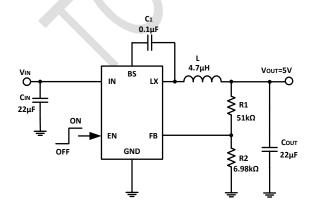
600kHz, 18V, 2.0A Synchronous Step-Down Converter

FEATURES

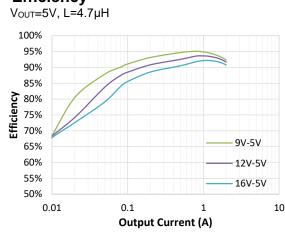
- High Efficiency: Up to 94%(@5V)
- . 600kHz Frequency Operation
- . 2.0A Output Current
- . No Schottky Diode Required
- . 3.5V to 18V Input Voltage Range
- . 0.6V Reference
- Slope Compensated Current Mode Control for Excellent Line and Load Transient Response
- . Integrated Internal Compensation
- Stable with Low ESR Ceramic Output Capacitors
- . Over Current Protection with Hiccup-Mode
- . Input overvoltage protection (OVP)
- . Thermal Shutdown
- . Inrush Current Limit and Soft Start
- . Available in SOT23-6 Package
- . -40°C to +85°C Operation Temperature Range

GENERAL DESCRIPTION


The STI3470 is a fully integrated, high–efficiency 2.0A synchronous rectified step-down converter. The STI3470 operates at high efficiency over a wide output current load range. This device offers two operation modes, PWM control and PFM Mode switching control, which allows a high efficiency over the wider range of the load.

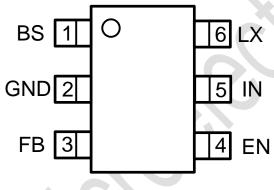
The STI3470 requires a minimum number of readily available standard external components and is available in a 6-pin SOT23 ROHS compliant package.

APPLICATIONS


- . Distributed Power Systems
- Digital Set Top Boxes
- . Flat Panel Television and Monitors
- Notebook computer
- . Wireless and DSL Modems

TYPICAL APPILCATION

Figure 1. Basic Application Circuits


Efficiency

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Value	Unit
Input Supply Voltage, EN	-0.3~23	V
LX Voltages	-0.3~23	V
FB Voltage	-0.3~6	V
BS Voltage	-0.6~25	V
Storage Temperature Range	-65~150	°C
Junction Temperature (Note2)	160	°C
Power Dissipation	600	mW
Lead Temperature (Soldering,10s)	260	°C

PACKAGE/ORDER INFORMATION

SOT23-6

Top Mark: S47BXXX (S47B: Device Code, XXX: Inside Code)

Part Number	Package	Top mark	Quantity/ Reel
STI3470	SOT23-6	S47BXXX	3000

STI3470 devices are Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin	Name	Function
1	BS	Bootstrap. A capacitor connected between LX and BS pins is required to form a
I	٥	floating supply across the high-side switch driver.
2	GND	Ground
3	FB	Adjustable version feedback input. Connect FB to the center point of the external
3	ГБ	resistor divider.
4	EN	Drive this pin to a logic-high to enable the IC. Drive to a logic-low to disable the IC
4	LIN	and enter micro-power shutdown mode.
5	IN	Power supply Pin
6	LX	Switching Pin

ESD RATING

Items	Description	Value	Unit
V _{ESD_HBM}	Human Body Model for all pins	±2000	V
V _{ESD_CDM}	Charge Device Mode for all pins	±1000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	3.5	18	V
T_J	Operating Junction Temperature Range	-40	125	°C

Thermal Resistance (Note3)

Items Description		Value	Unit
θ_{JA}	Junction-to-ambient thermal resistance	130	°C/W
θυς	Junction-to-case(top) thermal resistance	60	°C/W

ELECTRICAL CHARACTERISTICS

(V_{IN}=12V, V_{OUT}=1.8V, T_A = 25°C, unless otherwise noted.)

Parameter	Conditions	Min	Тур	Max	Unit
Input Voltage Range		3.5		18	V
OVP Threshold		18.2	19	19.6	V
UVLO Threshold		3.0		3.4	V
Supply Current in Operation	V _{EN} =2.0V, V _{FB} =1.1V		0.5	0.8	mA
Supply Current in Shutdown	V _{EN} =0 or EN=GND		1	10	μA
Regulated Feedback Voltage	$T_A = 25^{\circ}C, 3.5V \le V_{IN} \le 18V$	0.588	0.6	0.612	V
High-Side Switch On-Resistance			120		mΩ
Low-Side Switch On-Resistance			80		mΩ
High-Side Switch Leakage Current	V _{EN} =0V, V _{LX} =0V		0	10	μΑ
Upper Switch Current Limit	Minimum Duty Cycle	2.5		3.2	Α
Oscillation Frequency	V 0.6V	540	600	660	kHz
Maximum Duty Cycle	V _{FB} =0.6V		95		%
EN High Level Input Threshold		1.50			V
EN Low Level Input Threshold				0.30	V
Minimum On-Time	.00		60	90	ns
Thermal Shutdown Threshold (Note 4)			160		°C
Thermal Shutdown Hysteresis (Note			30		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) \times \theta_{JA}$.

Note 3: Measured on JESD51-7, 4-layer PCB.

Note 4: Thermal shutdown threshold and hysteresis are guaranteed by design.

OPERATION

Internal Regulator

The STI3470 is a current mode step down DC/DC converter that provides excellent transient response with no extra external compensation components. This device contains an internal, low resistance, high voltage power MOSFET, and operates at a high 600kHz operating frequency to ensure a compact, high efficiency design with excellent AC and DC performance.

Error Amplifier

The error amplifier compares the FB pin voltage with the internal FB reference (V_{FB}) and outputs a current proportional to the difference between the two terminals. This output current is then used to charge or discharge the internal compensation network to form the COMP voltage, which is used to control the power MOSFET current. The optimized internal compensation network minimizes the external component counts and simplifies the control loop design.

Internal Soft-Start

The soft-start is implemented to prevent the converter output voltage from overshooting during startup. When the chip starts, the internal circuitry generates a soft-start voltage (SS) ramping up from 0V to 0.6V. When it is lower than the internal reference (REF), SS overrides REF so the error amplifier uses SS as the reference. When SS is higher than REF, REF regains control. The SS time is internally fixed to 0.8ms typically.

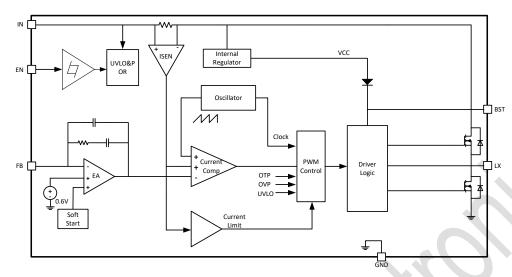
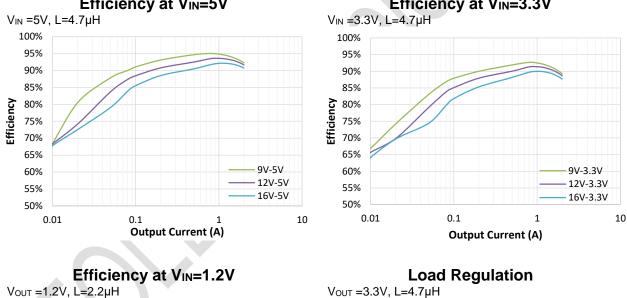
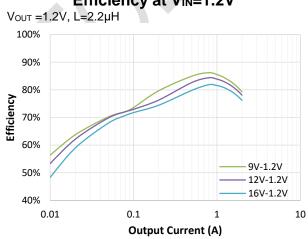
Over-Current-Protection and Hiccup

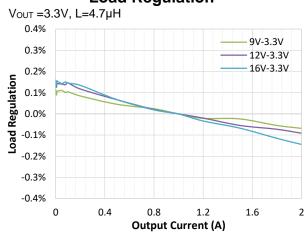
The STI3470 has cycle-by-cycle over current limit when the inductor current peak value exceeds the set current limit threshold. Meanwhile, output voltage starts to drop until FB is below the Under-Voltage (UV) threshold, typically 30% below the reference. Once a UV is triggered, the STI3470 enters hiccup mode to periodically restart the part. This protection mode is especially useful when the output is dead-short to ground. The average short circuit current is greatly reduced to alleviate the thermal issue and to protect the regulator. The STI3470 exits the hiccup mode once the over current condition is removed.

Startup and Shutdown

If both VIN and EN are higher than their appropriate thresholds, the chip starts. The reference block starts firstly, generating stable reference voltage and currents, and then the internal regulator is enabled. The regulator provides stable supply for the remaining circuitries. Three events can shut down the chip: EN low, VIN low and thermal shutdown. In the shutdown procedure, the signal path is first blocked to avoid any fault triggering. The COMP voltage and the internal supply rail are then pulled down. The floating driver is not subject to this shutdown command.

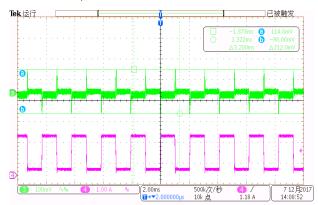
FUNCTIONAL BLOCK DIAGRAM

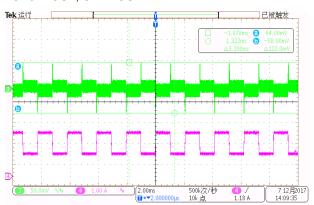

Figure 3. STI3470 Block Diagram

FUNCTIONAL TEST

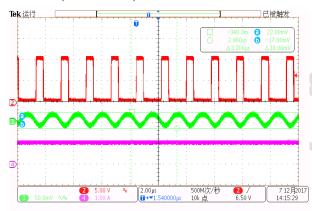
Test condition: V_{IN}=12V, V_{OUT}=3.3V, L=4.7µH, T_A=+25°C, unless other noted. Efficiency at V_{IN}=5V Efficiency at V_{IN}=3.3V



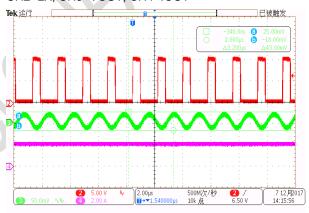
FUNCTIONAL TEST (Continued)


Load Transient

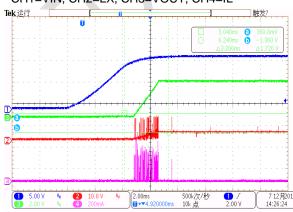
V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=0.2A-1.8A CH3=VOUT, CH4=IOUT


Load Transient

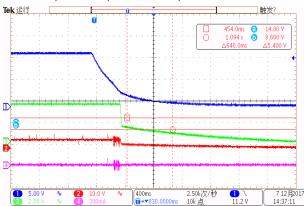
V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=1A-2A CH3=VOUT, CH4=IOUT


Steady State

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=1A CH2=LX, CH3=VOUT, CH4=IOUT

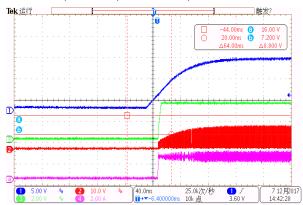

Steady State

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=2A CH2=LX, CH3=VOUT, CH4=IOUT

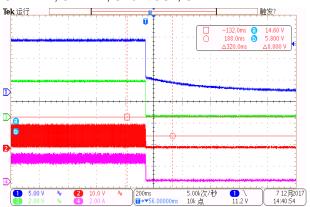

Input Power On

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=0A CH1=VIN, CH2=LX, CH3=VOUT, CH4=IL

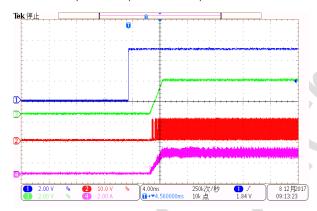
Input Power Off


V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=0A CH1=VIN, CH2=LX, CH3=VOUT, CH4=IL

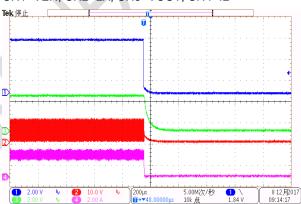
FUNCTIONAL TEST (Continued)


Input Power On

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=2A CH1=VIN, CH2=LX, CH3=VOUT, CH4=IL


Input Power Off

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=2A CH1=VIN, CH2=LX, CH3=VOUT, CH4=IL


EN Enable

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=2A CH1=VEN, CH2=LX, CH3=VOUT, CH4=IL

EN Disable

V_{IN} =12V, V_{OUT} =3.3V, I_{OUT}=2A CH1=VEN, CH2=LX, CH3=VOUT, CH4=IL

APPLICATION INFORMATION

Setting the Output Voltage

The external resistor divider is used to set the output voltage (see Typical Application on page 1). The feedback resistor R_1 also sets the feedback loop bandwidth with the internal compensation capacitor. Choose R_1 to be around $51k\Omega$ for optimal transient response. R_2 is then given by:

$$R_2 = \frac{R_1}{V_{out}/V_{FR} - 1}$$

Vout	R ₁ (kΩ)	$R_2(k\Omega)$
5.1V	51	6.8
3.3V	51	11.3
1.8V	51	25.5
1.55V	51	33
1.25V	51	47
1.20V	51	51
1.02V	33	47

Inductor Selection

A DC current rating of at least 25% percent higher than the maximum load current is recommended for most applications. Inductance value is related to inductor ripple current value, input voltage, output voltage setting and switching frequency. The inductor value can be derived from the following equation:

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_L \times f_{OSC}}$$

Where ΔI_L is inductor ripple current. Large value inductors result in lower ripple current and small value inductors result in high ripple current, so inductor value has effect on output voltage ripple value. DC resistance of inductor which has impact on efficiency of DC/DC converter should be taken into account when selecting the inductor. The maximum inductor peak current is:

$$I_{L(MAX)} = I_{LOAD} + \frac{\Delta I_L}{2}$$

Under light load conditions below 100mA, larger inductance is recommended for improved efficiency.

Output Capacitor Selection

The output capacitor (C₂) is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_{S} \times L} \times \left[1 - \frac{V_{OUT}}{V_{IN}}\right] \times \left[R_{ESR} + \frac{1}{8 \times f_{S} \times C_{2}}\right]$$

Where L is the inductor value and RESR is the equivalent series resistance (ESR) value of the output capacitor. In the case of ceramic capacitors, the impedance at the switching frequency is

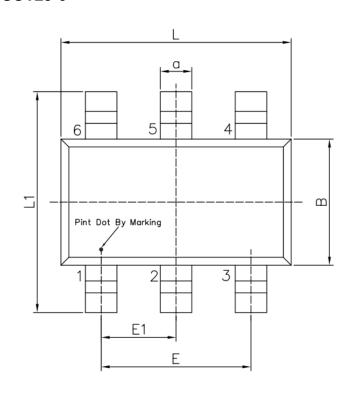
dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by:

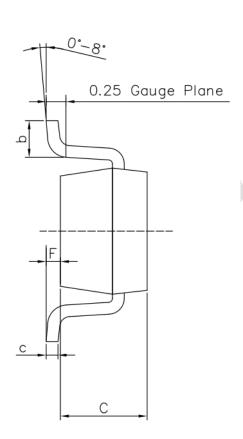
$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_S^2 \times L \times C_2} \times \left[1 - \frac{V_{OUT}}{V_{IN}} \right]$$

In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_{S} \times L} \times \left[1 - \frac{V_{OUT}}{V_{IN}} \right] \times R_{ESR}$$

The characteristics of the output capacitor also affect the stability of the regulation system. The STI3470 can be optimized for a wide range of capacitance and ESR values.


Layout Consideration

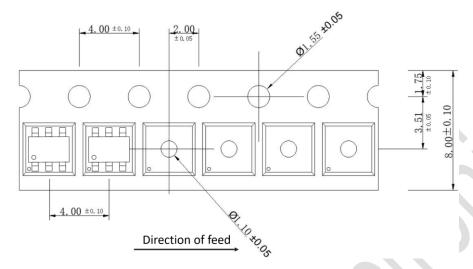

PCB layout is very important to achieve stable operation. It is highly recommended to duplicate EVB layout for optimum performance. If change is necessary, please follow these guidelines and take Figure 4 for reference.

- 1) Keep the path of switching current short and minimize the loop area formed by Input capacitor, high-side MOSFET and low-side MOSFET.
- 2) Bypass ceramic capacitors are suggested to be put close to the IN Pin.
- 3) Ensure all feedback connections are short and direct. Place the feedback resistors and compensation components as close to the chip as possible.
- 4) VOUT, LX away from sensitive analog areas such as FB.
- 5) Connect IN, LX, and especially GND respectively to a large copper area to cool the chip to improve thermal performance and long-term reliability.

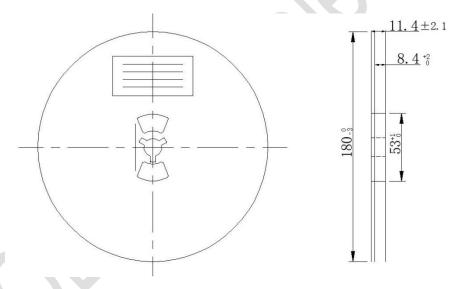
PACKAGE INFORMATION

SOT23-6

Unit: mm


Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters		limeters
	Min	Тур	Max		Min	Тур	Max
L	2.82	2.92	3.02	E1	0.85	0.95	1.05
В	1.50	1.60	1.70	а	0.35	0.425	0.50
С	0.90	1.10	1.30	С	0.10	0.15	0.20
L1	2.60	2.80	3.00	b	0.35	0.45	0.55
E	1.80	1.90	2.00	F	0	0.075	0.15

Note:


- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS: SOT23-6

REEL DIMENSIONS: SOT23-6

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.

Important Notification

This document only provides product information. TOLL Microelectronic Inc. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

TOLL Microelectronic Inc. cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TOLL Microelectronic Inc. product. No circuit patent licenses are implied.

All rights are reserved by TOLL Microelectronic Inc. http:// www.toll-semi.com

单击下面可查看定价,库存,交付和生命周期等信息

