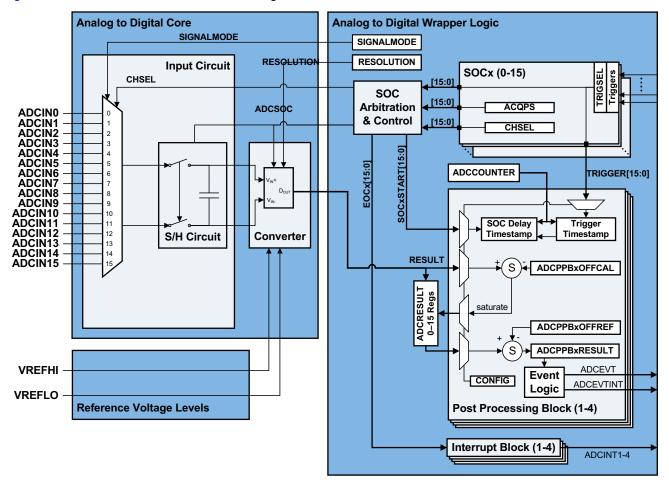


Figure 7-29. ADC Module Block Diagram

7.10.1.1 ADC Configurability

Some ADC configurations are individually controlled by the SOCs, while others are controlled by each ADC module. Table 7-7 summarizes the basic ADC options and their level of configurability.

OPTIONS	CONFIGURABILITY
Clock	By the module ⁽¹⁾
Resolution	Not configurable (12-bit resolution only)
Signal mode	Not configurable (single-ended signal mode only)
Reference voltage source	Not configurable (external reference only)
Trigger source	By the SOC ⁽¹⁾
Converted channel	By the SOC
Acquisition window duration	By the SOC ⁽¹⁾
EOC location	By the module
Burst mode	By the module ⁽¹⁾

(1) Writing these values differently to different ADC modules could cause the ADCs to operate asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously, see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F2807x Microcontrollers Technical Reference Manual.

7.10.1.1.1 Signal Mode

The ADC supports single-ended signaling. In single-ended mode, the input voltage to the converter is sampled through a single pin (ADCINx), referenced to VREFLO. Figure 7-30 shows the single-ended signaling mode.

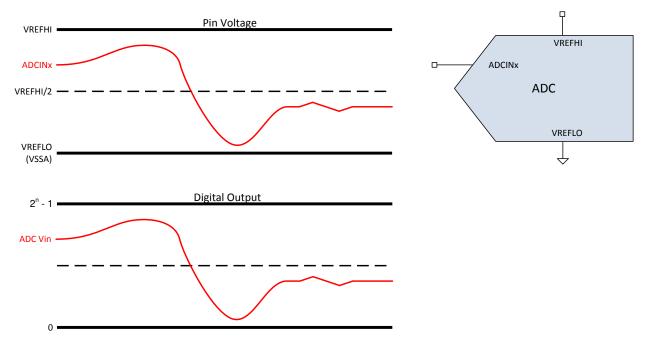


Figure 7-30. Single-ended Signaling Mode

7.10.1.2 ADC Electrical Data and Timing

Section 7.10.1.2.1 shows the ADC operating conditions. Section 7.10.1.2.2 shows the ADC characteristics. Section 7.10.1.2.3 shows the ADCEXTSOC timing requirements.

7.10.1.2.1 ADC Operating Conditions

over recommended operating conditions (unless otherwise noted)

	MIN	ТҮР	MAX	UNIT
ADCCLK (derived from PERx.SYSCLK)	5		50	MHz
Sample window duration (set by ACQPS and PERx.SYSCLK) ⁽¹⁾	100			ns
V _{REFHI}	2.4	2.5 or 3.0	V _{DDA}	V
V _{REFLO}	V _{SSA}	0	V_{SSA}	V
V _{REFHI} – V _{REFLO}	2.4		V_{DDA}	V
ADC input conversion range	V _{REFLO}		V _{REFHI}	V

(1) The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.

Note

The ADC inputs should be kept below V_{DDA} + 0.3 V during operation. If an ADC input exceeds this level, the V_{REF} internal to the device may be disturbed, which can impact results for other ADC or DAC inputs using the same V_{REF} .

Note

The V_{REFHI} pin must be kept below V_{DDA} + 0.3 V to ensure proper functional operation. If the V_{REFHI} pin exceeds this level, a blocking circuit may activate, and the internal value of V_{REFHI} may float to 0 V internally, giving improper ADC conversion or DAC output.

7.10.1.2.2 ADC Characteristics

over recommended operating conditions (unless otherwise noted)⁽⁵⁾

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ADC conversion cycles ⁽¹⁾		10.1		11	ADCCLKs	
Power-up time				500	μs	
Gain error		-5	±3	5	LSBs	
Offset error		-4	±2	4	LSBs	
Channel-to-channel gain error			±4		LSBs	
Channel-to-channel offset error			±2		LSBs	
ADC-to-ADC gain error	Identical V _{REFHI} and V _{REFLO} for all ADCs		±4		LSBs	
ADC-to-ADC offset error	Identical V _{REFHI} and V _{REFLO} for all ADCs		±2		LSBs	
DNL ⁽²⁾		> -1	±0.5	1	LSBs	
INL		-2	±1.0	2	LSBs	
SNR ⁽³⁾ (10)	V _{REFHI} = 2.5 V, f _{in} = 100 kHz		68.8		dB	
THD ⁽³⁾ (10)	V _{REFHI} = 2.5 V, f _{in} = 100 kHz		-78.4		dB	
SFDR ⁽³⁾ (10)	V _{REFHI} = 2.5 V, f _{in} = 100 kHz		79.2		dB	
SINAD ^{(3) (10)}	V _{REFHI} = 2.5 V, f _{in} = 100 kHz		68.4		dB	
	V _{REFHI} = 2.5 V, f _{in} = 100 kHz, single ADC ⁽⁶⁾ , all packages		11.1			
	V _{REFHI} = 2.5 V, f _{in} = 100 kHz, synchronous ADCs ⁽⁷⁾ , all packages		11.1			
ENOB ⁽³⁾ (10)	V _{REFHI} = 2.5 V, f _{in} = 100 kHz, asynchronous ADCs ⁽⁸⁾ , 100-pin PZP package		Not supported		bits	
	$V_{\text{REFHI}} = 2.5 \text{ V}, f_{\text{in}} = 100 \text{ kHz},$ asynchronous ADCs ⁽⁸⁾ , 9.7 176-pin PTP package		9.7			
PSRR	V _{DDA} = 3.3-V DC + 200 mV DC up to Sine at 1 kHz		60		dB	
PSRR	V _{DDA} = 3.3-V DC + 200 mV Sine at 800 kHz		57		dB	
	V _{REFHI} = 2.5 V, synchronous ADCs ⁽⁷⁾ , all packages	-1		1		
ADC-to-ADC isolation ^{(10) (4) (9)}	V _{REFHI} = 2.5 V, asynchronous ADCs ⁽⁸⁾ , 100-pin PZP package		Not supported		LSBs	
	V _{REFHI} = 2.5 V, asynchronous ADCs ⁽⁸⁾ , 176-pin PTP package	-9		9		
V _{REFHI} input current			130		μA	

(1) See Section 7.10.1.2.5.

(2) No missing codes.

(3) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.

(4) Maximum DC code deviation due to operation of multiple ADCs simultaneously.

- (5) Typical values are measured with $V_{REFHI} = 2.5 V$ and $V_{REFLO} = 0 V$. Minimum and Maximum values are tested or characterized with $V_{REFHI} = 2.5 V$ and $V_{REFLO} = 0 V$.
- (6) One ADC operating while all other ADCs are idle.
- (7) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.
- (8) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.
- (9) Value based on characterization.
- (10) I/O activity is minimized on pins adjacent to ADC input and V_{REFHI} pins as part of best practices to reduce capacitive coupling and crosstalk.

7.10.1.2.3 ADCEXTSOC Timing Requirements

			MIN ⁽¹⁾ MAX	UNIT
+ r	Pulse duration, INT input low/high	Synchronous	2t _{c(SYSCLK)}	cycles
^t w(INT)	Tuise duration, not input low/high	With qualifier	$t_{w(IQSW)} + t_{w(SP)} + 1t_{c(SYSCLK)}$	cycles

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

7.10.1.2.4 ADC Input Model

Note

ADC channels ADCINA0, ADCINA1, and ADCINB1 have a 50-k Ω pulldown resistor to V_{SSA}.

7.10.1.2.4.1 Single-Ended Input Model Parameters

	DESCRIPTION	VALUE
C _p	Parasitic input capacitance	See Table 7-8
R _{on}	Sampling switch resistance	600 Ω
C _h	Sampling capacitor	16.5 pF
R _s	Nominal source impedance	50 Ω



Figure 7-31. Single-Ended Input Model

 Table 7-8 shows the parasitic capacitance on each channel. Also, enabling a comparator adds approximately

 1.4 pF of capacitance on positive comparator inputs and 2.5 pF of capacitance on negative comparator inputs.

		(pF)
ADC CHANNEL	COMPARATOR DISABLED	COMPARATOR ENABLED
ADCINA0	12.9	N/A
ADCINA1	10.3	N/A
ADCINA2	5.9	7.3
ADCINA3	6.3	8.8
ADCINA4	5.9	7.3
ADCINA5	6.3	8.8
ADCINB0 ⁽¹⁾	117.0	N/A
ADCINB1	10.6	N/A
ADCINB2	5.9	7.3
ADCINB3	6.2	8.7
ADCINB4	5.2	N/A
ADCINB5	5.1	N/A
ADCIND0	5.3	6.7
ADCIND1	5.7	8.2
ADCIND2	5.3	6.7
ADCIND3	5.6	8.1
ADCIND4	4.3	N/A
ADCIN14	8.6	10.0
ADCIN15	9.0	11.5

Table	7-8.	Per-Channel	Parasitic	Car	acitance
Table	1-0.		i arasitic	Jup	

(1) The increased capacitance is due to VDAC functionality.

This input model should be used along with actual signal source impedance to determine the acquisition window duration. See the Choosing an Acquisition Window Duration section of the *TMS320F2807x Microcontrollers Technical Reference Manual* for more information.

The user should analyze the ADC input setting assuming worst-case initial conditions on C_h . This will require assuming that C_h could start the S+H window completely charged to V_{REFHI} or completely discharged to V_{REFLO} . When the ADC transitions from an odd-numbered channel to an even-numbered channel, or vice-versa, the actual initial voltage on C_h will be close to being completely discharged to V_{REFLO} . For even-to-even or odd-to-odd channel transitions, the initial voltage on C_h will be close to the voltage of the previously converted channel.

7.10.1.2.5 ADC Timing Diagrams

Section 7.10.1.2.5.1 lists the ADC timings in 12-bit mode (SYSCLK cycles). Figure 7-32 shows the ADC conversion timings for two SOCs given the following assumptions:

- SOC0 and SOC1 are configured to use the same trigger.
- No other SOCs are converting or pending when the trigger occurs.
- The round robin pointer is in a state that causes SOC0 to convert first.
- ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).

Table 7-9 lists the descriptions of the ADC timing parameters that are in Figure 7-32.

PARAMETER	DESCRIPTION			
tsн	The duration of the S+H window. At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so t _{SH} will not necessarily be the same for different SOCs. Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window regardless of device clock settings.			
t _{LAT}	The time from the end of the S+H window until the ADC conversion results latch in the ADCRESULTx register. If the ADCRESULTx register is read before this time, the previous conversion results will be returned.			
t _{EOC}	The time from the end of the S+H window until the next ADC conversion S+H window can begin. The subsequent sample can start before the conversion results are latched.			
t _{INT}	The time from the end of the S+H window until an ADCINT flag is set (if configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, t _{INT} will coincide with the conversion results being latched into the result register. If the INTPULSEPOS bit is 0, t _{INT} will coincide with the end of the S+H window. If t _{INT} triggers a read of the ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be taken to ensure the read occurs after the results latch (otherwise, the previous results will be read).			

Table 7-9. ADC Timing Parameters

7.10.1.2.5.1 ADC Timings in 12-Bit Mode (SYSCLK Cycles)

ADCCLK PRESCALE		SYSCLK CYCLES				ADCCLK CYCLES
ADCCTL2 [PRESCALE]	RATIO ADCCLK:SYSCLK	t _{EOC}	t _{LAT} ⁽¹⁾	t _{INT(EARLY)}	t _{INT(LATE)}	t _{EOC}
0	1	11	13	1	11	11.0
1	1.5		•	Invalid		
2	2	21	23	1	21	10.5
3	2.5	26	28	1	26	10.4
4	3	31	34	1	31	10.3
5	3.5	36	39	1	36	10.3
6	4	41	44	1	41	10.3
7	4.5	46	49	1	46	10.2
8	5	51	55	1	51	10.2
9	5.5	56	60	1	56	10.2
10	6	61	65	1	61	10.2
11	6.5	66	70	1	66	10.2
12	7	71	76	1	71	10.1
13	7.5	76	81	1	76	10.1
14	8	81	86	1	81	10.1
15	8.5	86	91	1	86	10.1

(1) Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F2807x MCUs Silicon Errata .

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

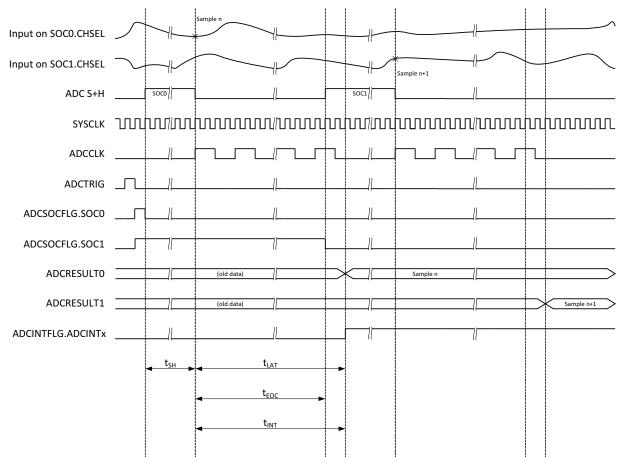


Figure 7-32. ADC Timings for 12-Bit Mode

7.10.1.3 Temperature Sensor Electrical Data and Timing

The temperature sensor can be used to measure the device junction temperature. The temperature sensor is sampled through an internal connection to the ADC and translated into a temperature through TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in Section 7.10.1.3.1.

7.10.1.3.1 Temperature Sensor Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNIT
Temperature accuracy		±15		°C
Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor)		500		μs
ADC acquisition time	700			ns

7.10.2 Comparator Subsystem (CMPSS)

Each CMPSS module includes two comparators, two internal voltage reference DACs (CMPSS DACs), two digital glitch filters, and one ramp generator. There are two inputs, CMPINxP and CMPINxN. Each of these inputs will be internally connected to an ADCIN pin. The CMPINxP pin is always connected to the positive input of the CMPSS comparators. CMPINxN can be used instead of the DAC output to drive the negative comparator inputs. There are two comparators, and therefore two outputs from the CMPSS module, which are connected to the input of a digital filter module before being passed on to the Comparator TRIP crossbar and either PWM modules or directly to a GPIO pin. Figure 7-33 shows CMPSS connectivity on the 176-pin PTP package. Figure 7-34 shows CMPSS connectivity on the 100-pin PZP package.

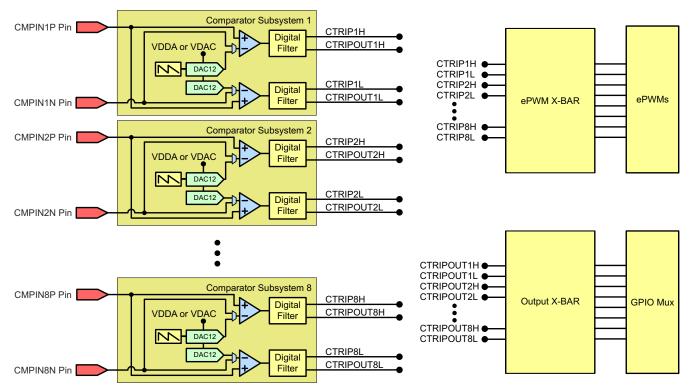


Figure 7-33. CMPSS Connectivity (176-Pin PTP)

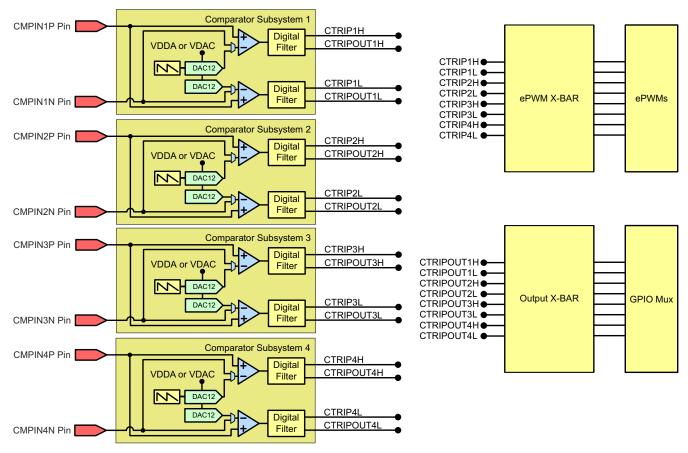


Figure 7-34. CMPSS Connectivity (100-Pin PZP)

7.10.2.1 CMPSS Electrical Data and Timing

Section 7.10.2.1.1 shows the comparator electrical characteristics. Figure 7-35 shows the CMPSS comparator input referred offset. Figure 7-36 shows the CMPSS comparator hysteresis.

7.10.2.1.1 Comparator Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power-up time				500 ⁽²⁾	μs
Comparator input (CMPINxx) range		0		V _{DDA}	V
Input referred offset error	Low common mode, inverting input set to 50 mV	-20		20	mV
	1x		12		
	2x		24		CMPSS DAC LSB
Hysteresis ⁽¹⁾	3x		36		
	4x		48		
	Step response		21	60	
Response time (delay from CMPINx input change to output on ePWM X-BAR or Output X-BAR)	Ramp response (1.65 V/µs)		26		ns
	Ramp response (8.25 mV/µs)		30		
Common Mode Rejection Ratio (CMRR)		40			dB

(1) The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.

(2) See the "Analog Bandgap References" advisory of the TMS320F2807x MCUs Silicon Errata .

Note

The CMPSS inputs must be kept below V_{DDA} + 0.3 V to ensure proper functional operation. If a CMPSS input exceeds this level, an internal blocking circuit will isolate the internal comparator from the external pin until the external pin voltage returns below V_{DDA} + 0.3 V. During this time, the internal comparator input will be floating and can decay below V_{DDA} within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result depending on the value of the other comparator input.

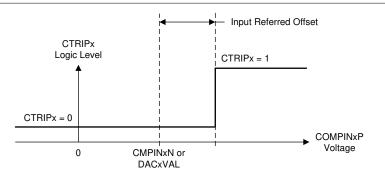


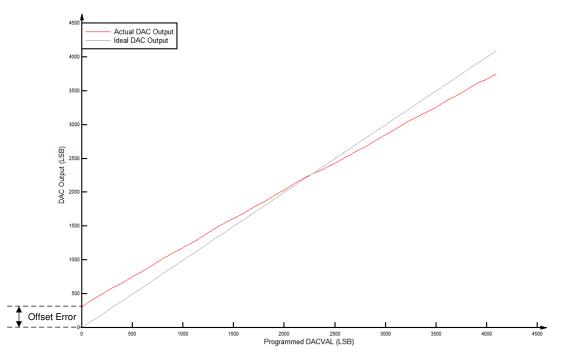
Figure 7-35. CMPSS Comparator Input Referred Offset

Figure 7-36. CMPSS Comparator Hysteresis

Section 7.10.2.1.2 shows the CMPSS DAC static electrical characteristics. Figure 7-37 shows the CMPSS DAC static offset. Figure 7-38 shows the CMPSS DAC static gain. Figure 7-39 shows the CMPSS DAC static linearity.

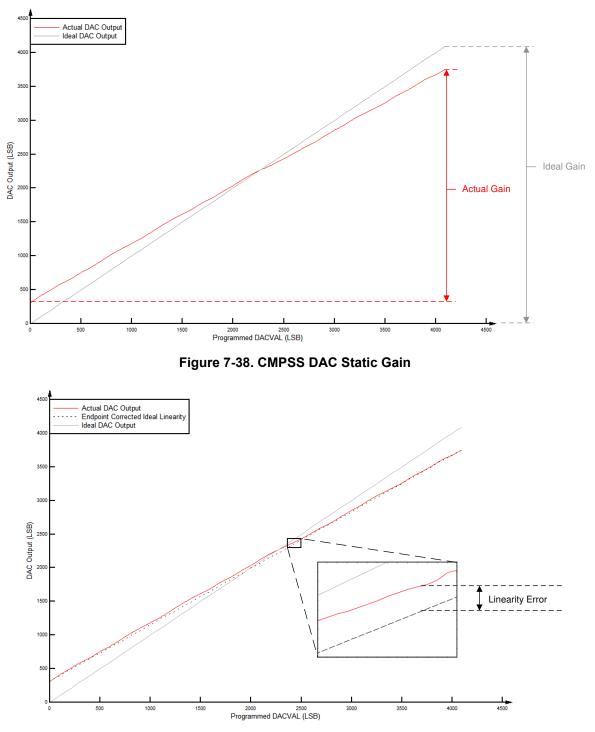
7.10.2.1.2 CMPSS DAC Static Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

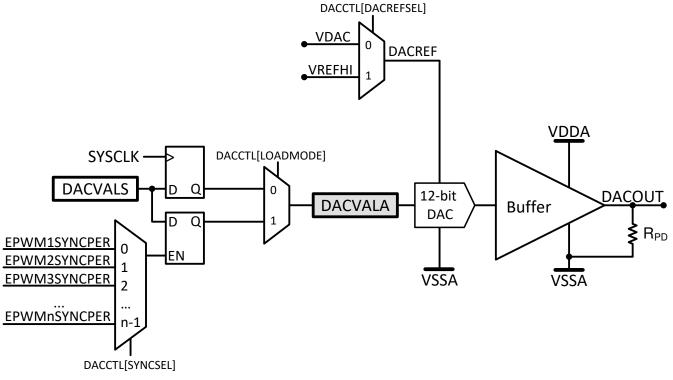

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
CMRSS DAC output ronge	Internal reference	0		V _{DDA} ⁽¹⁾	V	
CMPSS DAC output range	External reference	0		VDAC	v	
Static offset error ⁽²⁾		-25		25	mV	
Static gain error ⁽²⁾		-2		2	% of FSR	
Static DNL	Endpoint corrected	>–1		4	LSB	
Static INL	Endpoint corrected	-16		16	LSB	
Settling time	Settling to 1 LSB after full-scale output change			1	μs	
Resolution			12		bits	
CMPSS DAC output disturbance ⁽³⁾	Error induced by comparator trip or CMPSS DAC code change within the same CMPSS module	-100		100	LSB	
CMPSS DAC disturbance time ⁽³⁾			200		ns	
VDAC reference voltage	When VDAC is reference	2.4	2.5 or 3.0	V _{DDA}	V	
VDAC load ⁽⁴⁾	When VDAC is reference		6		kΩ	

(1) The maximum output voltage is V_{DDA} when VDAC > V_{DDA} .

(2) Includes comparator input referred errors.


(3) Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.

(4) Per active CMPSS module.


7.10.3 Buffered Digital-to-Analog Converter (DAC)

The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that is capable of driving an external load. An integrated pulldown resistor on the DAC output helps to provide a known pin voltage when the output buffer is disabled. This pulldown resistor cannot be disabled and remains as a passive component on the pin, even for other shared pin mux functions. Software writes to the DAC value register can take effect immediately or can be synchronized with EPWMSYNCPER events.

Each buffered DAC has the following features:

- 12-bit programmable internal DAC
- Selectable reference voltage
- Pulldown resistor on output
- Ability to synchronize with EPWMSYNCPER

The block diagram for the buffered DAC is shown in Figure 7-40.

7.10.3.1 Buffered DAC Electrical Data and Timing

Section 7.10.3.1.1 shows the buffered DAC electrical characteristics. Figure 7-41 shows the buffered DAC offset. Figure 7-42 shows the buffered DAC gain. Figure 7-43 shows the buffered DAC linearity.

7.10.3.1.1 Buffered DAC Electrical Characteristics

over recommended operating conditions (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Power-up time				500 ⁽⁸⁾	μs	
Offset error	Midpoint	-10		10	mV	
Gain error ⁽²⁾		-2.5		2.5	% of FSR	
DNL ⁽³⁾	Endpoint corrected	> -1	±0.4	1	LSB	
INL	Endpoint corrected	-5	±2	5	LSB	
DACOUTx settling time	Settling to 2 LSBs after 0.3V-to-3V transition		2		μs	
Resolution			12		bits	
Voltage output range ⁽⁴⁾		0.3		V _{DDA} – 0.3	V	
Capacitive load	Output drive capability			100	pF	
Resistive load	Output drive capability	5			kΩ	
R _{PD} pulldown resistor			50		kΩ	
Reference voltage ⁽⁵⁾	VDAC or V _{REFHI}	2.4	2.5 or 3.0	V _{DDA}	V	
Reference input resistance ⁽⁶⁾	VDAC or V _{REFHI}		170		kΩ	
Output paige	Integrated noise from 100 Hz to 100 kHz		500		μVrms	
Output noise	Noise density at 10 kHz		711		nVrms/√Hz	
Glitch energy			1.5		V-ns	
PSRR ⁽⁷⁾	DC up to 1 kHz		70			
PSRR	100 kHz		30		dB	
SNR	1020 Hz		67		dB	
THD	1020 Hz		-63		dB	
SFDR	1020 Hz, including harmonics and spurs		66		dDa	
	1020 Hz, including only spurs		104		dBc	

(1) Typical values are measured with V_{REFHI} = 3.3 V unless otherwise noted. Minimum and Maximum values are tested or characterized with V_{REFHI} = 2.5 V.

(2) Gain error is calculated for linear output range.

(3) The DAC output is monotonic.

(4) This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear due to the buffer.

(5) For best PSRR performance, VDAC or V_{REFHI} should be less than V_{DDA}.

(6) Per active Buffered DAC module.

(7) $V_{\text{REFHI}} = 3.2 \text{ V}, V_{\text{DDA}} = 3.3 \text{ V DC} + 100 \text{ mV Sine}.$

(8) See the "Analog Bandgap References" advisory of the TMS320F2807x MCUs Silicon Errata .

Note

The VDAC pin must be kept below V_{DDA} + 0.3 V to ensure proper functional operation. If the VDAC pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC may float to 0 V internally, giving improper DAC output.

Note

The V_{REFHI} pin must be kept below V_{DDA} + 0.3 V to ensure proper functional operation. If the V_{REFHI} pin exceeds this level, a blocking circuit may activate, and the internal value of V_{REFHI} may float to 0 V internally, giving improper ADC conversion or DAC output.

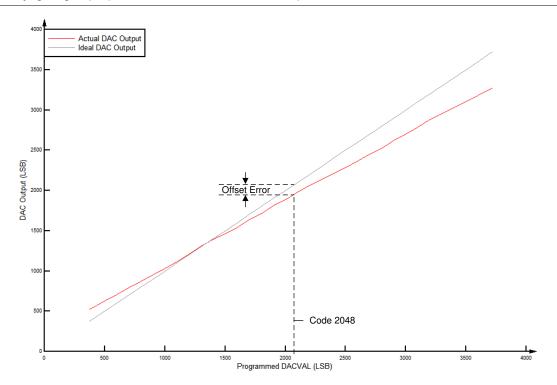
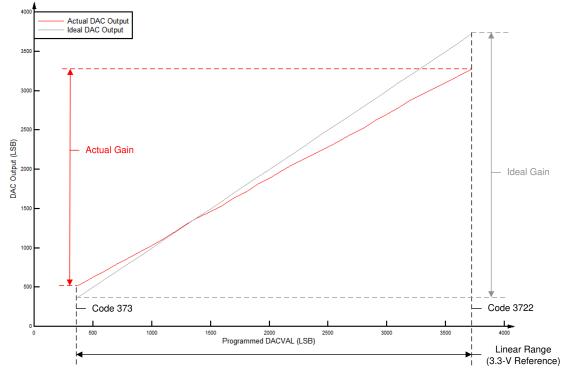



Figure 7-41. Buffered DAC Offset

Figure 7-42. Buffered DAC Gain

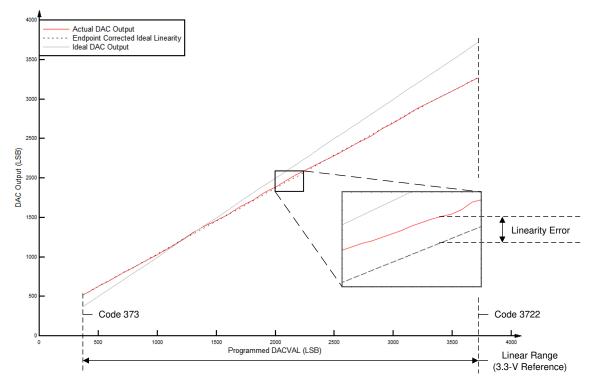


Figure 7-43. Buffered DAC Linearity

7.11 Control Peripherals

Note

For the actual number of each peripheral on a specific device, see Table 5-1.

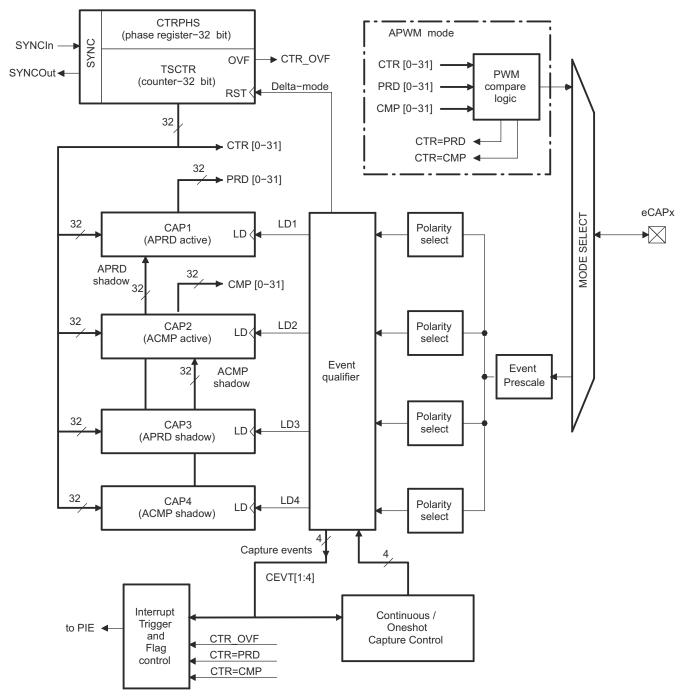
7.11.1 Enhanced Capture (eCAP)

The eCAP module can be used in systems where accurate timing of external events is important.

Applications for eCAP include:

- Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors)
- · Elapsed time measurements between position sensor pulses
- · Period and duty cycle measurements of pulse train signals
- · Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors

The eCAP module includes the following features:


- 4-event time-stamp registers (each 32 bits)
- Edge-polarity selection for up to four sequenced time-stamp capture events
- · Interrupt on either of the four events
- Single shot capture of up to four event timestamps
- · Continuous mode capture of timestamps in a four-deep circular buffer
- Absolute time-stamp capture
- Difference (Delta) mode time-stamp capture
- All of the above resources dedicated to a single input pin
- When not used in capture mode, the eCAP module can be configured as a single-channel PWM output (APWM).

The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 6.4.2 and Section 6.4.3.

Figure 7-44 shows the block diagram of an eCAP module.

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

The eCAP module is clocked by PERx.SYSCLK.

The clock enable bits (ECAP1–ECAP6) in the PCLKCR3 register turn off the eCAP module individually (for low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.

7.11.1.1 eCAP Electrical Data and Timing

Section 7.11.1.1.1 shows the eCAP timing requirement and Section 7.11.1.1.2 shows the eCAP switching characteristics.

7.11.1.1.1 eCAP Timing Requirement

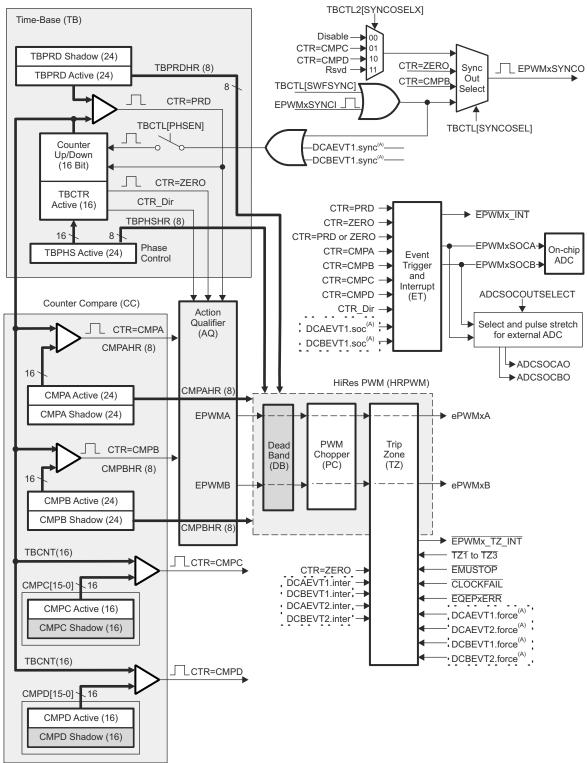
			MIN ⁽¹⁾ MAX	UNIT
		Asynchronous	2t _{c(SYSCLK)}	cycles
t _{w(CAP)}		Synchronous	2t _{c(SYSCLK)}	cycles
		With input qualifier	$1t_{c(SYSCLK)} + t_{w(IQSW)}$	cycles

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

7.11.1.1.2 eCAP Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
t _{w(APWM)}	Pulse duration, APWMx output high/low	20		ns



7.11.2 Enhanced Pulse Width Modulator (ePWM)

The ePWM peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced tripzone functionality, and global register reload capabilities.

Figure 7-45 shows the signal interconnections with the ePWM. Figure 7-46 shows the ePWM trip input connectivity.

Copyright © 2017, Texas Instruments Incorporated

A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.

Figure 7-45. ePWM Submodules and Critical Internal Signal Interconnects

SPRS902J - OCTOBER 2014 - REVISED FEBRUARY 2021

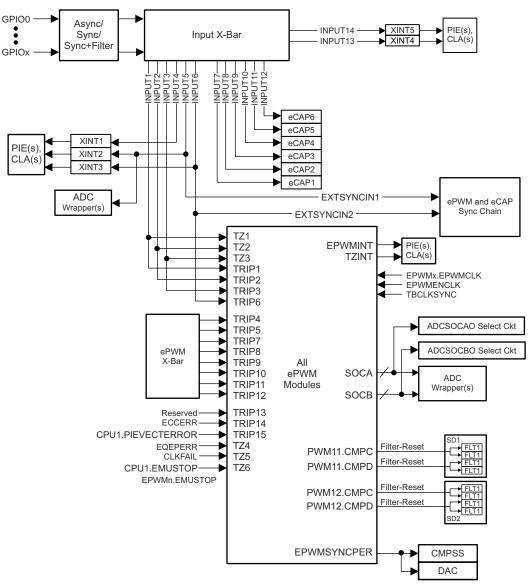


Figure 7-46. ePWM Trip Input Connectivity

7.11.2.1 Control Peripherals Synchronization

The ePWM and eCAP synchronization chain allows synchronization between multiple modules for the system. Figure 7-47 shows the synchronization chain architecture.

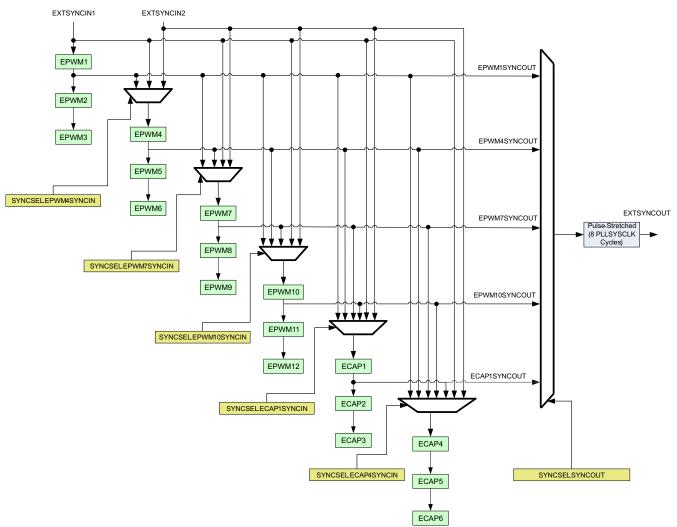


Figure 7-47. Synchronization Chain Architecture

7.11.2.2 ePWM Electrical Data and Timing

Section 7.11.2.2.1 shows the PWM timing requirements and Section 7.11.2.2.2 shows the PWM switching characteristics.

7.11.2.2.1 ePWM Timing Requirements

			MIN ⁽¹⁾	MAX	UNIT
f _(EPWM)	Frequency, EPWMCLK ⁽²⁾			100	MHz
	Sync input pulse width	Asynchronous	2t _{c(EPWMCLK)}		cycles
t _{w(SYNCIN)}		Synchronous	2t _{c(EPWMCLK)}		cycles
		With input qualifier	$1t_{c(EPWMCLK)} + t_{w(IQSW)}$		cycles

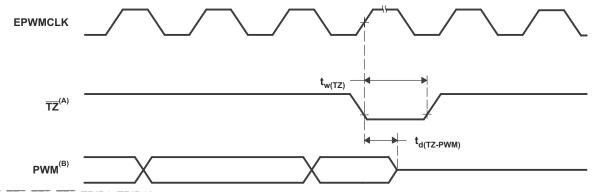
(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

(2) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.

7.11.2.2.2 ePWM Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
t _{w(PWM)}	Pulse duration, PWMx output high/low	20		ns
t _{w(SYNCOUT)}	Sync output pulse width	8t _{c(SYSCLK)}		cycles
t _{d(TZ-PWM)}	Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Delay time, trip input active to PWM Hi-Z		25	ns


7.11.2.2.3 Trip-Zone Input Timing

Section 7.11.2.2.3.1 shows the trip-zone input timing requirements. Figure 7-48 shows the PWM Hi-Z characteristics.

7.11.2.2.3.1 Trip-Zone Input Timing Requirements

			MIN ⁽¹⁾ M	AX UNIT
		Asynchronous	1t _{c(EPWMCLK)}	cycles
t _{w(TZ)}		Synchronous	2t _{c(EPWMCLK)}	cycles
	With input qualifier	$1t_{c(EPWMCLK)} + t_{w(IQSW)}$	cycles	

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

A. $\overline{\mathsf{TZ}}$: $\overline{\mathsf{TZ1}}$, $\overline{\mathsf{TZ2}}$, $\overline{\mathsf{TZ3}}$, $\mathsf{TRIP1}$ – $\mathsf{TRIP12}$

B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software.

Figure 7-48. PWM Hi-Z Characteristics

7.11.2.3 External ADC Start-of-Conversion Electrical Data and Timing

Section 7.11.2.3.1 shows the external ADC start-of-conversion switching characteristics. Figure 7-49 shows the ADCSOCAO or ADCSOCBO timing.

7.11.2.3.1 External ADC Start-of-Conversion Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER		MIN	MAX	UNIT
t _{w(ADCSOCL)}	Pulse duration, ADCSOCxO low		32t _{c(SYSCLK)}		cycles
ADCSOCAO or ADCSOCBO		t _{w(ADCSOCL)}			

Figure 7-49. ADCSOCAO or ADCSOCBO Timing

7.11.3 Enhanced Quadrature Encoder Pulse (eQEP)

The eQEP module interfaces directly with linear or rotary incremental encoders to obtain position, direction, and speed information from rotating machines used in high-performance motion and position-control systems.

Each eQEP peripheral comprises five major functional blocks:

- Quadrature Capture Unit (QCAP)
- Position Counter/Control Unit (PCCU)
- Quadrature Decoder Unit (QDU)
- Unit Time Base for speed and frequency measurement (UTIME)
- Watchdog timer for detecting stalls (QWDOG)

The eQEP peripherals are clocked by PERx.SYSCLK. Figure 7-50 shows the eQEP block diagram.

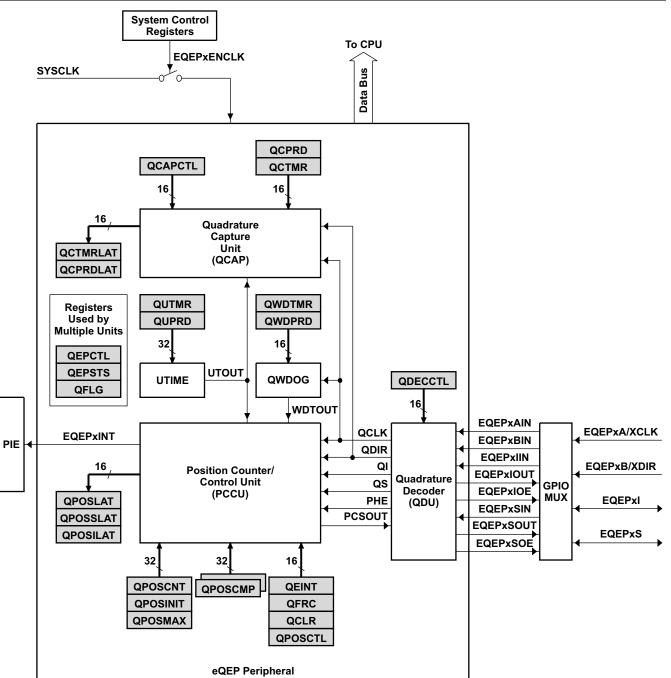


Figure 7-50. eQEP Block Diagram

7.11.3.1 eQEP Electrical Data and Timing

Section 7.11.3.1.1 lists the eQEP timing requirement and Section 7.11.3.1.2 lists the eQEP switching characteristics.

7.11.3.1.1 eQEP Timing Requirements

			MIN ⁽¹⁾ MA	X UNIT
+	QEP input period	Asynchronous ⁽²⁾ /Synchronous	2t _{c(SYSCLK)}	cycles
t _{w(QEPP)}		With input qualifier	$2[1t_{c(SYSCLK)} + t_{w(IQSW)}]$	cycles
+	QEP Index Input High time	Asynchronous ⁽²⁾ /Synchronous	2t _{c(SYSCLK)}	cycles
t _{w(INDEXH)}	QEF Index input high time	With input qualifier	$2t_{c(SYSCLK)} + t_{w(IQSW)}$	cycles
	QEP Index Input Low time	Asynchronous ⁽²⁾ /Synchronous	2t _{c(SYSCLK)}	cycles
t _{w(INDEXL)}		With input qualifier	$2t_{c(SYSCLK)} + t_{w(IQSW)}$	cycles
+	QEP Strobe High time	Asynchronous ⁽²⁾ /Synchronous	2t _{c(SYSCLK)}	cycles
t _{w(STROBH)}		With input qualifier	$2t_{c(SYSCLK)} + t_{w(IQSW)}$	cycles
t _{w(STROBL)}	QEP Strobe Input Low time	Asynchronous ⁽²⁾ /Synchronous	2t _{c(SYSCLK)}	cycles
		With input qualifier	$2t_{c(SYSCLK)} + t_{w(IQSW)}$	cycles

(1) For an explanation of the input qualifier parameters, see Section 7.9.6.2.1.

(2) See the TMS320F2807x MCUs Silicon Errata for limitations in the asynchronous mode.

7.11.3.1.2 eQEP Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
t _{d(CNTR)xin}	Delay time, external clock to counter increment		4t _{c(SYSCLK)}	cycles
t _{d(PCS-OUT)QEP}	Delay time, QEP input edge to position compare sync output		6t _{c(SYSCLK)}	cycles

7.11.4 High-Resolution Pulse Width Modulator (HRPWM)

The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a dedicated calibration delay line. For each ePWM module, there are two HR outputs:

- HR Duty and Deadband control on Channel A
- HR Duty and Deadband control on Channel B

The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:

- Significantly extends the time resolution capabilities of conventionally derived digital PWM
- This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge control for frequency/period modulation.
- Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B, phase, period and deadband registers of the ePWM module.

Note

The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.

7.11.4.1 HRPWM Electrical Data and Timing

Section 7.11.4.1.1 lists the high-resolution PWM timing requirements. Section 7.11.4.1.2 lists the high-resolution PWM switching characteristics.

7.11.4.1.1 High-Resolution PWM Timing Requirements

		MIN	MAX	UNIT
f _(EPWM)	Frequency, EPWMCLK ⁽¹⁾		100	MHz
f _(HRPWM)	Frequency, HRPWMCLK	60	100	MHz

(1) For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.

SYSCLK period dynamically while the HRPWM is in operation.

7.11.4.1.2 High-Resolution PWM Characteristics

PARAMETER	MIN	TYP	MAX	UNIT
Micro Edge Positioning (MEP) step size ⁽¹⁾		150	310	ps

(1) The MEP step size will be largest at high temperature and minimum voltage on V_{DD}. MEP step size will increase with higher temperature and lower voltage and decrease with lower temperature and higher voltage. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per

7.11.5 Sigma-Delta Filter Module (SDFM)

The SDFM is a four-channel digital filter designed specifically for current measurement and resolver position decoding in motor control applications. Each channel can receive an independent sigma-delta ($\Sigma\Delta$) modulated bit stream. The bit streams are processed by four individually programmable digital decimation filters. The filter set includes a fast comparator for immediate digital threshold comparisons for overcurrent and undercurrent monitoring. Figure 7-51 shows a block diagram of the SDFMs.

SDFM features include:

- Eight external pins per SDFM module:
 - Four sigma-delta data input pins per SDFM module (SDx_Dy, where x = 1 to 2 and y = 1 to 4)
 - Four sigma-delta clock input pins per SDFM module (SDx_Cy, where x = 1 to 2 and y = 1 to 4)
- Four different configurable modulator clock modes:
 - Modulator clock rate equals modulator data rate
 - Modulator clock rate running at half the modulator data rate
 - Modulator data is Manchester encoded. Modulator clock not required.
 - Modulator clock rate is double that of modulator data rate
- Four independent configurable comparator units:
 - Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available
 - Ability to detect over-value and under-value conditions
 - Comparator Over-Sampling Ratio (COSR) value for comparator programmable from 1 to 32
- Four independent configurable data filter units:
 - Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available
 - Data filter Over-Sampling Ratio (DOSR) value for data filter unit programmable from 1 to 256
 - Ability to enable or disable individual filter module
 - Ability to synchronize all four independent filters of a SDFM module using the Master Filter Enable (MFE) bit or the PWM signals.
- Filter data can be 16-bit or 32-bit representation
- PWMs can be used to generate modulator clock for sigma-delta modulators

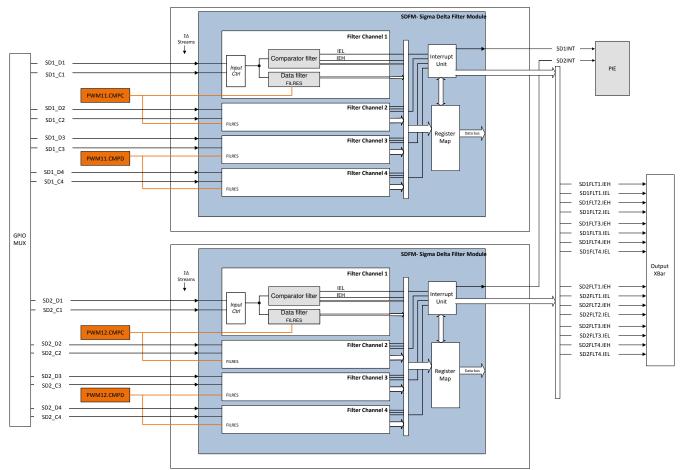


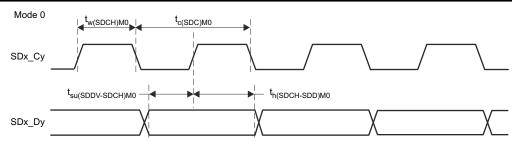
Figure 7-51. SDFM Block Diagram

7.11.5.1 SDFM Electrical Data and Timing (Using ASYNC)

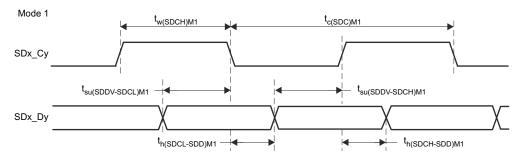
SDFM operation with asynchronous GPIO is defined by setting GPyQSELn = 0b11. Section 7.11.5.1.1 lists the SDFM timing requirements when using the asynchronous GPIO (ASYNC) option. Figure 7-52 through Figure 7-55 show the SDFM timing diagrams.

7.11.5.1.1 SDFM Timing Requirements When Using Asynchronous GPIO (ASYNC) Option

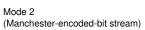
		MIN	MAX	UNIT
	Mode 0			
t _{c(SDC)M0}	Cycle time, SDx_Cy	40	256 * SYSCLK period	ns
t _{w(SDCH)M0}	Pulse duration, SDx_Cy high	10	t _{c(SDC)M0} – 10	ns
t _{su(SDDV-SDCH)M0}	Setup time, SDx_Dy valid before SDx_Cy goes high	5		ns
th(SDCH-SDD)M0	Hold time, SDx_Dy wait after SDx_Cy goes high	5		ns
	Mode 1			
t _{c(SDC)M1}	Cycle time, SDx_Cy	80	256 * SYSCLK period	ns
t _{w(SDCH)M1}	Pulse duration, SDx_Cy high	10	t _{c(SDC)M1} – 10	ns
t _{su(SDDV-SDCL)M1}	Setup time, SDx_Dy valid before SDx_Cy goes low	5		ns
t _{su(SDDV-SDCH)M1}	Setup time, SDx_Dy valid before SDx_Cy goes high	5		ns
t _{h(SDCL-SDD)M1}	Hold time, SDx_Dy wait after SDx_Cy goes low	5		ns
t _{h(SDCH-SDD)M1}	Hold time, SDx_Dy wait after SDx_Cy goes high	5		ns
	Mode 2			
t _{c(SDD)M2}	Cycle time, SDx_Dy	8 * t _{c(SYSCLK)}	20 * t _{c(SYSCLK)}	ns
t _{w(SDDH)M2}	Pulse duration, SDx_Dy high	10		ns
t _w (SDD_LONG_KEEPOUT)M2	SDx_Dy long pulse duration keepout, where the long pulse must not fall within the MIN or MAX values listed. Long pulse is defined as the high or low pulse which is the full width of the Manchester bit-clock period. This requirement must be satisfied for any integer between 8 and 20.	(N * t _{c(SYSCLK)}) – 0.5	(N * t _{c(SYSCLK)}) + 0.5	ns
$t_{w}(sdd_short)M2$	SDx_Dy Short pulse duration for a high or low pulse (SDD_SHORT_H or SDD_SHORT_L). Short pulse is defined as the high or low pulse which is half the width of the Manchester bit-clock period.	t _{w(SDD_LONG)} / 2 – t _{c(SYSCLK)}	t _{w(SDD_LONG)} / 2 + t _{c(SYSCLK)}	ns
t _{w(SDD_LONG_DUTY)M2}	SDx_Dy Long pulse variation (SDD_LONG_H – SDD_LONG_L)	- t _{c(SYSCLK)}	t _{c(SYSCLK)}	ns
$t_{w(SDD_SHORT_DUTY)M2}$	SDx_Dy Short pulse variation (SDD_SHORT_H – SDD_SHORT_L)	$-t_{c(SYSCLK)}$	t _{c(SYSCLK)}	ns
	Mode 3		1	
t _{c(SDC)M3}	Cycle time, SDx_Cy	40	256 * SYSCLK period	ns
t _{w(SDCH)M3}	Pulse duration, SDx_Cy high	10	t _{c(SDC)M3} – 5	ns
t _{su(SDDV-SDCH)M3}	Setup time, SDx_Dy valid before SDx_Cy goes high	5		ns
t _{h(SDCH-SDD)M3}	Hold time, SDx_Dy wait after SDx_Cy goes high	5		ns


WARNING

The SDFM clock inputs (SDx_Cy pins) directly clock the SDFM module when there is no GPIO input synchronization. Any glitches or ringing noise on these inputs can corrupt the SDFM module operation. Special precautions should be taken on these signals to ensure a clean and noise-free signal that meets SDFM timing requirements. Precautions such as series termination for ringing due to any impedance mismatch of the clock driver and spacing of traces from other noisy signals are recommended.


WARNING

Mode 2 (Manchester Mode) is not recommended for new applications. See the "SDFM: Manchester Mode (Mode 2) Does Not Produce Correct Filter Results Under Several Conditions" advisory in the *TMS320F2807x MCUs Silicon Errata*.



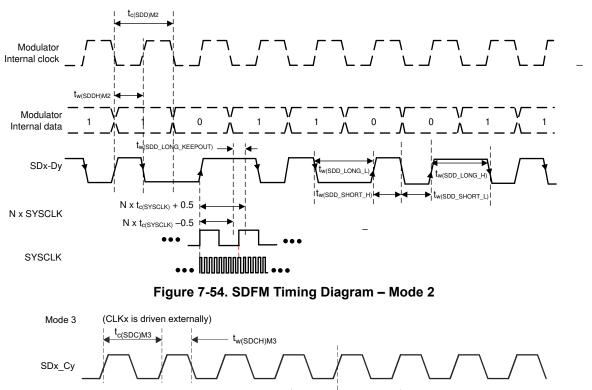


Figure 7-52. SDFM Timing Diagram – Mode 0

7.11.5.2 SDFM Electrical Data and Timing (Using 3-Sample GPIO Input Qualification)

SDFM operation with qualified GPIO (3-sample window) is defined by setting GPyQSELn = 0b01. When using this qualified GPIO (3-sample window) mode, the timing requirement for the $t_{w(GPI)}$ pulse duration of $2t_{c(SYSCLK)}$ must be met. It is important for both SD-Cx and SD-Dx pairs to be configured with the same GPIO qualification option. Section 7.11.5.2.1 lists the SDFM timing requirements when using the GPIO input qualification (3-sample window) option. Figure 7-52 through Figure 7-55 show the SDFM timing diagrams.

7.11.5.2.1 SDFM Timing Requirements When Using GPIO Input Qualification (3-Sample Window) Option

		MIN ⁽¹⁾	МАХ	UNIT
	Mode 0			
t _{c(SDC)M0}	Cycle time, SDx_Cy	10 * SYSCLK period	256 * SYSCLK period	ns
tw(SDCHL)M0	Pulse duration, SDx_Cy high/low	4 * SYSCLK period	6 * SYSCLK period	ns
t _{w(SDDHL)M0}	Pulse duration, SDx_Dy high/low	4 * SYSCLK period		ns
t _{su(SDDV-SDCH)M0}	Setup time, SDx_Dy valid before SDx_Cy goes high	2 * SYSCLK period		ns
t _{h(SDCH-SDD)M0}	Hold time, SDx_Dy wait after SDx_Cy goes high	2 * SYSCLK period		ns
	Mode 1			
t _{c(SDC)M1}	Cycle time, SDx_Cy	20 * SYSCLK period	256 * SYSCLK period	ns
t _{w(SDCH)M1}	Pulse duration, SDx_Cy high	4 * SYSCLK period	6 * SYSCLK period	ns
t _{w(SDDHL)M1}	Pulse duration, SDx_Dy high/low	4 * SYSCLK period		ns
t _{su(SDDV-SDCL)M1}	Setup time, SDx_Dy valid before SDx_Cy goes low	2 * SYSCLK period		ns
t _{su(SDDV-SDCH)M1}	Setup time, SDx_Dy valid before SDx_Cy goes high	2 * SYSCLK period		ns
t _{h(SDCL-SDD)M1}	Hold time, SDx_Dy wait after SDx_Cy goes low	2 * SYSCLK period		ns
t _{h(SDCH-SDD)M1}	Hold time, SDx_Dy wait after SDx_Cy goes high	2 * SYSCLK period		ns
	Mode 2			
t _{c(SDD)M2}	Cycle time, SDx_Dy	Option una	availabla	
t _{w(SDDH)M2}	Pulse duration, SDx_Dy high	Option una		
	Mode 3			
t _{c(SDC)M3}	Cycle time, SDx_Cy	10 * SYSCLK period	256 * SYSCLK period	ns
t _{w(SDCHL)M3}	Pulse duration, SDx_Cy high	4 * SYSCLK period	6 * SYSCLK period	ns
t _{w(SDDHL)M3}	Pulse duration, SDx_Dy high/low	4 * SYSCLK period		ns
t _{su(SDDV-SDCH)M3}	Setup time, SDx_Dy valid before SDx_Cy goes high	2 * SYSCLK period		ns
t _{h(SDCH-SDD)M3}	Hold time, SDx_Dy wait after SDx_Cy goes high	2 * SYSCLK period		ns

(1) SDFM timing requirements apply only when the GPIO input qualification type is the 3-sample window (GPyQSELx = 1; QUALPRD = 0) option. It is important that both the SD-Cx and SD-Dx pairs be configured with the 3-sample window option.

Note

The SDFM Qualified GPIO (3-sample) mode provides protection against SDFM module corruption due to occasional random noise glitches on the SDx_Cy pin that may result in a false comparator trip and filter output. For more details, refer to the "SDFM: Use Caution While Using SDFM Under Noisy Conditions" usage note in the *TMS320F2807x MCUs Silicon Errata*.

The SDFM Qualified GPIO (3-sample) mode does not provide protection against persistent violations of the above timing requirements. Timing violations will result in data corruption proportional to the number of bits which violate the requirements.

7.12 Communications Peripherals

Note

For the actual number of each peripheral on a specific device, see Table 5-1.

7.12.1 Controller Area Network (CAN)

The CAN module performs CAN protocol communication according to ISO 11898-1 (identical to Bosch[®] CAN protocol specification 2.0 A, B). The bit rate can be programmed to values up to 1 Mbps. A CAN transceiver chip is required for the connection to the physical layer (CAN bus).

For communication on a CAN network, individual message objects can be configured. The message objects and identifier masks are stored in the Message RAM.

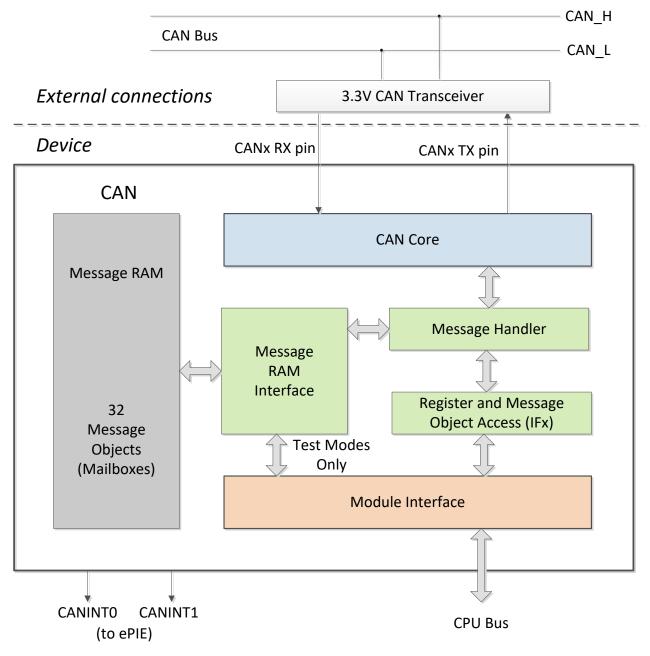
All functions concerning the handling of messages are implemented in the message handler. These functions are: acceptance filtering; the transfer of messages between the CAN Core and the Message RAM; and the handling of transmission requests.

The register set of the CAN may be accessed directly by the CPU through the module interface. These registers are used to control and configure the CAN core and the message handler, and to access the message RAM.

The CAN module implements the following features:

- Complies with ISO11898-1 (Bosch® CAN protocol specification 2.0 A and B)
- · Bit rates up to 1 Mbps
- Multiple clock sources
- 32 message objects ("message objects" are also referred to as "mailboxes" in this document; the two terms are used interchangeably), each with the following properties:
 - Configurable as receive or transmit
 - Configurable with standard (11-bit) or extended (29-bit) identifier
 - Supports programmable identifier receive mask
 - Supports data and remote frames
 - Holds 0 to 8 bytes of data
 - Parity-checked configuration and data RAM
- Individual identifier mask for each message object
- · Programmable FIFO mode for message objects
- Programmable loop-back modes for self-test operation
- Suspend mode for debug support
- Software module reset
- Automatic bus-on, after bus-off state by a programmable 32-bit timer
- Message-RAM parity-check mechanism
- Two interrupt lines

Note


For a CAN bit clock of 200 MHz, the smallest bit rate possible is 7.8125 kbps.

Note

Depending on the timing settings used, the accuracy of the on-chip zero-pin oscillator (specified in the data manual) may not meet the requirements of the CAN protocol. In this situation, an external clock source must be used.

Figure 7-56 shows the CAN block diagram.

TEXAS INSTRUMENTS www.ti.com

7.12.2 Inter-Integrated Circuit (I2C)

The I2C module has the following features:

- Compliance with the Philips Semiconductors I²C-bus specification (version 2.1):
 - Support for 1-bit to 8-bit format transfers
 - 7-bit and 10-bit addressing modes
 - General call
 - START byte mode
 - Support for multiple master-transmitters and slave-receivers
 - Support for multiple slave-transmitters and master-receivers
 - Combined master transmit/receive and receive/transmit mode
 - Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)
- One 16-byte receive FIFO and one 16-byte transmit FIFO
- One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following conditions:
 - Transmit-data ready
 - Receive-data ready
 - Register-access ready
 - No-acknowledgment received
 - Arbitration lost
 - Stop condition detected
 - Addressed as slave
- An additional interrupt that can be used by the CPU when in FIFO mode
- Module enable/disable capability
- Free data format mode

Figure 7-57 shows how the I2C peripheral module interfaces within the device.

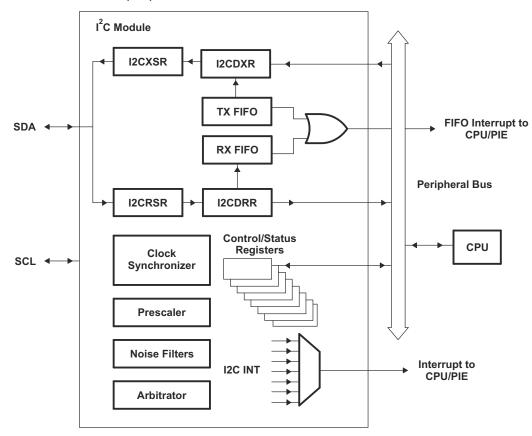


Figure 7-57. I2C Peripheral Module Interfaces

7.12.2.1 I2C Electrical Data and Timing

Section 7.12.2.1.1 lists the I2C timing requirements. Section 7.12.2.1.2 lists the I2C switching characteristics. Figure 7-58 shows the I2C timing diagram.

7.12.2.1.1 I2C Timing Requirements

NO.			MIN	MAX	UNIT
Standard	I mode				
Т0	f _{mod}	I2C module frequency	7	12	MHz
T1	t _{h(SDA-SCL)} START	Hold time, START condition, SCL fall delay after SDA fall	4.0		μs
T2	t _{su(SCL-SDA)} START	Setup time, Repeated START, SCL rise before SDA fall delay	4.7		μs
Т3	t _{h(SCL-DAT)}	Hold time, data after SCL fall	0		μs
T4	t _{su(DAT-SCL)}	Setup time, data before SCL rise	250		ns
Т5	t _{r(SDA)}	Rise time, SDA		1000	ns
Т6	t _{r(SCL)}	Rise time, SCL		1000	ns
Т7	t _{f(SDA)}	Fall time, SDA		300	ns
Т8	t _{f(SCL)}	Fall time, SCL		300	ns
Т9	t _{su(SCL-SDA)} STOP	Setup time, STOP condition, SCL rise before SDA rise delay	4.0		μs
T10	t _{w(SP)}	Pulse duration of spikes that will be suppressed by filter	0	50	ns
T11	C _b	capacitance load on each bus line		400	pF
Fast mod	le				
Т0	f _{mod}	I2C module frequency	7	12	MHz
T1	t _{h(SDA-SCL)} START	Hold time, START condition, SCL fall delay after SDA fall	0.6		μs
T2	t _{su(SCL-SDA)} START	Setup time, Repeated START, SCL rise before SDA fall delay	0.6		μs
Т3	t _{h(SCL-DAT)}	Hold time, data after SCL fall	0		μs
T4	t _{su(DAT-SCL)}	Setup time, data before SCL rise	100		ns
T5	t _{r(SDA)}	Rise time, SDA	20	300	ns
Т6	t _{r(SCL)}	Rise time, SCL	20	300	ns
Т7	t _{f(SDA)}	Fall time, SDA	11.4	300	ns
Т8	t _{f(SCL)}	Fall time, SCL	11.4	300	ns
Т9	t _{su(SCL-SDA)} STOP	Setup time, STOP condition, SCL rise before SDA rise delay	0.6		μs
T10	t _{w(SP)}	Pulse duration of spikes that will be suppressed by filter	0	50	ns
T11	C _b	capacitance load on each bus line		400	pF

7.12.2.1.2 I2C Switching Characteristics

over recommended operating conditions (unless otherwise noted)

NO.	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT			
Standard mode									
S1	f _{SCL}	SCL clock frequency		0	100	kHz			
S2	T _{SCL}	SCL clock period		10		μs			
S3	t _{w(SCLL)}	Pulse duration, SCL clock low		4.7		μs			
S4	t _{w(SCLH)}	Pulse duration, SCL clock high		4.0		μs			
S5	t _{BUF}	Bus free time between STOP and START conditions		4.7		μs			
S6	t _{v(SCL-DAT)}	Valid time, data after SCL fall			3.45	μs			
S7	t _{v(SCL-ACK)}	Valid time, Acknowledge after SCL fall			3.45	μs			
S8	l _l	Input current on pins	0.1 V _{bus} < V _i < 0.9 V _{bus}	-10	10	μA			
Fast m	ode	·							
S1	f _{SCL}	SCL clock frequency		0	400	kHz			
S2	T _{SCL}	SCL clock period		2.5		μs			
S3	t _{w(SCLL)}	Pulse duration, SCL clock low		1.3		μs			
S4	t _{w(SCLH)}	Pulse duration, SCL clock high		0.6		μs			
S5	t _{BUF}	Bus free time between STOP and START conditions		1.3		μs			
S6	t _{v(SCL-DAT)}	Valid time, data after SCL fall			0.9	μs			
S7	t _{v(SCL-ACK)}	Valid time, Acknowledge after SCL fall			0.9	μs			
S8	lı	Input current on pins	0.1 V _{bus} < V _i < 0.9 V _{bus}	-10	10	μA			

7.12.2.1.3

Note

To meet all of the I2C protocol timing specifications, the I2C module clock (Fmod) must be configured from 7 MHz to 12 MHz.

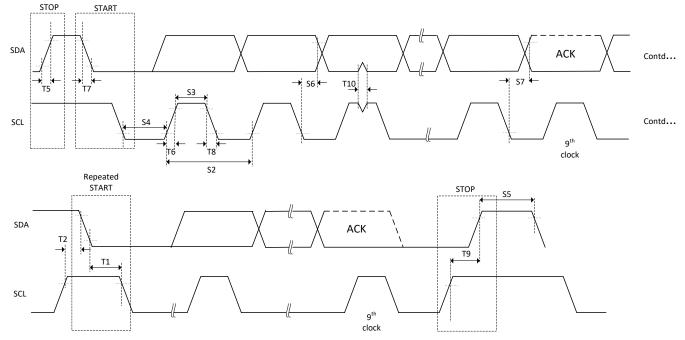


Figure 7-58. I2C Timing Diagram

7.12.3 Multichannel Buffered Serial Port (McBSP)

The McBSP module has the following features:

- Compatible with McBSP in TMS320C28x and TMS320F28x DSP devices
- Full-duplex communication
- Double-buffered data registers that allow a continuous data stream
- Independent framing and clocking for receive and transmit
- External shift clock generation or an internal programmable frequency shift clock
- 8-bit data transfer mode can be configured to transmit with LSB or MSB first
- Programmable polarity for both frame synchronization and data clocks
- Highly programmable internal clock and frame generation
- Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected A/D and D/A devices
- Supports AC97, I2S, and SPI protocols
- McBSP clock rate,

 $CLKG = \frac{CLKSRG}{(1 + CLKGDV)}$

where CLKSRG source could be LSPCLK, CLKX, or CLKR.

Figure 7-59 shows the block diagram of the McBSP module.

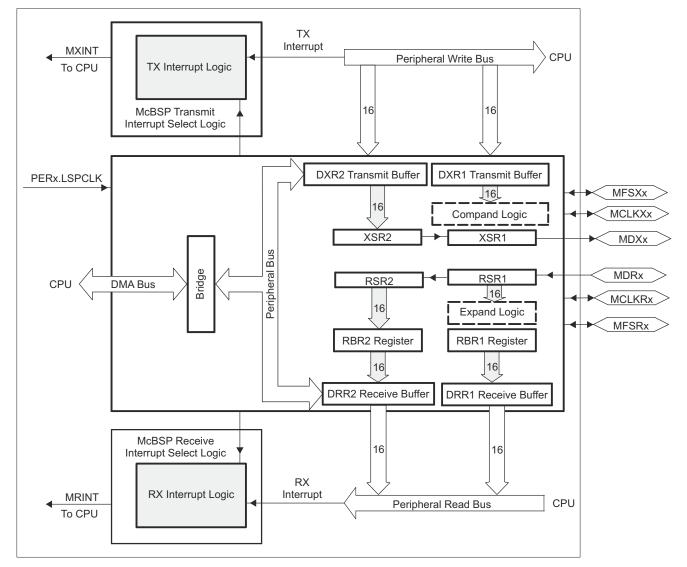


Figure 7-59. McBSP Block Diagram

7.12.3.1 McBSP Electrical Data and Timing

7.12.3.1.1 McBSP Transmit and Receive Timing

Section 7.12.3.1.1.1 shows the McBSP timing requirements. Section 7.12.3.1.1.2 shows the McBSP switching characteristics. Figure 7-60 and Figure 7-61 show the McBSP timing diagrams.

7.12.3.1.1.1 McBSP Timing Requirements

NO. ⁽¹⁾ (2)				MIN	MAX	UNIT
		MoBSB modulo clock (CLKC, CLKX, CLKB) range		1		kHz
		MCBSP module clock (CEKG, CEKA, CEKR) range	McBSP module clock (CLKG, CLKX, CLKR) range			
		McBSP module cycle time (CLKG, CLKX, CLKR) r	2000	40		ns
			ange		1	ms
M11	t _{c(CKRX)}	Cycle time, CLKR/X	CLKR/X ext	2P		ns
M12	t _{w(CKRX)}	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	P – 7		ns
M13	t _{r(CKRX)}	Rise time, CLKR/X	CLKR/X ext		7	ns
M14	t _{f(CKRX)}	Fall time, CLKR/X	CLKR/X ext		7	ns
M15	+	Setup time, external FSR high before CLKR low	CLKR int	18		n 0
WT5	t _{su(FRH-CKRL)}	Setup time, external FSR high before CLRR low	CLKR ext	2		ns
M16		Held first outsmal ECD high often CLI/D law	CLKR int	0		20
	t _{h(CKRL-FRH)}	Hold time, external FSR high after CLKR low	CLKR ext	6		ns
M17		Setur time, DD valid before CLKD low	CLKR int	18		20
	t _{su(DRV-CKRL)}	Setup time, DR valid before CLKR low	CLKR ext	5		ns
M18		Light time, DD valid after CLKD law	CLKR int	0		
IVI 18	t _{h(CKRL-DRV)}	Hold time, DR valid after CLKR low	CLKR ext	3		ns
M19		Satur time, automal ESY high hafara CLIVY law	CLKX int	18		20
IVI 19	t _{su(FXH-CKXL)}	Setup time, external FSX high before CLKX low	CLKX ext	2		ns
M20		Light time, outernal ESY high after CLKY low	CLKX int	0		
IVIZU	t _{h(CKXL-FXH)}	Hold time, external FSX high after CLKX low	CLKX ext	6		ns

(1) Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

(2) 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG / (1 + CLKGDV). CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLK/2).

7.12.3.1.1.2 McBSP Switching Characteristics

over recommended operating conditions (unless otherwise noted)

NO. ⁽¹⁾ (2)		PARAMETER		MIN	МАХ	UNIT	
M1	t _{c(CKRX)}	Cycle time, CLKR/X		CLKR/X int	2P		ns
M2	t _{w(CKRXH)}	Pulse duration, CLKR/X high		CLKR/X int	D – 5 ⁽³⁾	D + 5 ⁽³⁾	ns
M3	t _{w(CKRXL)}	Pulse duration, CLKR/X low		CLKR/X int	C – 5 ⁽³⁾	C + 5 ⁽³⁾	ns
		Delay time, CLKR high to internal FSR valid		CLKR int	-7	7.5	
M4	t _{d(CKRH-FRV)}	Delay time, CLKR high to intel	rnal FSR valid	CLKR ext	3	27	ns
M5	+	Delay time, CLKX high to inter	rpal ESX valid	CLKX int	-5	6	ns
IVIJ	t _{d(CKXH-FXV)}			CLKX ext	3	27	115
M6	t	Disable time, CLKX high to D	K high impedance	CLKX int	8	8	ns
IVIO	t _{dis} (CKXH-DXHZ)	following last data bit		CLKX ext	3	15	115
		Delay time, CLKX high to DX	valid.	CLKX int	-3	9	
		This applies to all bits except t transmitted.	the first bit	CLKX ext	5	25	
		Delay time, CLKX high to DX	DXENA = 0	CLKX int	-3	8	20
M7	t _{d(CKXH-DXV)}	valid	DAENA - U	CLKX ext	5	20	ns
		Only applies to first bit		CLKX int	P – 3	P + 8	
		transmitted when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 1	CLKX ext	P + 5	P + 20	
		Enable time, CLKX high to		CLKX int	-6		
	t _{en(CKXH-DX)}	DX driven	DXENA = 0	CLKX ext	4		
M8		Only applies to first bit	CLKX int P - 6	P - 6		ns	
		transmitted when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 1	CLKX ext	P + 4		
		Delay time, FSX high to DX	DXENA = 0	FSX int	·	8	
		valid	DAENA - 0	FSX ext		17	
M9	t _{d(FXH-DXV)}	Only applies to first bit		FSX int		P + 8	ns
		transmitted when in Data Delay 0 (XDATDLY=00b) mode.	DXENA = 1	FSX ext		P + 17	
		Enable time, FSX high to DX		FSX int	-3		
		driven	DXENA = 0	FSX ext	6		
M10	t _{en(FXH-DX)}	Only applies to first bit		FSX int	P - 3		ns
		transmitted when in Data Delay 0 (XDATDLY=00b) mode	DXENA = 1	FSX ext	P + 6		

(1) Polarity bits CLKRP = CLKXP = FSRP = FSRP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

(2) 2P = 1/CLKG in ns.

(3) C = CLKRX low pulse width = P

D = CLKRX high pulse width = P

TMS320F28076, TMS320F28075 SPRS902J - OCTOBER 2014 - REVISED FEBRUARY 2021

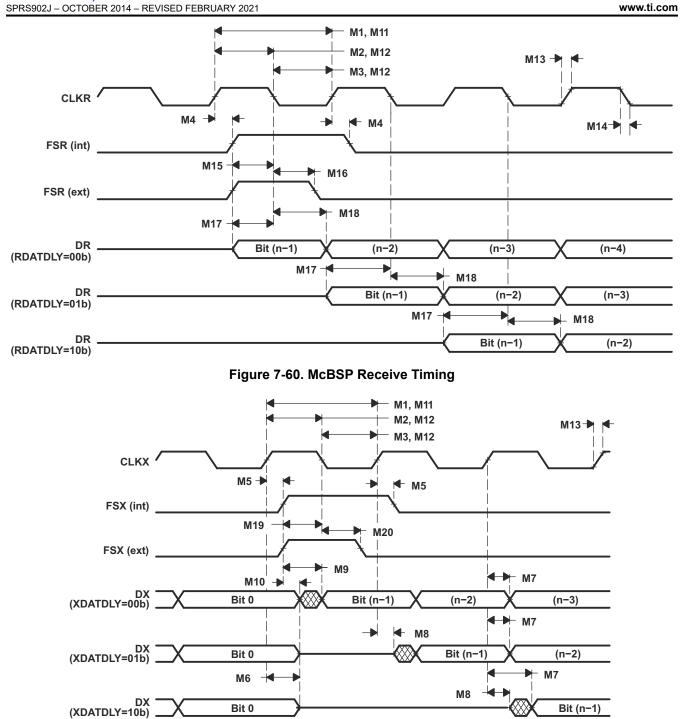


Figure 7-61. McBSP Transmit Timing

EXAS

INSTRUMENTS

7.12.3.1.2 McBSP as SPI Master or Slave Timing

Section 7.12.3.1.2.1 lists the McBSP as SPI master timing requirements. Section 7.12.3.1.2.2 lists the McBSP as SPI master switching characteristics. Section 7.12.3.1.2.3 lists the McBSP as SPI slave timing requirements. Section 7.12.3.1.2.4 lists the McBSP as SPI slave switching characteristics.

Figure 7-62 through Figure 7-65 show the McBSP as SPI master or slave timing diagrams.

7.12.3.1.2.1 McBSP as SPI Master Timing Requirements

NO.			MIN MAX	UNIT
CLOCK	(I
	t _{c(CLKG)}	Cycle time, CLKG ⁽¹⁾	2 * t _{c(LSPCLK)}	ns
	Р	Cycle time, LSPCLK ⁽¹⁾	t _{c(LSPCLK)}	ns
M33, M42, M52, M61	t _{c(CKX)}	Cycle time, CLKX	2P	ns
CLKST	P = 10b, CLKXP = 0	0		I
M30	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	30	ns
M31	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	1	ns
CLKST	P = 11b, CLKXP = ()		
M39	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	30	ns
M40	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	1	ns
CLKST	P = 10b, CLKXP = -	1		
M49	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	30	ns
M50	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	1	ns
CLKST	P = 11b, CLKXP = 7	1		
M58	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	30	ns
M59	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	1	ns

(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1

7.12.3.1.2.2 McBSP as SPI Master Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

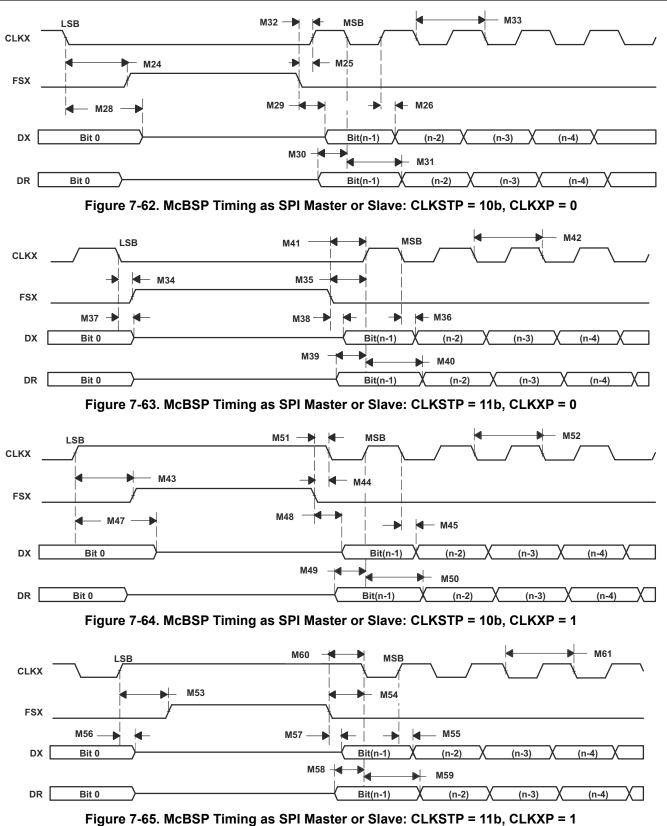
NO.		PARAMETER	MIN	TYP MAX	UNIT
сгоск					
M33	t _{c(CLKG)}	Cycle time, CLKG ⁽¹⁾ (n * t _{c(LSPCLK)})	40		ns
	P	Half CLKG cycle; 0.5 * t _{c(CLKG)}	20		ns
	n	LSPCLK to CLKG divider	2		ns
CLKSTP	P = 10b, CLKXP = 0				
M24	t _{h(CKXL-FXL)}	Hold time, FSX high after CLKX low	2P – 6		ns
M25	t _{d(FXL-CKXH)}	Delay time, FSX low to CLKX high	P – 6		ns
M26	t _{d(CLKXH-DXV)}	Delay time, CLKX high to DX valid	-4	6	ns
M28	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX low	P – 8		ns
M29	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	P – 3	P + 6	ns
CLKSTF	P = 11b, CLKXP = 0				
M34	t _{h(CKXL-FXH)}	Hold time, FSX high after CLKX low	P – 6		ns
M35	t _{d(FXL-CKXH)}	Delay time, FSX low to CLKX high	P – 6		ns
M36	t _{d(CLKXL-DXV)}	Delay time, CLKX low to DX valid	-4	6	ns
M37	t _{dis(CKXL-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX low	P – 6		ns
M38	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	-2	1	ns
CLKSTF	P = 10b, CLKXP = 1				
M43	t _{h(CKXH-FXH)}	Hold time, FSX high after CLKX high	2P – 6		ns
M44	t _{d(FXL-CKXL)}	Delay time, FSX low to CLKX low	P – 6		ns
M45	t _{d(CLKXL-DXV)}	Delay time, CLKX low to DX valid	-4	6	ns
M47	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX low	P – 6		ns
M48	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	-2	1	ns
CLKSTF	P = 11b, CLKXP = 1			I	
M53	t _{h(CKXH-FXH)}	Hold time, FSX high after CLKX high	P – 6		ns
M54	t _{d(FXL-CKXL)}	Delay time, FSX low to CLKX low	2P – 6		ns
M55	t _{d(CLKXH-DXV)}	Delay time, CLKX high to DX valid	-4	6	ns
M56	t _{dis(CKXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX high	P – 8		ns
M57	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	-2	1	ns

(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1.

7.12.3.1.2.3 McBSP as SPI Slave Timing Requirements

NO.			MIN MAX	UNIT
CLOCK				
	t _{c(CLKG)}	Cycle time, CLKG ⁽¹⁾	2 * t _{c(LSPCLK)}	ns
	Р	Cycle time, LSPCLK ⁽¹⁾	t _{c(LSPCLK)}	ns
M33, M42, M52, M61	t _{c(CKX)}	Cycle time, CLKX ⁽²⁾	16P	ns
CLKSTI	P = 10b, CLKXP = ()		
M30	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	8P - 10	ns
M31	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	8P – 10	ns

NO.			MIN MA	X UNIT
M32	t _{su(BFXL-CKXH)}	Setup time, FSX low before CLKX high	8P+10	ns
CLKSTF	P = 11b, CLKXP = 0		i	
M39	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	8P – 10	ns
M40	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	8P – 10	ns
M41	t _{su(FXL-CKXH)}	Setup time, FSX low before CLKX high	16P+10	ns
CLKSTF	P = 10b, CLKXP = 1			
M49	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	8P – 10	ns
M50	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	8P – 10	ns
M51	t _{su(FXL-CKXL)}	Setup time, FSX low before CLKX low	8P+10	ns
CLKSTF	P = 11b, CLKXP = 1			
M58	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	8P – 10	ns
M59	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	8P – 10	ns
M60	t _{su(FXL-CKXL)}	Setup time, FSX low before CLKX low	16P+10	ns


(1) CLKG should be configured to LSPCLK/2 by setting CLKSM = 1 and CLKGDV = 1

(2) For SPI slave modes CLKX must be a minimum of 8 CLKG cycles

7.12.3.1.2.4 McBSP as SPI Slave Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

NO.		PARAMETER	MIN	TYP	MAX	UNIT
CLOCK	I					
	2P	Cycle time, CLKG				ns
CLKST	P = 10b, CLKXP = 0					
M26	t _{d(CLKXH-DXV)}	Delay time, CLKX high to DX valid	3P + 6		5P + 20	ns
M28	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from FSX high	6P + 6			ns
M29	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	4P + 6			ns
CLKST	P = 11b, CLKXP = 0					
M36	t _{d(CLKXL-DXV)}	Delay time, CLKX low to DX valid	3P + 6		5P + 20	ns
M37	t _{dis(CKXL-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX low	7P + 6			ns
M38	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	4P + 6			ns
CLKST	P = 10b, CLKXP = 1					
M45	t _{d(CLKXL-DXV)}	Delay time, CLKX low to DX valid	3P + 6		5P + 20	ns
M47	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from FSX high	6P + 6			ns
M48	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	4P + 6			ns
CLKST	P = 11b, CLKXP = 1					
M55	t _{d(CLKXH-DXV)}	Delay time, CLKX high to DX valid	3P + 6		5P + 20	ns
M56	t _{dis(CKXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX high	7P + 6			ns
M57	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	4P + 6			ns

7.12.4 Serial Communications Interface (SCI)

The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format

The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit baud-select register. Figure 7-66 shows the SCI block diagram.

Features of the SCI module include:

- Two external pins:
 - SCITXD: SCI transmit-output pin
 - SCIRXD: SCI receive-input pin

Note

NOTE: Both pins can be used as GPIO if not used for SCI.

Baud rate programmable to 64K different rates

- Data-word format
 - One start bit
 - Data-word length programmable from 1 to 8 bits
 - Optional even/odd/no parity bit
 - 1 or 2 stop bits
- Four error-detection flags: parity, overrun, framing, and break detection
- Two wakeup multiprocessor modes: idle-line and address bit
- Half- or full-duplex operation
- Double-buffered receive and transmit functions
- Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags.
 - Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty)
 - Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
- Separate enable bits for transmitter and receiver interrupts (except BRKDT)
- NRZ format
- Auto baud-detect hardware logic
- 16-level transmit and receive FIFO

Note

All registers in this module are 8-bit registers. When a register is accessed, the register data is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no effect.

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021

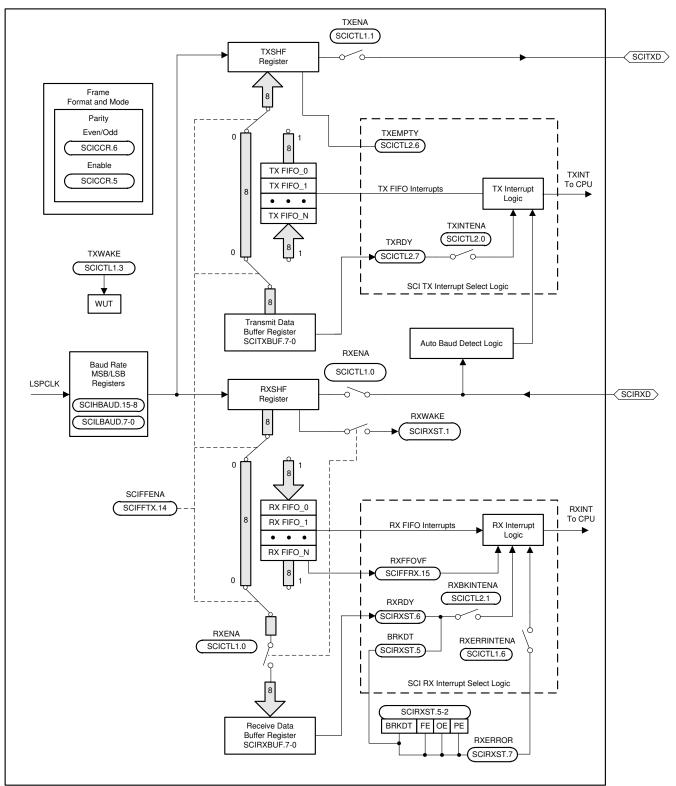


Figure 7-66. SCI Block Diagram

The major elements used in full-duplex operation include:

- A transmitter (TX) and its major registers:
 - SCITXBUF register Transmitter Data Buffer register. Contains data (loaded by the CPU) to be transmitted
 - TXSHF register Transmitter Shift register. Accepts data from the SCITXBUF register and shifts data onto the SCITXD pin, 1 bit at a time
 - A receiver (RX) and its major registers:
 - RXSHF register Receiver Shift register. Shifts data in from the SCIRXD pin, 1 bit at a time
 - SCIRXBUF register Receiver Data Buffer register. Contains data to be read by the CPU. Data from a remote processor is loaded into the RXSHF register and then into the SCIRXBUF and SCIRXEMU registers
- A programmable baud generator
- Data-memory-mapped control and status registers enable the CPU to access the I2C module registers and FIFOs.

The SCI receiver and transmitter operate independently.

7.12.5 Serial Peripheral Interface (SPI)

The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is normally used for communications between the microcontroller and external peripherals or another controller. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. The port supports 16-level receive and transmit FIFOs for reducing CPU servicing overhead.

The SPI module features include:

- SPISOMI: SPI slave-output/master-input pin
- SPISIMO: SPI slave-input/master-output pin
- SPISTE: SPI slave transmit-enable pin
- SPICLK: SPI serial-clock pin
- Two operational modes: master and slave
- Baud rate: 125 different programmable rates
- Data word length: 1 to 16 data bits
- Four clocking schemes (controlled by clock polarity and clock phase bits) include:
 - Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
 - Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
 - Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
 - Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
- Simultaneous receive-and-transmit operation (transmit function can be disabled in software)
- Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.
- 16-level transmit and receive FIFO
- Delayed transmit control
- 3-wire SPI mode
- SPISTE inversion for digital audio interface receive mode on devices with two SPI modules
- DMA support
- High-speed mode for up to 30-MHz full-duplex communication

The SPI operates in master or slave mode. The master initiates data transfer by sending the SPICLK signal. For both the slave and the master, data is shifted out of the shift registers on one edge of the SPICLK and latched into the shift register on the opposite SPICLK clock edge. If the CLOCK PHASE bit (SPICTL.3) is high, data is transmitted and received a half-cycle before the SPICLK transition. As a result, both controllers send and receive data simultaneously. The application software determines whether the data is meaningful or dummy data. There are three possible methods for data transmission:

- Master sends data; slave sends dummy data
- Master sends data; slave sends data
- Master sends dummy data; slave sends data

The master can initiate a data transfer at any time because it controls the SPICLK signal. The software, however, determines how the master detects when the slave is ready to broadcast data.

Figure 7-67 shows the SPI CPU Interface.

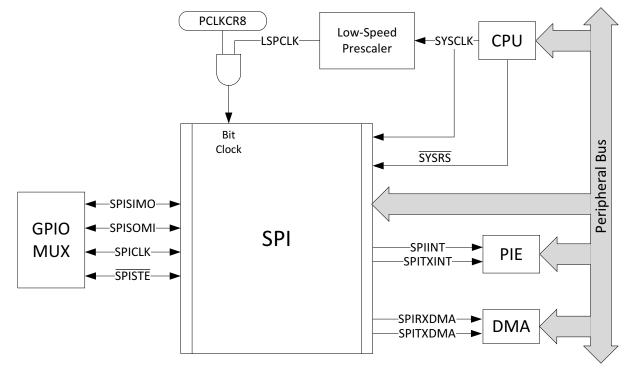


Figure 7-67. SPI CPU Interface

7.12.5.1 SPI Electrical Data and Timing

Note

All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK, SPISIMO, and SPISOMI.

For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F2807x Microcontrollers Technical Reference Manual.

To use the SPI in High-Speed mode, the application must use the high-speed enabled GPIOs (see Section 6.4.5).

7.12.5.1.1 SPI Master Mode Timings

Section 7.12.5.1.1.1 lists the SPI master mode timing requirements. Section 7.12.5.1.1.2 lists the SPI master mode switching characteristics (clock phase = 0). Section 7.12.5.1.1.3 lists the SPI master mode switching characteristics (clock phase = 1). Figure 7-68 shows the SPI master mode external timing where the clock phase = 0. Figure 7-69 shows the SPI master mode external timing where the clock phase = 1.

7.12.5.1.1.1 SPI Master Mode Timing Requirements

NO.			(BRR + 1) CONDITION ⁽¹⁾	MIN MAX	UNIT			
	High Speed Mode							
8	t _{su(SOMI)M}	Setup time, SPISOMI valid before SPICLK	Even, Odd	1	ns			
9	t _{h(SOMI)M}	Hold time, SPISOMI valid after SPICLK	Even, Odd	5	ns			
			Normal Mode	e				
8	t _{su(SOMI)M}	Setup time, SPISOMI valid before SPICLK	Even, Odd	20	ns			
9	t _{h(SOMI)M}	Hold time, SPISOMI valid after SPICLK	Even, Odd	0	ns			

(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3.

7.12.5.1.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 0)

over recommended operating conditions (unless otherwise noted)

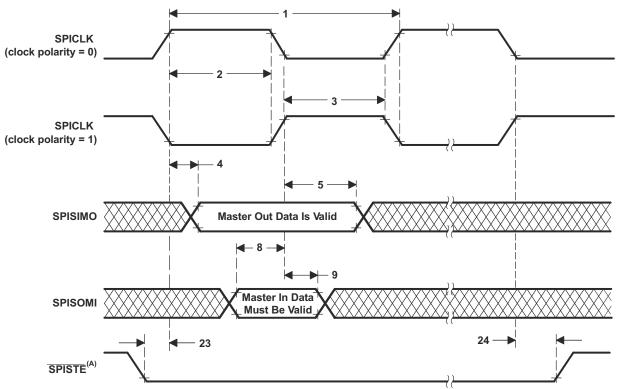
NO.		PARAMETER		MIN	МАХ	UNIT
			General			
1	t concerne		Even	4t _{c(LSPCLK)}	128t _{c(LSPCLK)}	ns
1	t _{c(SPC)M}		Odd	5t _{c(LSPCLK)}	127t _{c(LSPCLK)}	115
			Even	0.5t _{c(SPC)M} – 1	0.5t _{c(SPC)M} + 1	
2	t _{w(SPC1)M}	SPC1)M Pulse duration, SPICLK, first pulse	Odd	$0.5t_{c(SPC)M}$ +0.5 $t_{c(LSPCLK)}$ - 1	$0.5t_{c(SPC)M}$ +0.5 $t_{c(LSPCLK)}$ + 1	ns
		Pulse duration, SPICLK, second pulse	Even	0.5t _{c(SPC)M} – 1	0.5t _{c(SPC)M} + 1	
3	t _{w(SPC2)M}		Odd	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} - 1$	$0.5t_{c(SPC)M}$ – $0.5t_{c(LSPCLK)}$ + 1	ns
23	+	(SPC)M Delay time, SPISTE active to SPICLK	Even	1.5t _{c(SPC)M} - 3t _{c(SYSCLK)} - 7	$1.5t_{c(SPC)M}$ - $3t_{c(SYSCLK)}$ + 5	ns
25	¹ d(SPC)M		Odd	1.5t _{c(SPC)M} - 4t _{c(SYSCLK)} - 7	$1.5t_{c(SPC)M}$ - $4t_{c(SYSCLK)}$ + 5	115
		Valid time SPICI K to SPISTE	Even	0.5t _{c(SPC)M} - 7	$0.5t_{c(SPC)M} + 5$	
24	T (OTTO)	Valid time, SPICLK to SPISTE inactive	Odd	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} - 7$	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} + 5$	ns

Copyright © 2021 Texas Instruments Incorporated

over recommended operating conditions (unless otherwise noted)

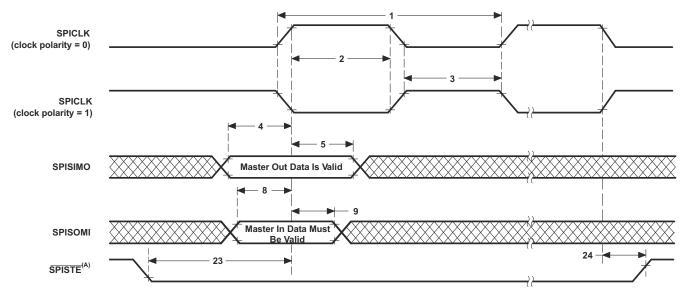
NO.		PARAMETER		MIN MA)						
	High Speed Mode									
4	t _{d(SIMO)M}	Delay time, SPICLK to SPISIMO valid	Even, Odd		ns					
			Even	0.5t _{c(SPC)M} – 2						
5	5 Valid time, SPISIMO valid after 5 t _{v(SIMO)M} SPICLK	Odd	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} - 2$	ns						
			Normal Mod	e						
4	t _{d(SIMO)M}	Delay time, SPICLK to SPISIMO valid	Even, Odd		3 ns					
			Even	0.5t _{c(SPC)M} – 5						
5	Valid time, SPISIMO valid after t _{v(SIMO)M} SPICLK	Odd	$\frac{0.5t_{c(SPC)M}-0.5t_{c(LSPCLK)}-}{5}$	ns						

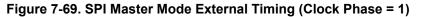
(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3.


7.12.5.1.1.3 SPI Master Mode Switching Characteristics (Clock Phase = 1)

over recommended operating conditions (unless otherwise noted)

NO.		PARAMETER	(BRR + 1) CONDITION ⁽¹⁾	MIN	МАХ	UNIT
			Gene	eral		
1	+	Cycle time, SPICLK	Even	4t _{c(LSPCLK)}	128t _{c(LSPCLK)}	ns
1	t _{c(SPC)M}	Cycle line, SPICER	Odd	5t _{c(LSPCLK)}	127t _{c(LSPCLK)}	115
		Pulse duration, SPICLK, first	Even	0.5t _{c(SPC)M} - 1	0.5t _{c(SPC)M} + 1	
2	t _{w(SPCH)M}	pulse	Odd	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} - 1$	0.5t _{c(SPC)M} – 0.5t _{c(LSPCLK)} + 1	ns
		Pulse duration, SPICLK,	Even	0.5t _{c(SPC)M} - 1	0.5t _{c(SPC)M} + 1	
3	t _{w(SPC2)M}	second pulse	Odd	$0.5t_{c(SPC)M} + 0.5t_{c(LSPCLK)} - 1$	$0.5t_{c(SPC)M}$ + $0.5t_{c(LSPCLK)}$ + 1	ns
23	t _{d(SPC)M}	Delay time, SPISTE valid to SPICLK	Even, Odd	2tc(SPC)M - 3tc(SYSCLK) - 7	2tc(SPC)M – 3tc(SYSCLK) + 5	ns
24	+	Valid time, SPICLK to SPISTE	Even	- 7	+5	
24	t _{v(STE)M}	invalid	Odd	- 7	+5	ns
			High Spee	ed Mode		
4	+	Delay time, SPISIMO valid to	Even	$0.5t_{c(SPC)M} - 1$		ns
4	t _{d(SIMO)M}	SPICLK	Odd	$0.5t_{c(SPC)M} + 0.5t_{c(LSPCLK)} - 1$		115
5	+	Valid time, SPISIMO valid after	Even	0.5t _{c(SPC)M} - 2		ns
5	t _{v(SIMO)M}	SPICLK	Odd	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} - 2$		115
			Normal	Mode		
4	tuonon	Delay time, SPISIMO valid to	Even	$0.5t_{c(SPC)M} - 5$		ns
т	t _{d(SIMO)M}	SPICLK	Odd	$0.5t_{c(SPC)M} + 0.5t_{c(LSPCLK)} - 5$		
5	t concont	Valid time, SPISIMO valid after	Even	$0.5t_{c(SPC)M} - 5$		ns
0	t _{v(SIMO)M}	SPICLK	Odd	$0.5t_{c(SPC)M} - 0.5t_{c(LSPCLK)} - 5$		113


(1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3.



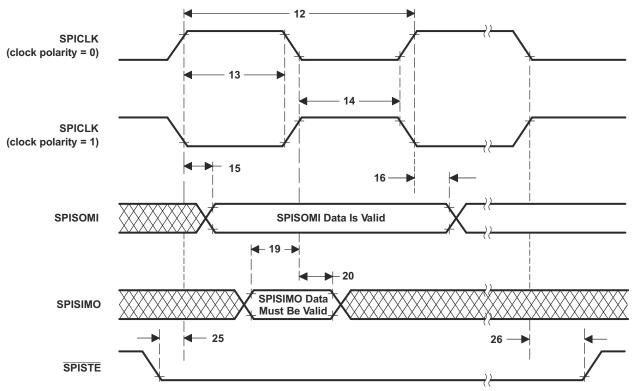
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.

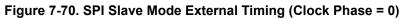
A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes.

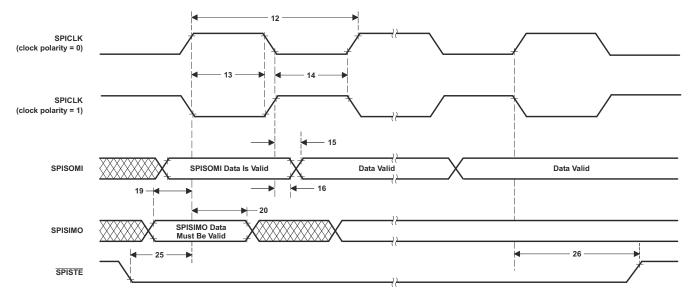
7.12.5.1.2 SPI Slave Mode Timings

Section 7.12.5.1.2.1 lists the SPI slave mode timing requirements. Section 7.12.5.1.2.2 lists the SPI slave mode switching characteristics. Figure 7-70 shows the SPI slave mode external timing where the clock phase = 0. Figure 7-71 shows the SPI slave mode external timing where the clock phase = 1.

7.12.5.1.2.1 SPI Slave Mode Timing Requirements


NO.			MIN	MAX	UNIT
12	t _{c(SPC)S}	Cycle time, SPICLK	$4t_{c(SYSCLK)}$		ns
13	t _{w(SPC1)S}	Pulse duration, SPICLK, first pulse	2t _{c(SYSCLK)} – 1		ns
14	t _{w(SPC2)S}	Pulse duration, SPICLK, second pulse	2t _{c(SYSCLK)} – 1		ns
19	t _{su(SIMO)S}	Setup time, SPISIMO valid before SPICLK	1.5t _{c(SYSCLK)}		ns
20	t _{h(SIMO)S}	Hold time, SPISIMO valid after SPICLK	1.5t _{c(SYSCLK)}		ns
25	+	Setup time, <u>SPISTE</u> valid before SPICLK (Clock Phase = 0)	2t _{c(SYSCLK)} + 4		ns
25	t _{su(STE)} S	Setup time, <u>SPISTE</u> valid before SPICLK (Clock Phase = 1)	2t _{c(SYSCLK)} + 14		ns
26	t _{h(STE)S}	Hold time, SPISTE invalid after SPICLK	1.5t _{c(SYSCLK)}		ns


7.12.5.1.2.2 SPI Slave Mode Switching Characteristics


over recommended operating conditions (unless otherwise noted)

NO.	PARAMETER		MIN	MAX	UNIT					
	High Speed Mode									
15	t _{d(SOMI)S}	Delay time, SPICLK to SPISOMI valid		9	ns					
16	t _{v(SOMI)S} Valid time, SPISOMI valid after SPICLK		0		ns					
		Norn	nal Mode							
15	t _{d(SOMI)S}	Delay time, SPICLK to SPISOMI valid		20	ns					
16	t _{v(SOMI)S}	Valid time, SPISOMI valid after SPICLK	0		ns					

7.12.6 Universal Serial Bus (USB) Controller

The USB controller operates as a full-speed or low-speed function controller during point-to-point communications with USB host or device functions.

The USB module has the following features:

- USB 2.0 full-speed and low-speed operation
- Integrated PHY
- Three transfer types: control, interrupt, and bulk
- 32 endpoints
 - One dedicated control IN endpoint and one dedicated control OUT endpoint
 - 15 configurable IN endpoints and 15 configurable OUT endpoints
- 4KB of dedicated endpoint memory

Figure 7-72 shows the USB block diagram.

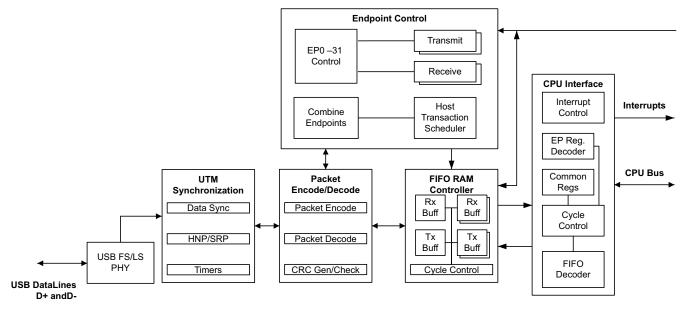


Figure 7-72. USB Block Diagram

Note

The accuracy of the on-chip zero-pin oscillator (Section 7.9.3.5.1, Internal Oscillator Electrical Characteristics) will not meet the accuracy requirements of the USB protocol. An external clock source must be used for applications using USB. For applications using the USB boot mode, see Section 8.9 (Boot ROM and Peripheral Booting) for clock frequency requirements.

7.12.6.1 USB Electrical Data and Timing

Section 7.12.6.1.1 shows the USB input ports DP and DM timing requirements. Section 7.12.6.1.2 shows the USB output ports DP and DM switching characteristics.

7.12.6.1.1 USB Input Ports DP and DM Timing Requirements

		MIN	MAX	UNIT
V(CM)	Differential input common mode range	0.8	2.5	V
Z(IN)	Input impedance	300		kΩ
VCRS	Crossover voltage	1.3	2.0	V
V _{IL}	Static SE input logic-low level	0.8		V
VIH	Static SE input logic-high level		2.0	V
VDI	Differential input voltage		0.2	V

7.12.6.1.2 USB Output Ports DP and DM Switching Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{OH}	D+, D- single-ended	USB 2.0 load conditions	2.8	3.6	V
V _{OL}	D+, D- single-ended	USB 2.0 load conditions	0	0.3	V
Z(DRV)	D+, D– impedance		28	44	Ω
t _r	Rise time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns
t _f	Fall time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns

8 Detailed Description

8.1 Overview

The TMS320F2807x microcontroller family is suited for advanced closed-loop control applications such as industrial motor drives; solar inverters and digital power; electrical vehicles and transportation; and sensing and signal processing. Complete development packages for digital power and industrial drives are available as part of the powerSUITE and DesignDRIVE initiatives.

The F2807x is a 32-bit floating-point microcontroller based on TI's industry-leading C28x core. This core is boosted by the trigonometric hardware accelerator which improves performance of trigonometric-based algorithms with CPU instructions such as sine, cosine, and arctangent functions, which are common in torque-loop and position calculations.

The F2807x microcontroller family features a CLA real-time control coprocessor. The CLA is an independent 32bit floating-point processor that runs at the same speed as the main CPU. The CLA responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel processing capability can effectively double the computational performance of a real-time control system. By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such as communications and diagnostics.

The F2807x device supports up to 512KB (256KW) of ECC-protected onboard flash memory and up to 100KB (50KW) of SRAM with parity. Two independent security zones are also available for 128-bit code protection of the main C28x.

The analog subsystem boasts up to three 12-bit ADCs, which enable simultaneous management of three independent power phases, and up to eight windowed comparator subsystems (CMPSSs), allowing very fast, direct trip of the PWMs in overvoltage or overcurrent conditions. In addition, the device has three 12-bit DACs, and precision control peripherals such as enhanced pulse width modulators (ePWMs) with fault protection, eQEP peripherals, and eCAP units.

Connectivity peripherals such as dual Controller Area Network (CAN) modules (ISO 11898-1/CAN 2.0B-compliant) and a USB 2.0 port with MAC and full-speed PHY let users add universal serial bus (USB) connectivity to their application.

8.2 Functional Block Diagram

Figure 8-1 shows the CPU system and associated peripherals.

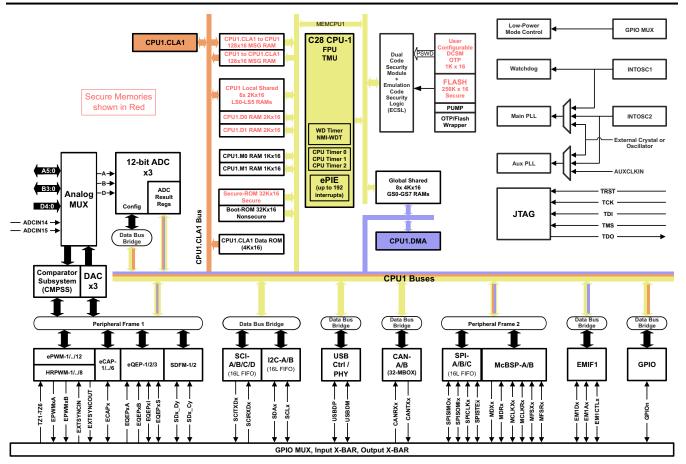


Figure 8-1. Functional Block Diagram

8.3 Memory

8.3.1 C28x Memory Map

The C28x memory map is described in Table 8-1. Memories accessible by the CLA or DMA (direct memory access) are noted as well.

Table 8-1. C28x Memory Map										
MEMORY	SIZE	START ADDRESS	END ADDRESS	CLA ACCESS	DMA ACCESS					
M0 RAM	1K × 16	0x0000 0000	0x0000 03FF							
M1 RAM	1K × 16	0x0000 0400	0x0000 07FF							
PieVectTable	512 × 16	0x0000 0D00	0x0000 0EFF							
CLA to CPU MSGRAM	128 × 16	0x0000 1480	0x0000 14FF	Yes						
CPU to CLA MSGRAM	128 × 16	0x0000 1500	0x0000 157F	Yes						
LS0 RAM	2K × 16	0x0000 8000	0x0000 87FF	Yes						
LS1 RAM	2K × 16	0x0000 8800	0x0000 8FFF	Yes						
LS2 RAM	2K × 16	0x0000 9000	0x0000 97FF	Yes						
LS3 RAM	2K × 16	0x0000 9800	0x0000 9FFF	Yes						
LS4 RAM	2K × 16	0x0000 A000	0x0000 A7FF	Yes						
LS5 RAM	2K × 16	0x0000 A800	0x0000 AFFF	Yes						
D0 RAM	2K × 16	0x0000 B000	0x0000 B7FF							
D1 RAM	2K × 16	0x0000 B800	0x0000 BFFF							
GS0 RAM	4K × 16	0x0000 C000	0x0000 CFFF		Yes					
GS1 RAM	4K × 16	0x0000 D000	0x0000 DFFF		Yes					
GS2 RAM	4K × 16	0x0000 E000	0x0000 EFFF		Yes					
GS3 RAM	4K × 16	0x0000 F000	0x0000 FFFF		Yes					
GS4 RAM	4K × 16	0x0001 0000	0x0001 0FFF		Yes					
GS5 RAM	4K × 16	0x0001 1000	0x0001 1FFF		Yes					
GS6 RAM	4K × 16	0x0001 2000	0x0001 2FFF		Yes					
GS7 RAM	4K × 16	0x0001 3000	0x0001 3FFF		Yes					
CAN A Message RAM	2K × 16	0x0004 9000	0x0004 97FF							
CAN B Message RAM	2K × 16	0x0004 B000	0x0004 B7FF							
Flash Bank 0	256K × 16	0x0008 0000	0x000B FFFF							
Secure ROM	32K × 16	0x003F 0000	0x003F 7FFF							
Boot ROM	32K × 16	0x003F 8000	0x003F FFBF							
Vectors	64 × 16	0x003F FFC0	0x003F FFFF							

8.3.2 Flash Memory Map

The F28076 and F28075 devices have one flash bank of 512KB (256KW). See Section 7.9.4 for details on flash wait-states. Table 1-1 shows the addresses of flash sectors on F28076 and F28075.

SECTOR	SIZE	START ADDRESS	END ADDRESS
	OTP	Sectors	
TI OTP Bank 0	1K x 16	0x0007 0000	0x0007 03FF
User configurable DCSM OTP Bank 0	1K x 16	0x0007 8000	0x0007 83FF
	Se	ectors	
Sector 0	8K x 16	0x0008 0000	0x0008 1FFF
Sector 1	8K x 16	0x0008 2000	0x0008 3FFF
Sector 2	8K x 16	0x0008 4000	0x0008 5FFF
Sector 3	8K x 16	0x0008 6000	0x0008 7FFF
Sector 4	32K x 16	0x0008 8000	0x0008 FFFF
Sector 5	32K x 16	0x0009 0000	0x0009 7FFF
Sector 6	32K x 16	0x0009 8000	0x0009 FFFF
Sector 7	32K x 16	0x000A 0000	0x000A 7FFF
Sector 8	32K x 16	0x000A 8000	0x000A FFFF
Sector 9	32K x 16	0x000B 0000	0x000B 7FFF
Sector 10	8K x 16	0x000B 8000	0x000B 9FFF
Sector 11	8K x 16	0x000B A000	0x000B BFFF
Sector 12	8K x 16	0x000B C000	0x000B DFFF
Sector 13	8K x 16	0x000B E000	0x000B FFFF
	Flash EC	C Locations	
TI OTP ECC Bank 0	128 x 16	0x0107 0000	0x0107 007F
User-configurable DCSM OTP ECC Bank 0	128 x 16	0x0107 1000	0x0107 107F
Flash ECC (Sector 0)	1K x 16	0x0108 0000	0x0108 03FF
Flash ECC (Sector 1)	1K x 16	0x0108 0400	0x0108 07FF
Flash ECC (Sector 2)	1K x 16	0x0108 0800	0x0108 0BFF
Flash ECC (Sector 3)	1K x 16	0x0108 0C00	0x0108 0FFF
Flash ECC (Sector 4)	4K x 16	0x0108 1000	0x0108 1FFF
Flash ECC (Sector 5)	4K x 16	0x0108 2000	0x0108 2FFF
Flash ECC (Sector 6)	4K x 16	0x0108 3000	0x0108 3FFF
Flash ECC (Sector 7)	4K x 16	0x0108 4000	0x0108 4FFF
Flash ECC (Sector 8)	4K x 16	0x0108 5000	0x0108 5FFF
Flash ECC (Sector 9)	4K x 16	0x0108 6000	0x0108 6FFF
Flash ECC (Sector 10)	1K x 16	0x0108 7000	0x0108 73FF
Flash ECC (Sector 11)	1K x 16	0x0108 7400	0x0108 77FF
Flash ECC (Sector 12)	1K x 16	0x0108 7800	0x0108 7BFF
Flash ECC (Sector 13)	1K x 16	0x0108 7C00	0x0108 7FFF

8.3.3 EMIF Chip Select Memory Map

The EMIF memory map is shown in Table 8-3.

EMIF CHIP SELECT	SIZE ⁽¹⁾	START ADDRESS	END ADDRESS	CLA ACCESS	DMA ACCESS					
EMIF1_CS0n - Data	256M × 16	0x8000 0000	0x8FFF FFFF		Yes					
EMIF1_CS2n - Program + Data ⁽²⁾	2M × 16	0x0010 0000	0x002F FFFF		Yes					
EMIF1_CS3n - Program + Data	512K × 16	0x0030 0000	0x0037 FFFF		Yes					
EMIF1_CS4n - Program + Data	393K × 16	0x0038 0000	0x003D FFFF		Yes					

Table 8-3. EMIF Chip Select Memory Map

(1) Available memory size listed in this table is the maximum possible size assuming 32-bit memory. This may not apply to other memory sizes because of pin mux setting. See Section 6.4.1 to find the available address lines for your use case.

(2) The 2M × 16 size is for a 32-bit interface with the assumption that 16-bit accesses are not performed; hence, byte enables are not used (tied to active value on board). If byte enables are used, then the maximum size is smaller because byte enables are muxed with address pins (see Section 6.4.1). If 16-bit memory is used, then the maximum size is 1M × 16.

8.3.4 Peripheral Registers Memory Map

The peripheral registers memory map can be found in Table 8-4. Registers in the peripheral frames share a secondary master (CLA or DMA) selection with all other registers within the same peripheral frame. See the *TMS320F2807x Microcontrollers Technical Reference Manual* for details on the CPU subsystem and secondary master selection.

Table 8-4. Peripheral Registers Memory Map											
REGISTERS	STRUCTURE NAME	START ADDRESS	END ADDRESS	PROTECTED ⁽¹⁾	CLA ACCESS	DMA ACCESS					
AdcaResultRegs	ADC_RESULT_REGS	0x0000 0B00	0x0000 0B1F		Yes	Yes					
AdcbResultRegs	ADC_RESULT_REGS	0x0000 0B20	0x0000 0B3F		Yes	Yes					
AdcdResultRegs	ADC_RESULT_REGS	0x0000 0B60	0x0000 0B7F		Yes	Yes					
CpuTimer0Regs	CPUTIMER_REGS	0x0000 0C00	0x0000 0C07								
CpuTimer1Regs	CPUTIMER_REGS	0x0000 0C08	0x0000 0C0F								
CpuTimer2Regs	CPUTIMER_REGS	0x0000 0C10	0x0000 0C17								
PieCtrlRegs ⁽²⁾	PIE_CTRL_REGS	0x0000 0CE0	0x0000 0CFF								
Cla1SoftIntRegs ⁽²⁾	CLA_SOFTINT_REGS	0x0000 0CE0	0x0000 0CFF		Yes – CLA only, no CPU access						
DmaRegs	DMA_REGS	0x0000 1000	0x0000 11FF								
Cla1Regs	CLA_REGS	0x0000 1400	0x0000 147F								
	Peripl	neral Frame 1		1	1						
EPwm1Regs	EPWM_REGS	0x0000 4000	0x0000 40FF	Yes	Yes	Yes					
EPwm2Regs	EPWM_REGS	0x0000 4100	0x0000 41FF	Yes	Yes	Yes					
EPwm3Regs	EPWM_REGS	0x0000 4200	0x0000 42FF	Yes	Yes	Yes					
EPwm4Regs	EPWM_REGS	0x0000 4300	0x0000 43FF	Yes	Yes	Yes					
EPwm5Regs	EPWM_REGS	0x0000 4400	0x0000 44FF	Yes	Yes	Yes					
EPwm6Regs	EPWM_REGS	0x0000 4500	0x0000 45FF	Yes	Yes	Yes					
EPwm7Regs	EPWM_REGS	0x0000 4600	0x0000 46FF	Yes	Yes	Yes					
EPwm8Regs	EPWM_REGS	0x0000 4700	0x0000 47FF	Yes	Yes	Yes					
EPwm9Regs	EPWM_REGS	0x0000 4800	0x0000 48FF	Yes	Yes	Yes					
EPwm10Regs	EPWM_REGS	0x0000 4900	0x0000 49FF	Yes	Yes	Yes					
EPwm11Regs	EPWM_REGS	0x0000 4A00	0x0000 4AFF	Yes	Yes	Yes					
EPwm12Regs	EPWM_REGS	0x0000 4B00	0x0000 4BFF	Yes	Yes	Yes					
ECap1Regs	ECAP_REGS	0x0000 5000	0x0000 501F	Yes	Yes	Yes					
ECap2Regs	ECAP_REGS	0x0000 5020	0x0000 503F	Yes	Yes	Yes					
ECap3Regs	ECAP_REGS	0x0000 5040	0x0000 505F	Yes	Yes	Yes					
ECap4Regs	ECAP REGS	0x0000 5060	0x0000 507F	Yes	Yes	Yes					

Table 8-4. Peripheral Registers Memory Map

	Table 8-4. Peripheral Regis	ters Memory	Map (contin	ued)		
REGISTERS	STRUCTURE NAME	START ADDRESS	END ADDRESS	PROTECTED ⁽¹⁾	CLA ACCESS	DMA ACCESS
ECap5Regs	ECAP_REGS	0x0000 5080	0x0000 509F	Yes	Yes	Yes
ECap6Regs	ECAP_REGS	0x0000 50A0	0x0000 50BF	Yes	Yes	Yes
EQep1Regs	EQEP_REGS	0x0000 5100	0x0000 513F	Yes	Yes	Yes
EQep2Regs	EQEP_REGS	0x0000 5140	0x0000 517F	Yes	Yes	Yes
EQep3Regs	EQEP_REGS	0x0000 5180	0x0000 51BF	Yes	Yes	Yes
DacaRegs	DAC_REGS	0x0000 5C00	0x0000 5C0F	Yes	Yes	Yes
DacbRegs	DAC_REGS	0x0000 5C10	0x0000 5C1F	Yes	Yes	Yes
DaccRegs	DAC_REGS	0x0000 5C20	0x0000 5C2F	Yes	Yes	Yes
Cmpss1Regs	CMPSS_REGS	0x0000 5C80	0x0000 5C9F	Yes	Yes	Yes
Cmpss2Regs	CMPSS_REGS	0x0000 5CA0	0x0000 5CBF	Yes	Yes	Yes
Cmpss3Regs	CMPSS_REGS	0x0000 5CC0	0x0000 5CDF	Yes	Yes	Yes
Cmpss4Regs	CMPSS_REGS	0x0000 5CE0	0x0000 5CFF	Yes	Yes	Yes
Cmpss5Regs	CMPSS_REGS	0x0000 5D00	0x0000 5D1F	Yes	Yes	Yes
Cmpss6Regs	CMPSS_REGS	0x0000 5D20	0x0000 5D3F	Yes	Yes	Yes
Cmpss7Regs	CMPSS_REGS	0x0000 5D40	0x0000 5D5F	Yes	Yes	Yes
Cmpss8Regs	CMPSS_REGS	0x0000 5D60	0x0000 5D7F	Yes	Yes	Yes
Sdfm1Regs	SDFM_REGS	0x0000 5E00	0x0000 5E7F	Yes	Yes	Yes
Sdfm2Regs	SDFM_REGS	0x0000 5E80	0x0000 5EFF	Yes	Yes	Yes
	Periphe	ral Frame 2	I	I		
McbspaRegs	MCBSP_REGS	0x0000 6000	0x0000 603F	Yes	Yes	Yes
McbspbRegs	MCBSP_REGS	0x0000 6040	0x0000 607F	Yes	Yes	Yes
SpiaRegs	SPI_REGS	0x0000 6100	0x0000 610F	Yes	Yes	Yes
SpibRegs	SPI_REGS	0x0000 6110	0x0000 611F	Yes	Yes	Yes
SpicRegs	SPI_REGS	0x0000 6120	0x0000 612F	Yes	Yes	Yes
	1					
WdRegs	WD_REGS	0x0000 7000	0x0000 703F	Yes		
NmiIntruptRegs	NMI_INTRUPT_REGS	0x0000 7060	0x0000 706F	Yes		
XintRegs	XINT_REGS	0x0000 7070	0x0000 707F	Yes		
SciaRegs	SCI_REGS	0x0000 7200	0x0000 720F	Yes		
ScibRegs	SCI_REGS	0x0000 7210	0x0000 721F	Yes		
ScicRegs	SCI_REGS	0x0000 7220	0x0000 722F	Yes		
ScidRegs	SCI_REGS	0x0000 7230	0x0000 723F	Yes		
I2caRegs	I2C_REGS	0x0000 7300	0x0000 733F	Yes		
I2cbRegs	 I2C_REGS	0x0000 7340	0x0000 737F	Yes		
AdcaRegs	ADC_REGS	0x0000 7400	0x0000 747F	Yes	Yes	
AdcbRegs		0x0000 7480	0x0000 74FF	Yes	Yes	
AdcdRegs	ADC_REGS	0x0000 7580	0x0000 75FF	Yes	Yes	
InputXbarRegs	INPUT XBAR REGS	0x0000 7900	0x0000 791F	Yes		
XbarRegs	XBAR_REGS	0x0000 7920	0x0000 793F	Yes		
TrigRegs	TRIG_REGS	0x0000 7940	0x0000 794F	Yes		
DmaClaSrcSelRegs	DMA_CLA_SRC_SEL_REGS	0x0000 7980	0x0000 798F	Yes		
EPwmXbarRegs	EPWM_XBAR_REGS	0x0000 7A00	0x0000 7A3F	Yes		
OutputXbarRegs	OUTPUT_XBAR_REGS	0x0000 7A80	0x0000 7ABF	Yes		
GpioCtrlRegs	GPIO_CTRL_REGS	0x0000 7C00	0x0000 7D7F	Yes		
GpioDataRegs	GPIO_DATA_REGS	0x0000 7F00	0x0000 7F2F	Yes	Yes	
UsbaRegs	USB_REGS	0x0004 0000	0x0004 0FFF	Yes		
Emif1Regs	EMIF_REGS	0x0004 7000	0x0004 77FF	Yes		
CanaRegs	CAN_REGS	0x0004 8000	0x0004 87FF	Yes		
	CAN_REGS	0x0004 A000	0x0004 A7FF	Yes		

REGISTERS	STRUCTURE NAME	START ADDRESS	END ADDRESS	PROTECTED ⁽¹⁾	CLA ACCESS	DMA ACCESS
FlashPumpSemaphoreRegs	FLASH_PUMP_SEMAPHORE_REGS	0x0005 0024	0x0005 0025	Yes		
DevCfgRegs	DEV_CFG_REGS	0x0005 D000	0x0005 D17F	Yes		
AnalogSubsysRegs	ANALOG_SUBSYS_REGS	0x0005 D180	0x0005 D1FF	Yes		
ClkCfgRegs	CLK_CFG_REGS	0x0005 D200	0x0005 D2FF	Yes		
CpuSysRegs	CPU_SYS_REGS	0x0005 D300	0x0005 D3FF	Yes		
RomPrefetchRegs	ROM_PREFETCH_REGS	0x0005 E608	0x0005 E60B	Yes		
DcsmZ1Regs	DCSM_Z1_REGS	0x0005 F000	0x0005 F02F	Yes		
DcsmZ2Regs	DCSM_Z2_REGS	0x0005 F040	0x0005 F05F	Yes		
DcsmCommonRegs	DCSM_COMMON_REGS	0x0005 F070	0x0005 F07F	Yes		
MemCfgRegs	MEM_CFG_REGS	0x0005 F400	0x0005 F47F	Yes		
Emif1ConfigRegs	EMIF1_CONFIG_REGS	0x0005 F480	0x0005 F49F	Yes		
AccessProtectionRegs	ACCESS_PROTECTION_REGS	0x0005 F4C0	0x0005 F4FF	Yes		
MemoryErrorRegs	MEMORY_ERROR_REGS	0x0005 F500	0x0005 F53F	Yes		
RomWaitStateRegs	ROM_WAIT_STATE_REGS	0x0005 F540	0x0005 F541	Yes		
Flash0CtrlRegs	FLASH_CTRL_REGS	0x0005 F800	0x0005 FAFF	Yes		
Flash0EccRegs	FLASH_ECC_REGS	0x0005 FB00	0x0005 FB3F	Yes		

Table 8-4. Peripheral Registers Memory Map (continued)

(1) The CPU (not applicable for CLA or DMA) contains a write followed by read protection mode to ensure that any read operation that follows a write operation within a protected address range is executed as written by delaying the read operation until the write is initiated.

(2) The address overlap of PieCtrlRegs and Cla1SoftIntRegs is correct. Each CPU, C28x and CLA, only has access to one of the register sets.

8.3.5 Memory Types

Table 8-5 provides more information about each memory type.

Table 8-5. Memory Types						
MEMORY TYPE	ECC-CAPABLE	PARITY	SECURITY	HIBERNATE RETENTION	ACCESS PROTECTION	
M0, M1	Yes	-	_	Yes	-	
D0, D1	Yes	-	Yes	-	Yes	
LSx	-	Yes	Yes	-	Yes	
GSx	_	Yes	_	-	Yes	
CPU/CLA MSGRAM	-	Yes	Yes	-	Yes	
Boot ROM	-	-	-	N/A	-	
Secure ROM	-	-	Yes	N/A	-	
Flash	Yes	-	Yes	N/A	N/A	
User-configurable DCSM OTP	Yes	_	Yes	N/A	N/A	

8.3.5.1 Dedicated RAM (Mx and Dx RAM)

The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1 memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). D0/D1 memories are secure blocks and also have the access-protection feature (CPU write/CPU fetch protection).

8.3.5.2 Local Shared RAM (LSx RAM)

RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are called local shared RAMs (LSx RAMs).

All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU write/CPU fetch) feature.

By default, these memories are dedicated to the CPU only, and the user could choose to share these memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately.

Table 8-6 shows the master access for the LSx RAM.

(With Assumption That all Other Access Protections are Disabled)					
MSEL_LSx	COMMENT				
00	х	All	_	LSx memory is configured as CPU dedicated RAM.	
01	0	All		LSx memory is shared between CPU and CLA1.	
01	1	Emulation Read Emulation Write	Fetch Only	LSx memory is CLA1 program memory.	

Table 8-6. Master Access for LSx RAM

8.3.5.3 Global Shared RAM (GSx RAM)

RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx RAMs). Both the CPU and DMA have full read and write access to these memories.

All GSx RAM blocks have parity.

The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).

8.3.5.4 CLA Message RAM (CLA MSGRAM)

These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA MSGRAM." The CPU and CLA both have read access to both MSGRAMs.

This RAM has parity.

8.4 Identification

Table 8-7 shows the Device Identification Registers.

Table 8-7. Device Identification Registers				
ADDRESS	SIZE (x16)	DESCRIPTION		
		Device part identification number ⁽¹⁾		

NAME	ADDRESS	SIZE (x16)	DESCRI	PTION
			Device part identification number	.(1)
PARTIDH	0x0005 D00A	2	TMS320F28076	0x**FC 0500
			TMS320F28075	0x**FF 0500
			Silicon revision number	
REVID	0x0005 D00C	2	Revision B	0x0000 0002
			Revision C	0x0000 0003
UID_UNIQUE	0x0007 03CC	2	Unique identification number. Thi individual device with the same F a serial number in the application on TMS Revision C devices.	ARTIDH. This can be used as
JTAG ID	N/A	N/A	JTAG Device ID	0x0B99 C02F

(1) PARTIDH may have one of two values for each part number, with the eight most significant bits identified with '**' above being 0x00 or 0x02.

8.5 Bus Architecture – Peripheral Connectivity

Table 8-8 shows a broad view of the peripheral and configuration register accessibility from each bus master. Peripherals within peripheral frames 1 or 2 will all be mapped to the respective secondary master as a group (if SPI is assigned to CPU1.DMA, then McBSP is also assigned to CPU1.DMA).

Table 8-8. Bus Master F	CPU1.DMA	CPU1.CLA1	CPU1
(BY BUS ACCESS TYPE)	CPUT.DIMA	CFUICLAI	CPUT
Peripheral Frame 1: • ePWM/HRPWM • SDFM • eCAP ⁽¹⁾ • eQEP ⁽¹⁾ • CMPSS ⁽¹⁾ • DAC ⁽¹⁾	Y	Y	Y
Peripheral Frame 2: • SPI • McBSP	Y	Y	Y
SCI			Y
12C			Y
CAN			Y
ADC Configuration		Y	Y
EMIF1	Y		Y
USB			Y
Device Capability, Peripheral Reset, Peripheral CPU Select			Y
GPIO Pin Mapping and Configuration			Y
Analog System Control			Y
Reset Configuration			Y
Clock and PLL Configuration			Y
System Configuration (WD, NMIWD, LPM, Peripheral Clock Gating)			Y
Flash Configuration			Y
CPU Timers			Y
DMA and CLA Trigger Source Select			Y
GPIO Data ⁽²⁾		Y	Y
ADC Results	Y	Y	Y

Table 8-8. Bus Master Peripheral Access

(1) These modules are on a Peripheral Frame with DMA access; however, they cannot trigger a DMA transfer.

(2) The GPIO Data Registers are unique for each CPU1 and CPU1.CLAx. When the GPIO Pin Mapping Register is configured to assign a GPIO to a particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO) chapter of the TMS320F2807x Microcontrollers Technical Reference Manual for more details.

8.6 C28x Processor

The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.

The CPU features include a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.

For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set Reference Guide.

8.6.1 Floating-Point Unit

The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by adding registers and instructions to support IEEE single-precision floating-point operations.

Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit registers. The additional floating-point unit registers are the following:

- Eight floating-point result registers, RnH (where n = 0–7)
- Floating-point Status Register (STF)
- Repeat Block Register (RB)

All of the floating-point registers, except the repeat block register, are shadowed. This shadowing can be used in high-priority interrupts for fast context save and restore of the floating-point registers.

For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.

8.6.2 Trigonometric Math Unit

The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 8-9.

INSTRUCTIONS	C EQUIVALENT OPERATION	PIPELINE CYCLES		
MPY2PIF32 RaH,RbH	a = b * 2pi	2/3		
DIV2PIF32 RaH,RbH	a = b / 2pi	2/3		
DIVF32 RaH,RbH,RcH	a = b/c	5		
SQRTF32 RaH,RbH	a = sqrt(b)	5		
SINPUF32 RaH,RbH	a = sin(b*2pi)	4		
COSPUF32 RaH,RbH	a = cos(b*2pi)	4		
ATANPUF32 RaH,RbH	a = atan(b)/2pi	4		
QUADF32 RaH,RbH,RcH,RdH	Operation to assist in calculating ATANPU2	5		

Table 8-9. TMU Supported Instructions

No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions use the existing FPU register set (R0H to R7H) to carry out their operations. A detailed explanation of the workings of the FPU can be found in the *TMS320C28x Extended Instruction Sets Technical Reference Manual*.

8.7 Control Law Accelerator

The CLA is an independent single-precision (32-bit) FPU processor with its own bus structure, fetch mechanism, and pipeline. Eight individual CLA tasks can be specified. Each task is started by software or a peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU Timer 0. The CLA executes one task at a time to completion. When a task completes, the main CPU is notified by an interrupt to the PIE and the CLA automatically begins the next highest-priority pending task. The CLA can directly access the ADC Result registers, ePWM, eCAP, eQEP, Comparator and DAC registers. Dedicated message RAMs provide a method to pass additional data between the main CPU and the CLA.

Figure 8-2 shows the CLA block diagram.

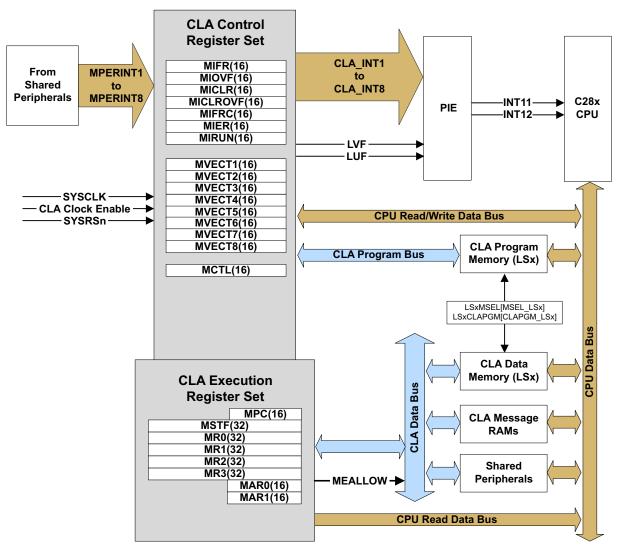


Figure 8-2. CLA Block Diagram

8.8 Direct Memory Access

The CPU has its own 6-channel DMA module. The DMA module provides a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is transferred as well as "ping-pong" data between buffers. These features are useful for structuring data into blocks for optimal CPU processing.

The DMA module is an event-based machine, meaning it requires a peripheral or software trigger to start a DMA transfer. Although it can be made into a periodic time-driven machine by configuring a timer as the interrupt trigger source, there is no mechanism within the module itself to start memory transfers periodically. The interrupt trigger source for each of the six DMA channels can be configured separately and each channel contains its own independent PIE interrupt to let the CPU know when a DMA transfer has either started or completed. Five of the six channels are exactly the same, while Channel 1 has the ability to be configured at a higher priority than the others.

DMA features include:

- · Six channels with independent PIE interrupts
- Peripheral interrupt trigger sources
 - ADC interrupts and EVT signals
 - Multichannel buffered serial port transmit and receive
 - External interrupts
 - CPU timers
 - EPWMxSOC signals
 - SPIx transmit and receive
 - SDFM
 - Software trigger
- Data sources and destinations:
 - GSx RAM
 - ADC result registers
 - ePWMx
 - SPI
 - McBSP
 - EMIF
- Word Size: 16-bit or 32-bit (SPI and McBSP limited to 16-bit)
- Throughput: four cycles/word (without arbitration)

Figure 8-3 shows a device-level block diagram of the DMA.

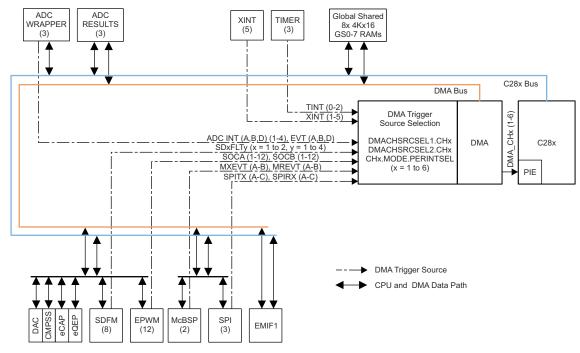


Figure 8-3. DMA Block Diagram

8.9 Boot ROM and Peripheral Booting

The device boot ROM contains bootloading software. The device boot ROM is executed each time the device comes out of reset. Users can configure the device to boot to flash (using GET mode) or choose to boot the device through one of the bootable peripherals by configuring the boot mode GPIO pins.

Table 8-10 shows the possible boot modes supported on the device. The default boot mode pins are GPIO72 (boot mode pin 1) and GPIO 84 (boot mode pin 0). Users may choose to have weak pullups for boot mode pins if they use a peripheral on these pins as well, so the pullups can be overdriven. On this device, customers can change the factory default boot mode pins by programming OTP locations. This is recommended only for cases in which the factory default boot mode pins do not fit into the customer design. More details on the locations to be programmed is available in the *TMS320F2807x Microcontrollers Technical Reference Manual*.

MODE NO.	CPU1 BOOT MODE	TRST	GPIO72 (BOOT MODE PIN 1)	GPIO84 (BOOT MODE PIN 0)
0	Parallel I/O	0	0	0
1	SCI Mode	0	0	1
2	Wait Boot Mode	0	1	0
3	Get Mode	0	1	1
4-7	EMU Boot Mode (JTAG debug probe connected)	1	Х	Х

Table 8-10. Device Boot Mode

Note

The default behavior of Get mode is boot-to-flash. On unprogrammed devices, using Get mode will result in repeated watchdog resets, which may prevent proper JTAG connection and device initialization. Use Wait mode or another boot mode for unprogrammed devices.

CAUTION

Some reset sources are internally driven by the device. The user must ensure the pins used for boot mode are not actively driven by other devices in the system for these cases. The boot configuration has a provision for changing the boot pins in OTP. For more details, see the *TMS320F2807x Microcontrollers Technical Reference Manual*.

8.9.1 EMU Boot or Emulation Boot

The CPU enters this boot when it detects that TRST is HIGH (that is, when a JTAG debug probe/debugger is connected). In this mode, the user can program the EMU_BOOTCTRL control-word (at location 0xD00) to instruct the device on how to boot. If the contents of the EMU_BOOTCTRL location are invalid, then the device would default to WAIT Boot mode. The emulation boot allows users to verify the device boot before programming the boot mode into OTP. Note that EMU_BOOTCTRL is not actually a register, but refers to a location in RAM (PIE RAM). PIE RAM starts at 0xD00, but the first few locations are reserved (when initializing the PIE vector table in application code) for these boot ROM variables.

8.9.2 WAIT Boot Mode

The device in this boot mode loops in the boot ROM. This mode is useful if users want to connect a debugger on a secure device or if users do not want the device to execute an application in flash yet.

8.9.3 Get Mode

The default behavior of Get mode is boot-to-flash. This behavior can be changed by programming the Zx-OTPBOOTCTRL locations in user configurable DCSM OTP. The user configurable DCSM OTP on this device is divided in to two secure zones: Z1 and Z2. The Get mode function in boot ROM first checks if a valid OTPBOOTCTRL value is programmed in Z1. If the answer is yes, then the device boots as per the Z1-OTPBOOTCTRL location. The Z2-OTPBOOTCTRL location is read and decodes only if Z1-OTPBOOTCTRL is invalid or not programmed. If either Zx-OTPBOOTCTRL location is not programmed, then the device defaults to factory default operation, which is to use factory default boot mode pins to boot to flash if the boot mode pins are set to GET MODE. Users can choose the device through which to boot—SPI, I2C, CAN, and USB—by programming proper values into the user configurable DCSM OTP. More details on this can be found in the *TMS320F2807x Microcontrollers Technical Reference Manual*.

8.9.4 Peripheral Pins Used by Bootloaders

Table 8-11 shows the GPIO pins used by each peripheral bootloader. This device supports two sets of GPIOs for each mode, as shown in Table 8-11.

BOOTLOADER	GPIO PINS	NOTES
SCI-Boot0	SCITXDA: GPIO84 SCIRXDA: GPIO85	SCIA Boot I/O option 1 (default SCI option when chosen through Boot Mode GPIOs)
SCI-Boot1	SCIRXDA: GPIO28 SCITXDA: GPIO29	SCIA Boot option 2 – with alternate I/Os.
Parallel Boot	D0 – GPIO65 D1 – GPIO64 D2 – GPIO58 D3 – GPIO59 D4 – GPIO60 D5 – GPIO61 D6 – GPIO62 D7 – GPIO63 HOST_CTRL – GPIO70 DSP_CTRL – GPIO69	
CAN-Boot0	CANRXA: GPIO70 CANTXA: GPIO71	CAN-A Boot – I/O option 1
CAN-Boot1	CANRXA: GPIO62 CANTXA: GPIO63	CAN-A Boot – I/O option 2
I2C-Boot0	SDAA: GPIO91 SCLA: GPIO92	I2CA Boot – I/O option 1
I2C-Boot1	SDAA: GPIO32 SCLA: GPIO33	I2CA Boot – I/O option 2
SPI-Boot0	SPISIMOA - GPIO58 SPISOMIA - GPIO59 SPICLKA - GPIO60 SPISTEA - GPIO61	SPIA Boot – I/O option 1
SPI-Boot1	SPISIMOA – GPIO16 SPISOMIA – GPIO17 SPICLKA – GPIO18 SPISTEA – GPIO19	SPIA Boot – I/O option 2
USB Boot	USB0DM - GPIO42 USB0DP - GPIO43	The USB Bootloader will switch the clock source to the external crystal oscillator (X1 and X2 pins). A 20-MHz crystal should be present on the board if this boot mode is selected.

Table 8-11. GPIO Pins Used by Each Peripheral Bootloader

8.10 Dual Code Security Module

The dual code security module (DCSM) prevents access to on-chip secure memories. The term "secure" means access to secure memories and resources is blocked. The term "unsecure" means access is allowed; for example, through a debugging tool such as Code Composer Studio[™] (CSS).

The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory and secure ROM) and allocated secure resource (CLA, LSx RAM, and flash sectors).

The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be changed to program a different set of security settings (including passwords) in OTP.

Note

THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.

TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.

8.11 Timers

CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value.

CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use.

CPU-Timer 2 can be clocked by any one of the following:

- SYSCLK (default)
- Internal zero-pin oscillator 1 (INTOSC1)
- Internal zero-pin oscillator 2 (INTOSC2)
- X1 (XTAL)
- AUXPLLCLK

8.12 Nonmaskable Interrupt With Watchdog Timer (NMIWD)

The NMIWD module is used to handle system-level errors. The conditions monitored are:

- Missing system clock due to oscillator failure
- Uncorrectable ECC error on CPU access to flash memory
- · Uncorrectable ECC error on CPU, CLA, or DMA access to RAM

If the CPU does not respond to the latched error condition, then the NMI watchdog will trigger a reset after a programmable time interval. The default time is 65536 SYSCLK cycles.

8.13 Watchdog

The watchdog module is the same as the one on previous TMS320C2000[™] MCUs, but with an optional lower limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the watchdog is fully backwards-compatible.

The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable frequency divider.

Figure 8-4 shows the various functional blocks within the watchdog module.

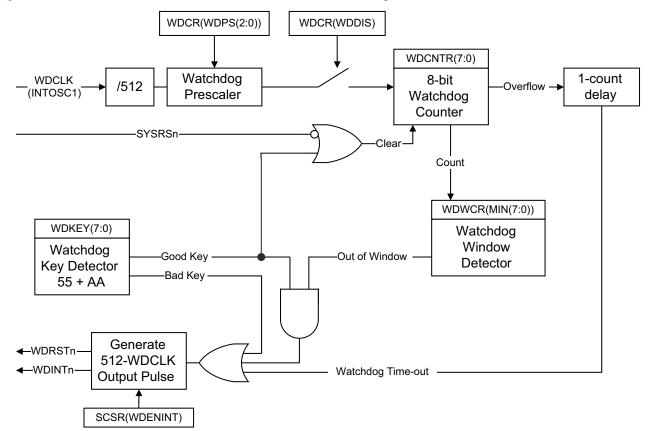


Figure 8-4. Windowed Watchdog

8.14 Configurable Logic Block (CLB)

The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules (eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to perform small logical functions such as comparators, or to implement custom serial data exchange protocols. Through the CLB, functions that would otherwise be accomplished using external logic devices can now be implemented inside the MCU.

The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available examples, application reports and users guide, please refer to the following location in your C2000Ware package (C2000Ware_2_00_00_03 and higher):

C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc

CLB Tool User Guide

How to Design with the C2000™ CLB Application Report

How to Migrate Custom Logic From an FPGA/CPLD to C2000™ CLB Application Report

The CLB module and its interconnects are shown in Figure 8-5.

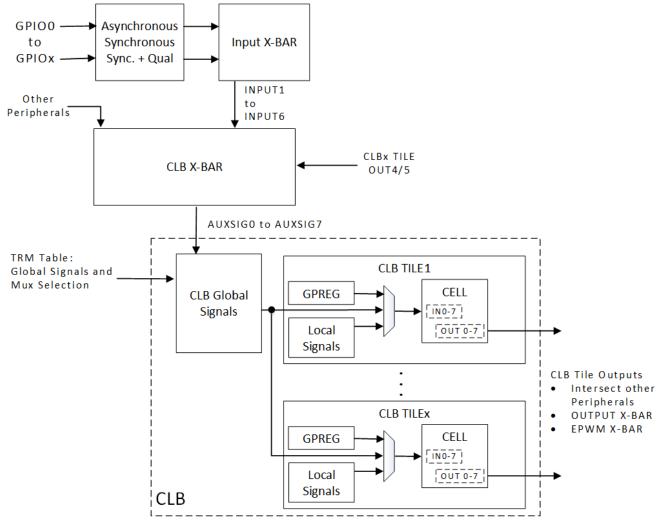


Figure 8-5. CLB Overview

Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. See Table 5-1 for the devices that support the CLB feature.

8.15 Functional Safety

TMS320C2000[™] MCUs are equipped with a TI release validation-based C28x and CLA Compiler Qualification Kit (CQ-Kit), which is available for free and may be requested at the Compiler Qualification Kit web page.

Additionally, C2000[™] MCUs are supported by the TI C2000 Support from Embedded Coder from MathWorks[®] to generate C2000-optimized code from a Simulink[®] model. Simulink[®] enables Model-Based Design to ease the systematic compliance process with certified tools, including Embedded Coder[®], Simulink[®] model verification tools, Polyspace[®] code verification tools, and the IEC Certification Kit for ISO 26262 and IEC 61508 compliance. For more information, see the How to Use Simulink for ISO 26262 Projects article.

The *Error Detection in SRAM Application Report* provides technical information about the nature of the SRAM bit cell and bit array, as well as the sources of SRAM failures. It then presents methods for managing memory failures in electronic systems. This discussion is intended for electronic system developers or integrators who are interested in improving the robustness of the embedded SRAM.

Functional Safety-Compliant products are developed using an ISO 26262/IEC 61508-compliant hardware development process that is independently assessed and certified to meet ASIL D/SIL 3 systematic capability (see certificate). The TMS320F2837D, TMS320F2837xS, and TMS320F2807x MCUs have been certified to meet a component-level random hardware capability of ASIL B/SIL 2 (see certificate).

The Functional Safety-Compliant enablers include:

- A Functional Safety Manual
- A detailed, tunable, quantitative Failure Modes, Effects, and Diagnostics Analysis (FMEDA)
- A software diagnostic library that will help shorten the time to implement various software safety mechanisms
- A collection of application reports to help in the development of functionally safe systems.

A functional safety manual that describes all of the hardware and software functional safety mechanisms is available. See the *Safety Manual for TMS320F2837xD, TMS320F2837xS, and TMS320F2807x*.

A detailed, tunable, fault-injected, quantitative FMEDA that enables the calculation of random hardware metrics —as outlined in the International Organization for Standardization ISO 26262 and the International Electrotechnical Commission IEC 61508 for automotive and industrial applications, respectively—is also available. This tunable FMEDA must be requested; see the *C2000[™] Package for Automotive and Industrial MCUs User's Guide*.

- A white paper outlining the value (or benefit) of a tunable FMEDA is available. See the *Functional Safety: A tunable FMEDA for C2000™ MCUs* publication.
- Parts 1 and 2 of a five-part FMEDA tuning training are available. See the C2000[™] Tunable FMEDA Training page.

Parts 3, 4, and 5 are packaged with the tunable FMEDA, and must be requested.

The C2000 Diagnostic Software Library is a collection of different safety mechanisms designed to detect faults. These safety mechanisms target different device components, including the C28x core, the control law accelerator (CLA), system control, static random access memory (SRAM), flash, and communications and control peripherals. The software safety mechanisms leverage available hardware safety features such as the C28x hardware built-in self-test (HWBIST); error detection and correction functionality on memories; parallel signature analysis circuitry; missing clock detection logic; watchdog counters; and hardware redundancy.

Also included are software functional safety manual, user guides, example projects, and source code to help users shorten system integration time. The library package includes a compliance support package (CSP), a series of documents that TI used to develop and test the diagnostic software library. The CSP provides the necessary documentation and reports to assist users with compliance to functional safety standards: software safety requirements specifications; a software architecture document; software module design documents; software module unit test plans; software module unit test documents; static analysis reports; unit test reports; dynamic analysis reports; functional test reports; and traceability documents. Users can use these documents to comply with route 1s (as described in IEC 61508-3, section 7.4.2.12) to reuse a preexisting software element to implement all or part of a safety function. The contents of the CSP could also help users make important decisions for overall system safety compliance.

Two application reports offer details about how to develop functionally safe systems with C2000 real-time control devices:

- C2000[™] Hardware Built-In Self-Test discusses the HWBIST safety mechanism, along with its functions and features, in the F2807x/F2837xS/F2837xD series of C2000 devices. The report also addresses some system-level considerations when using the HWBIST feature and explains how customers can use the diagnostic library on their system.
- C2000[™] CPU Memory Built-In Self-Test describes embedded memory validation using the C28x central processing unit (CPU) during an active control loop. It discusses system challenges to memory validation as well as the different solutions provided by C2000 devices and software. Finally, it presents the Diagnostic Library implementations for memory testing.

9 Applications, Implementation, and Layout

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 TI Reference Design

The TI Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all reference designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at the Select TI reference designs page.

Industrial Servo Drive and AC Inverter Drive Reference Design

The DesignDRIVE Development Kit is a reference design for a complete industrial drive directly connecting to a three-phase ACI or PMSM motor. Many drive topologies can be created from the combined control, power, and communications technologies included on this single platform. This platform includes multiple position sensor interfaces, diverse current sensing techniques, hot-side partitioning options, and expansion for safety and industrial Ethernet.

Differential Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors

This design provides a 4-channel signal conditioning solution for differential ADCs integrated into a microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative measurement circuit with external differential SAR ADCs as well as circuits for high-speed overcurrent and earth fault detection. Proper differential signal conditioning improves noise immunity on critical current measurements in motor drives. This reference design can help increase the effective resolution of the analog-to-digital conversion, improving motor drive efficiency.

10 Device and Documentation Support

10.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320[™] MCU devices and support tools. Each TMS320 MCU commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, **TMS**320F28075). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools).

Device development evolutionary flow:

- TMX Experimental device that is not necessarily representative of the final device's electrical specifications
- **TMP** Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification
- TMS Fully qualified production device

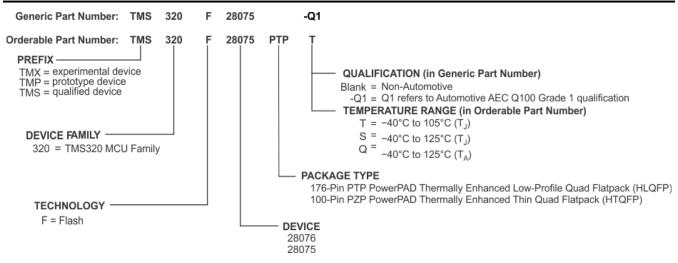
Support tool development evolutionary flow:

- TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing
- TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

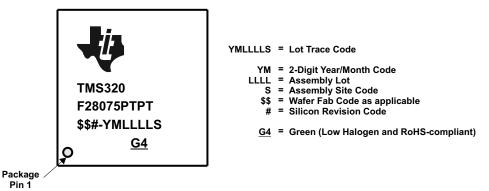
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.


TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PTP) and temperature range (for example, T). Figure 10-1 provides a legend for reading the complete device name for any family member.

For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the TMS320F2807x MCUs Silicon Errata.

TMS320F28076, TMS320F28075 SPRS902J – OCTOBER 2014 – REVISED FEBRUARY 2021


TEXAS INSTRUMENTS www.ti.com

10.2 Markings

Figure 10-2 provides an example of the 2807x device markings and defines each of the markings. The device revision can be determined by the symbols marked on the top of the package as shown in Figure 10-2. Some prototype devices may have markings different from those illustrated.

Figure 10-2. Example of Device Markings

SILICON REVISION CODE	SILICON REVISION	REVID ⁽¹⁾ Address: 0x5D00C	COMMENTS		
В	В	0x0002	This silicon revision is available as TMX.		
С	С	0x0003	This silicon revision is available as TMS.		

Table 10-1. Determining Silicon Revision From Lot Trace Code

(1) Silicon Revision ID

10.3 Tools and Software

TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. To view all available tools and software for C2000[™] real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.

Development Tools

F28379D controlCARD for C2000 Real time control development kits

The F28379D controlCARD from Texas Instruments is Position Manager-ready and an ideal product for initial software development and short run builds for system prototypes, test stands, and many other projects that require easy access to high-performance controllers. All C2000 controlCARDs are complete board-level modules that utilize a HSEC180 or DIMM100 form factor to provide a low-profile single-board controller solution. The host system needs to provide only a single 5V power rail to the controlCARD for it to be fully functional.

F28379D Experimenter Kit

C2000[™] MCU Experimenter Kits provide a robust hardware prototyping platform for real-time, closed loop control development with Texas Instruments C2000 32-bit microcontroller family. This platform is a great tool to customize and prove-out solutions for many common power electronics applications, including motor control, digital power supplies, solar inverters, digital LED lighting, precision sensing, and more.

Software Tools

C2000Ware for C2000 MCUs

C2000Ware for C2000 microcontrollers is a cohesive set of development software and documentation designed to minimize software development time. From device-specific drivers and libraries to device peripheral examples, C2000Ware provides a solid foundation to begin development and evaluation. C2000Ware is now the recommended content delivery tool versus controlSUITE[™].

Code Composer Studio[™] (CCS) Integrated Development Environment (IDE) for C2000 Microcontrollers

Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.

Pin Mux Tool

The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.

F021 Flash Application Programming Interface (API)

The F021 Flash Application Programming Interface (API) provides a software library of functions to program, erase, and verify F021 on-chip Flash memory.

UniFlash Standalone Flash Tool

UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting interface.

Models

Various models are available for download from the product Tools & Software pages. These include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all available models, visit the Models section of the Tools & Software page for each device.

Training

To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance, TI has developed a variety of training resources. Utilizing the online training materials and downloadable handson workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller family. These training resources have been designed to decrease the learning curve, while reducing development time, and accelerating product time to market. For more information on the various training resources, visit the C2000[™] real-time control MCUs – Support & training site.

Specific F2837xD/F2837xS/F2807x hands-on training resources can be found at C2000[™] MCU Device Workshops.

10.4 Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the processor, related peripherals, and other technical collateral is listed below.

Errata

TMS320F2807x MCUs Silicon Errata describes known advisories on silicon and provides workarounds.

Technical Reference Manual

TMS320F2807x Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the 2807x microcontrollers.

CPU User's Guides

TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference Guide also describes emulation features available on these DSPs.

TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators.

Peripheral Guides

C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x DSPs.

Tools Guides

TMS320C28x Assembly Language Tools v20.2.0.LTS User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device.

TMS320C28x Optimizing C/C++ Compiler v20.2.0.LTS User's Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device.

Application Reports

Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users.

Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.

An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/ output structures and future trends.

Serial Flash Programming of C2000[™] Microcontrollers discusses using a flash kernel and ROM loaders for serial programming a device.

10.5 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.6 Trademarks

PowerPAD[™], Code Composer Studio[™], TMS320C2000[™], C2000[™], TMS320[™], controlSUITE[™], TI E2E[™] are trademarks of Texas Instruments.

Bosch[®] is a registered trademark of Robert Bosch GmbH Corporation.

MathWorks[®], Simulink[®], Embedded Coder[®], Polyspace[®] are registered trademarks of The MathWorks, Inc. All trademarks are the property of their respective owners.

10.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.8 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

11.1 Packaging Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PZP0100N

PACKAGE OUTLINE

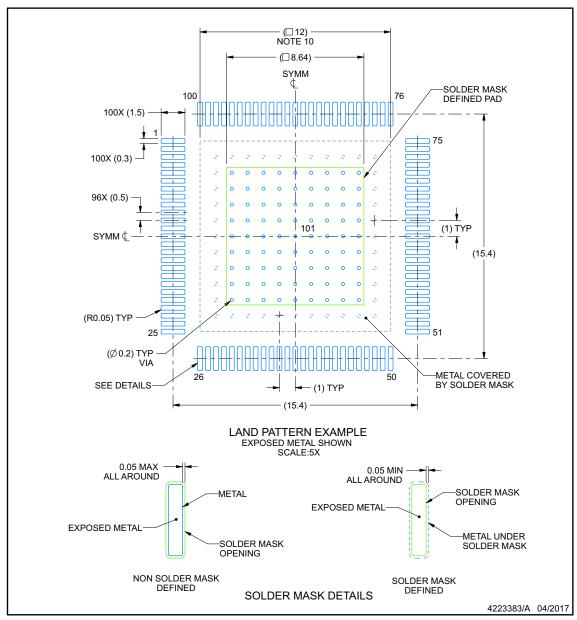
PowerPAD[™] TQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

3. This dimension does not include mold flash, protrusions, or gate burrs.

Strap features may not be present.
 Reference JEDEC registration MS-026.


www.ti.com

PZP0100N

EXAMPLE BOARD LAYOUT

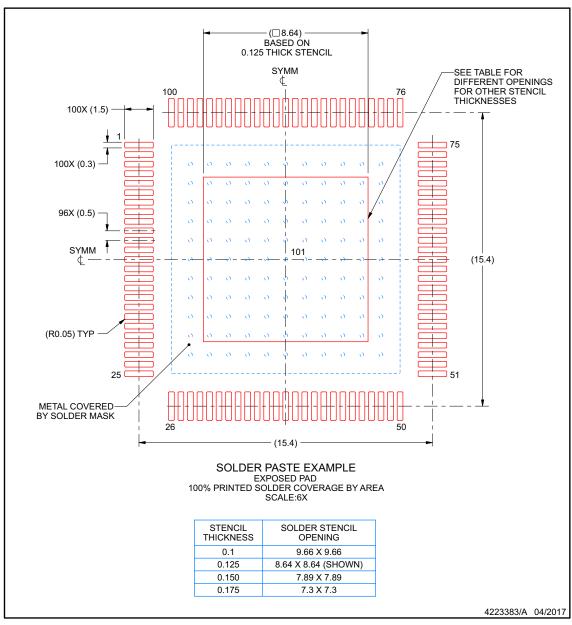
PowerPAD[™] TQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

- Publication IPC-7351 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,
- plugged or tented. 10. Size of metal pad may vary due to creepage requirement.

www.ti.com



PZP0100N

EXAMPLE STENCIL DESIGN

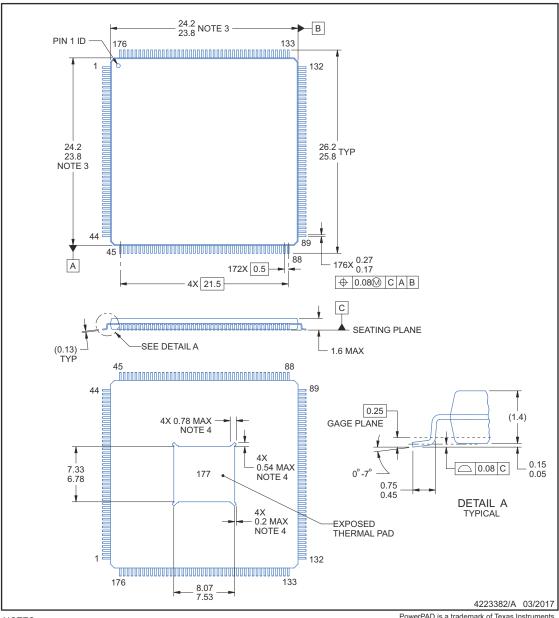
PowerPAD[™] TQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
 Board assembly site may have different recommendations for stencil design.

www.ti.com



PTP0176F

PACKAGE OUTLINE

PowerPAD^M HLQFP - 1.6 mm max height

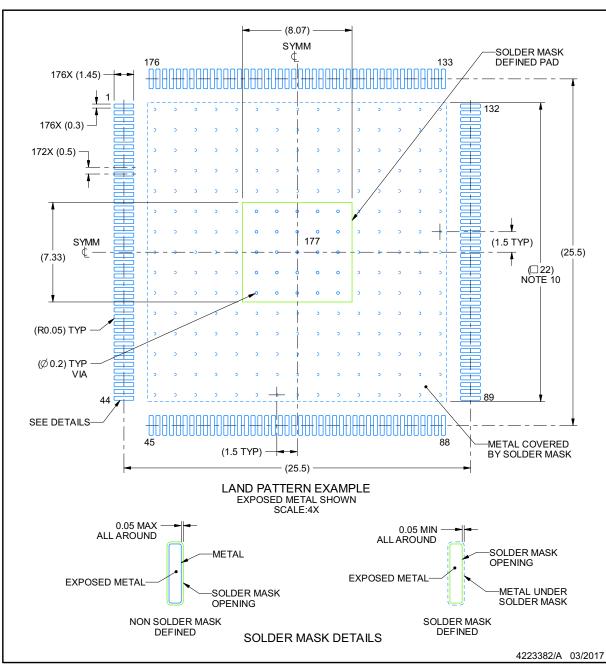
PLASTIC QUAD FLATPACK

NOTES:

PowerPAD is a trademark of Texas Instruments.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

- 2 This drawing is subject to change without notice.
- This dimension does not include mold flash, protrusions, or gate burrs.
 Strap features my not present.
 Reference JEDEC registration MS-026.



EXAMPLE BOARD LAYOUT

PTP0176F

PowerPAD[™] HLQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

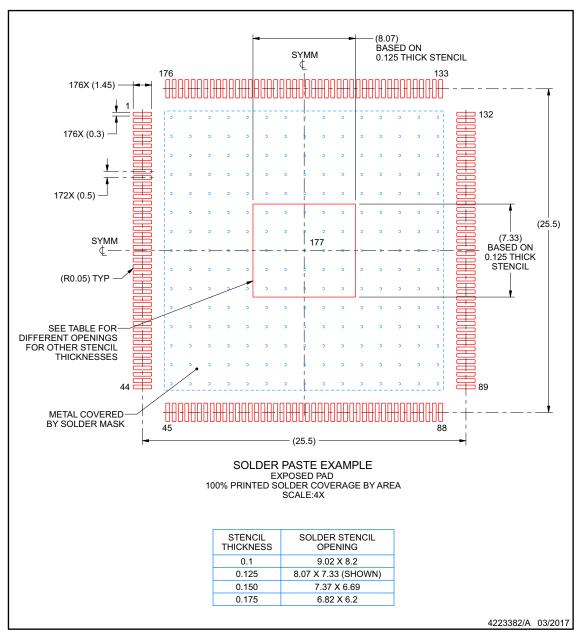
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

 This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).

Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

10. Size of metal pad may vary due to creepage requirement.



EXAMPLE STENCIL DESIGN

PTP0176F

PowerPAD[™] HLQFP - 1.6 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

29-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TMS320F28075PTPQ	ACTIVE	HLQFP	PTP	176	40	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28075PTPQ	Samples
TMS320F28075PTPQR	ACTIVE	HLQFP	PTP	176	200	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28075PTPQ	Samples
TMS320F28075PTPS	ACTIVE	HLQFP	PTP	176	40	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28075PTPS	Samples
TMS320F28075PTPT	ACTIVE	HLQFP	PTP	176	40	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	TMS320 F28075PTPT	Samples
TMS320F28075PZPQ	ACTIVE	HTQFP	PZP	100	90	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28075PZPQ	Samples
TMS320F28075PZPS	ACTIVE	HTQFP	PZP	100	90	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28075PZPS	Samples
TMS320F28075PZPT	ACTIVE	HTQFP	PZP	100	90	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 105	TMS320 F28075PZPT	Samples
TMS320F28076PTPS	ACTIVE	HLQFP	PTP	176	40	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-45 to 125	TMS320 F28076PTPS	Samples
TMS320F28076PZPS	ACTIVE	HTQFP	PZP	100	90	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TMS320 F28076PZPS	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

 $\label{eq:obscillator} \textbf{OBSOLETE:} \ \textbf{TI} \ \textbf{has discontinued the production of the device}.$

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

PACKAGE OPTION ADDENDUM

29-Jan-2021

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated 单击下面可查看定价,库存,交付和生命周期等信息

>>TI(德州仪器)