36V input, 300mA low supply current, high speed voltage regulators

☆AEC-Q100-Grade2

■GENERAL DESCRIPTION

The XD6702 series are CMOS high-speed voltage regulator ICs with a 36 V input and low supply current. Internal circuitry includes a reference voltage supply, error amplifier, driver transistor, over-current protection circuit, overheat protection circuit, soft start circuit, and phase compensation circuit.

The output voltage is fixed internally by laser trimming, and product selections from 1.8V to 18.0V are available. The over-current protection circuit and overheat protection circuit are built-in, and when the output current reaches the current limit or the junction temperature reaches the temperature limit, the corresponding circuit activates.

The soft start circuit limits the rush current that flows from V_{IN} to V_{OUT} when the IC starts, enabling a stable startup sequence. The IC is put in the standby state by inputting L level into the CE pin, and the supply current is reduced to 0.1µA. A low-ESR capacitor such as a ceramic capacitor can also be used for C_L.

APPLICATIONS

Automotive Infotainment

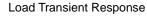
- Automotive accessories
 - Drive recorder
 - · Car-mounted camera
 - ETC
- Constant-voltage power supply for electrical

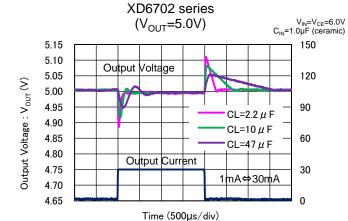
■ FEATURES

Input voltage range

Peak voltage Output current Output Voltage range

temperature characteristics Supply current Dropout voltage Ripple rejection ratio Standby current Protection function


Addition function

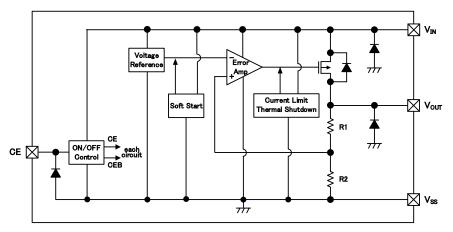

Output capacitor Package Environment friendly features : 4.5V ~ 36.0V (absolute maximum rating 42.0V) : 46.0V (Transient≦400ms) : 300mA : 1.8V ~ 18.0V VOUT < 6.0V, 0.1V step settings VOUT ≧ 6.0V, 0.5V step settings :±50ppm/°C (TYP.) : 40uA (TYP.) : 350mV@ Iout =100mA,Vout=5.0V : 65dB @1kHz : 0.1µA : Current limit, Short Thermal shutdown : Soft start CE function (Active High) : Ceramic capacitor (2.2µF) : SOT-89-5

: EU RoHS Directive compliant, lead free

TYPICAL APPLICATION CIRCUIT

■TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN} \qquad V_{OUT}$ INPUT CE $C_{IN}=1.0 \, \mu \, F$ Ceramic $C_{L}=2.2 \, \mu \, F$ (Ceramic)


application for vehicle interior

even into the CE pin, and the can also be used for C_L .

ETR03103-001

BLOCK DIAGRAM

1) XD6702 Series D type

*The above diodes are diodes for electrostatic protection and parasitic diodes.

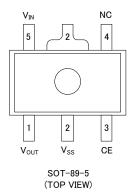
PRODUCT CLASSIFICATION

1) Product code rules XD6702①②③④⑤⑥-⑦^(*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	Туре	D	Current Limit, Thermal Shutdown, Soft Start, CE function
23	Output Voltage ^(*2)	18~J0 ^(*3)	For the voltage within 1.8V ~ 9.5V: e.g. $3.3V \rightarrow (2)=3, (3)=3$ $5.0V \rightarrow (2)=5, (3)=0$ For the voltage within 10.0V ~ 18.0V: e.g. $10.0V \rightarrow (2)=A, (3)=0$ $12.5V \rightarrow (2)=C, (3)=5$ $18.0V \rightarrow (2)=J, (3)=0$
4	Output Voltage Accuracy	1	± 1%
56-7	Packages (Order Unit)	PR-Q (*1)	SOT-89-5 (1,000pcs/Reel)

(*1) The "-Q" suffix denotes "AEC-Q100" and "Halogen and Antimony free" as well as being fully EU RoHS compliant.

 $\ensuremath{^{(^{\circ}\!2)}}$ For other voltages, please contact your local Torex sales office or representative.


 $^{(^*\!3)}$ From 10.0V to 18.0V, A to J excluding I are used in "2".

STANDARD VOLTAGE

• Examples for standard voltage

Vout	PACKAGES
(V)	SOT-89-5
1.8	XD6702D181PR-Q
2.5	XD6702D251PR-Q
2.8	XD6702D281PR-Q
3.0	XD6702D301PR-Q
3.3	XD6702D331PR-Q
5.0	XD6702D501PR-Q
8.0	XD6702D801PR-Q

■ PIN CONFIGURATION

■ PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTIONS
1	Vout	Output
2	Vss	Ground
3	CE	ON/OFF Control
4	NC	No Connection
5	Vin	Power Input

■ PIN FUNCTION ASSIGNMENT

PIN NAME	SIGNAL	STATUS		
	L	Stand-by		
CE	Н	Active		
	OPEN	Unstable		

* Avoid leaving the CE pin open ; set to any fixed voltage.

■ABSOLUTE MAXIMUM RATINGS

				Ta=25℃
PA	RAMETER	SYMBOL	RATINGS	UNITS
Inp	out Voltage	Vin	-0.3 ~ +42.0	V
Out	put Current	Іоит	600 ^(*1)	mA
Output Voltage		V _{OUT}	-0.3 ~ V_{IN}+0.3 or +42.0 $^{(^{\star}2)}$	V
CE li	CE Input Voltage		-0.3 ~ +42.0	V
Power	SOT-89-5	Pd	500	mW
Dissipation	301-69-5	Fu	1750 (JESD51-7 board) ^(*3)	IIIVV
Sur	Surge Voltage		+46.0 (*4)	V
Operating Ambient Temperature		Topr	-40 ~ +105	°C
Junctio	Junction Temperature		-40 ~ +125	°C
Storag	e Temperature	Tstg	-55 ~ +125	°C

All voltage ratings are relative to V_{SS}.

(*1) Use with IOUT less than Pd/(VIN-VOUT)

 $^{(^{\ast}2)}$ The maximum value is the lower of V_{IN} + 0.3 and +42.0

 $\ensuremath{^{(*3)}}$ Reference data for continuous power dissipation when mounted on board.

The mounting condition is please refer to PACKAGING INFORMATION.

 $^{(*4)}$ Transient \leq 400ms

■ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	Ta=25°C			-40°C≦Ta≦105°C ^(*6)			UNITS	
	STIVIBUL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Input Voltage	V _{IN}		4.5	-	36.0	4.5	-	36.0	V	1
Output Voltage	Vout(e) (*1)	lout=10mA	×0.99	V _{OUT(T)} ^(*2) <e-0></e-0>	×1.01	×0.96	V _{OUT(T)} ^(*2) <e-0></e-0>	×1.04	V	1
Quiescent Current	Iss	I _{OUT} =0mA	-	40	80	-	40	90	μA	2
Stand-by Current	Isтв	VIN=36.0V,VCE=VSS	-	0.01	0.10	-	0.01	2.10	μA	3
Maximum Output Current ^(*3)	Ioutmax	V _{IN} =V _{OUT(T)} +2.0V	300	-	-	300	-	-	mA	1
				V _{OUT(T)} ≦	≦5.0V		V _{OUT(T)} ≦	≦5.0V		
Load Regulation	ΔVουτ	V _{IN} =V _{OUT(T)} +2.0V	_	60	85		60	230	mV	1)
Load Regulation	2000	0.1mA≦I _{OUT} ≦300mA	-	V _{OUT(T)} >	•5.0V	_	V _{OUT(T)} >	•5.0V	mv	U
				60	130		60	275		
Dropout Voltage	Vdif (*4)	Iout=100mA	-	<e-1< td=""><td>></td><td>-</td><td><e-1< td=""><td> ></td><td>mV</td><td>1</td></e-1<></td></e-1<>	>	-	<e-1< td=""><td> ></td><td>mV</td><td>1</td></e-1<>	>	mV	1
Line Regulation	ΔV _{OUT} / (ΔV _{IN} •V _{OUT})	$V_{OUT(T)}$ +0.5V \leq V _{IN} \leq 36.0V	-	0.01	0.03	-	0.01	0.03	%/V	1
Output Voltage Temperature Characteristics	ΔV _{ουτ} / (ΔTopr・V _{ουτ})		-	±50	-	-	±50	-	ppm /°C	1
Ripple Rejection Ratio	PSRR	$V_{\text{IN}} = V_{\text{OUT}(T)} + 1.0V_{\text{DC}} + 0.5V_{\text{P}\text{-PAC}}$ $I_{\text{OUT}} = 10\text{mA}, \text{ f} = 1\text{kHz}$ $C_{\text{IN}} \text{ Unconnected}$	-	65	-	-	65	-	dB	4
Limit Current(*3)	I _{LIM}	V _{IN} =V _{OUT(T)} +2.0V V _{OUT} =V _{OUT(E)} ×0.95	370	460	-	310	460	-	mA	1
Short - Circuit Current	ISHORT	V _{OUT} =V _{SS}	-	115	-	-	115	-	mA	1
Thermal Shutdown Detect Temperature	T _{TSD}	Junction Temperature	-	150	-	-	150	-	°C	1
Thermal Shutdown Release Temperature	T _{TSR}	Junction Temperature	-	140	-	-	140	-	°C	1
Thermal Shutdown Hysteresis Width	T _{TSD} -T _{TSR}	Junction Temperature	-	10	-	-	10	-	°C	1
Soft-Start Time(*5)	tss	V _{CE} =0V→V _{IN}	-	370	890	-	370	1100	μs	5
				V _{OUT(T)} ≦	≦3.3V		V _{OUT(T)} ≦	≦3.3V		
				55	95		55	155		Ē
Inrush Current		V _{CE} =0V→V _{IN}		3.3V <vout< td=""><td>_(T)≦5.0V</td><td></td><td>3.3V<vout< td=""><td>_(T)≦5.0V</td><td></td></vout<></td></vout<>	_(T) ≦5.0V		3.3V <vout< td=""><td>_(T)≦5.0V</td><td></td></vout<>	_(T) ≦5.0V		
	IRUSH	V CE=U V V IN	-	70	135	- 70		215	mA	5
				V _{OUT(T)} >	>5.0V	_	V _{OUT(T)} >	>5.0V		
				125	210		125	330		
CE "H" Level Voltage	V _{CEH}		2.5	-	36.0	2.5	-	36.0	V	6
CE "L" Level Voltage	V _{CEL}		Vss	-	1.2	Vss	-	1.2	V	6
CE "H" Level Current	Ісен	V _{CE} =V _{IN} =36.0V	-0.10	-	0.10	-0.10	-	0.10	μA	6
CE "L" Level Current		VIN=36.0V,VCE=VSS	-0.10	-	0.10	-0.10	-	0.10	μA	6

 $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu F$, $C_L = 2.2\mu F$ unless otherwise specified. This parameter is tested on $V_{IN}=4.5V$ if the input voltage is under 4.5V.

(*1) V_{OUT(E)} : Actual output voltage value.

 $^{(^{\ast}2)}~~V_{OUT(T)}$: Set output voltage value.

^('3) Differences in heat dissipation when mounted may cause activation of thermal shutdown circuit,

preventing attainment of maximum output current.

^(*4) Vdif is defined as follows: Vdif= $\{V_{IN1} - V_{OUT1}\}$.

 V_{IN1} : As input voltage is gradually reduced, the input voltage at which V_{OUT1} is output.

 V_{OUT1} : 98% of output voltage when V_{IN} is input after stabilizing sufficiently at $I_{\text{OUT}}\text{=}100\text{mA}$.

(*5) Time from input of voltage higher than CE "H" level voltage into CE pin until output voltage is $V_{OUT(T)} \times 0.9V$ or higher.

 $^{(^{6)}}$ The values under -40°C \leq Ta \leq 105°C $\,$ has been tested and guaranteed by design engineering.

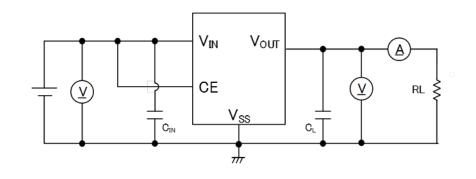
TOIREX 5/27

■ ELECTRICAL CHARACTERISTICS (Continued)

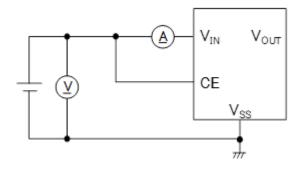
Voltage Chart 1 <E-0>

NOMINAL OUTPUT		Output	-0> Voltage		NOMINAL		Output	-0> Voltage	
VOLTAGE	Ta=	Vоит 25°С	_(E) (V) -40°C≦T	a≦105°C	VOLTAGE	Ta=	 25°С	^(E) (V) -40°C≦T	a≦105°C
Vout(t) (V)	MIN.	MAX.	MIN.	MAX.	Vout(t) (V)	MIN.	MAX.	MIN.	MAX.
1.8	1.782	1.818	1.728	1.872	5.1	5.049	5.151	4.896	5.304
1.9	1.881	1.919	1.824	1.976	5.2	5.148	5.252	4.992	5.408
2.0	1.980	2.020	1.920	2.080	5.3	5.247	5.353	5.088	5.512
2.1	2.079	2.121	2.016	2.184	5.4	5.346	5.454	5.184	5.616
2.2	2.178	2.222	2.112	2.288	5.5	5.445	5.555	5.280	5.720
2.3	2.277	2.323	2.208	2.392	5.6	5.544	5.656	5.376	5.824
2.4	2.376	2.424	2.304	2.496	5.7	5.643	5.757	5.472	5.928
2.5	2.475	2.525	2.400	2.600	5.8	5.742	5.858	5.568	6.032
2.6	2.574	2.626	2.496	2.704	5.9	5.841	5.959	5.664	6.136
2.7	2.673	2.727	2.592	2.808	6.0	5.940	6.060	5.760	6.240
2.8	2.772	2.828	2.688	2.912	6.5	6.435	6.565	6.240	6.760
2.9	2.871	2.929	2.784	3.016	7.0	6.930	7.070	6.720	7.280
3.0	2.970	3.030	2.880	3.120	7.5	7.425	7.575	7.200	7.800
3.1	3.069	3.131	2.976	3.224	8.0	7.920	8.080	7.680	8.320
3.2	3.168	3.232	3.072	3.328	8.5	8.415	8.585	8.160	8.840
3.3	3.267	3.333	3.168	3.432	9.0	8.910	9.090	8.640	9.360
3.4	3.366	3.434	3.264	3.536	9.5	9.405	9.595	9.120	9.880
3.5	3.465	3.535	3.360	3.640	10.0	9.900	10.100	9.600	10.400
3.6	3.564	3.636	3.456	3.744	10.5	10.395	10.605	10.080	10.920
3.7	3.663	3.737	3.552	3.848	11.0	10.890	11.110	10.560	11.440
3.8	3.762	3.838	3.648	3.952	11.5	11.385	11.615	11.040	11.960
3.9	3.861	3.939	3.744	4.056	12.0	11.880	12.120	11.520	12.480
4.0	3.960	4.040	3.840	4.160	12.5	12.375	12.625	12.000	13.000
4.1	4.059	4.141	3.936	4.264	13.0	12.870	13.130	12.480	13.520
4.2	4.158	4.242	4.032	4.368	13.5	13.365	13.635	12.960	14.040
4.3	4.257	4.343	4.128	4.472	14.0	13.860	14.140	13.440	14.560
4.4	4.356	4.444	4.224	4.576	14.5	14.355	14.645	13.920	15.080
4.5	4.455	4.545	4.320	4.680	15.0	14.850	15.150	14.400	15.600
4.6	4.554	4.646	4.416	4.784	15.5	15.345	15.655	14.880	16.120
4.7	4.653	4.747	4.512	4.888	16.0	15.840	16.160	15.360	16.640
4.8	4.752	4.848	4.608	4.992	16.5	16.335	16.665	15.840	17.160
4.9	4.851	4.949	4.704	5.096	17.0	16.830	17.170	16.320	17.680
5.0	4.950	5.050	4.800	5.200	17.5	17.325	17.675	16.800	18.200
					18.0	17.820	18.180	17.280	18.720

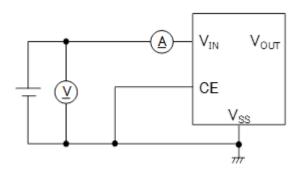
■ ELECTRICAL CHARACTERISTICS (Continued)

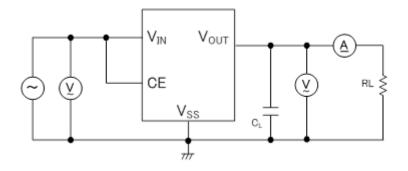

Voltage Chart 1 <E-1>

NOMINAL OUTPUT VOLTAGE		<e-1> Dropout Voltage Vdif (mV) (Iour=100mA)</e-1>		NOMINAL OUTPUT VOLTAGE		Dropout Vdif	-1> Voltage (mV) 100mA)			
	Ta=	25°C	-40°C≦T	a≦105°C		Ta=	25°C	-40°C≦Ta≦105°		
Vout(t) (V)	TYP.	MAX.	TYP.	MAX.	Vout(t) (V)	TYP.	MAX.	TYP.	MAX.	
1.8	1480	2700	1480	2700	5.0					
1.9	1440	2600	1440	2600	5.1	-				
2.0		2500		2500	5.2					
2.1	1230	2400	1230	2400	5.3					
2.2		2300		2300	5.4					
2.3	1090	2200	1090	2200	5.5					
2.4		2100		2100	5.6					
2.5	1030	2000	1030	2000	5.7	-				
2.6		1900		1900	5.8	-				
2.7	670	1800	670	1800	5.9	-				
2.8		1700		1700	6.0	-				
2.9	460	1600	460	1600	6.5					
3.0		1500		1500	7.0	-				
3.1	450	1400	450	1400	7.5	-				
3.2		1300		1300	8.0					
3.3		1200		1200	8.5					
3.4		1100		1100	9.0					
3.5		1000		1000	9.5	350	440	350	810	
3.6		900			10.0					
3.7	-	800		1		10.5				
3.8	-	700			11.0					
3.9		600	600		11.5					
4.0	-			1	1		12.0			
4.1	430		430		12.5					
4.2				900	13.0					
4.3	-			900	13.5					
4.4		520			14.0					
4.5		530			14.5					
4.6					15.0					
4.7					15.5					
4.8					16.0					
4.9					16.5					
					17.0					
					17.5					
					10.0]		1		

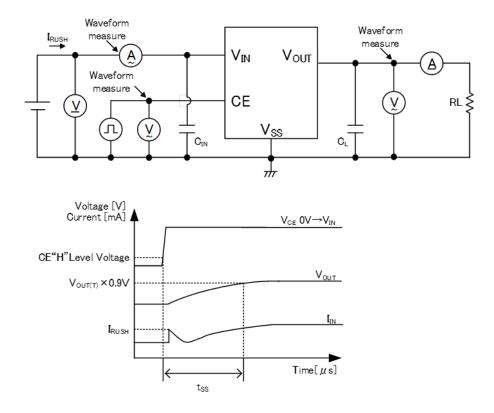

18.0

■TEST CIRCUITS

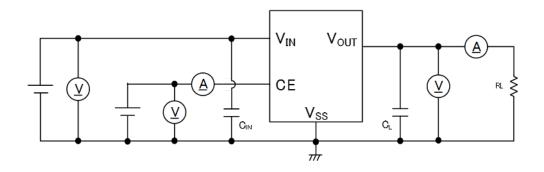

CIRCUIT(1)


CIRCUIT2

CIRCUIT(3)

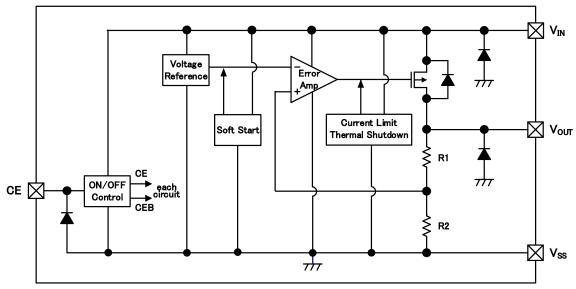


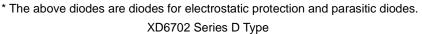
CIRCUIT(4)



■TEST CIRCUITS

CIRCUIT(5)




CIRCUIT[®]

OPERATIONAL EXPLANATION

The XD6702 series controls the output voltage by means of a scheme in which the error amplifier compares the voltage divided by R1 and R2 connected to the V_{OUT} pin with the voltage of the internal reference power supply. The output signal from the error amplifier makes the driver transistor connected to the V_{IN} pin drive, and negative feedback is applied to stabilize the output voltage.

<Current limiting, short-circuit protection>

The XD6702 series incorporates a foldback circuit for current limiting(460mA TYP.) and short-circuit protection(115mA TYP.).

When the output current reaches the current limit, the output voltage falls and the output current is limited.

<Overheating protection>

The XD6702 series incorporates a thermal shutdown circuit for overheating protection.

When the junction temperature reaches the detection temperature $T_{TSD}(150^{\circ}C \text{ TYP.})$, the driver transistor is forcibly turned off.

When the junction temperature falls to the release temperature $T_{TSR}(140^{\circ}C \text{ TYP.})$ while the driver transistor remains in the off state, the driver transistor turns on (auto recovery) and regulation restarts.

Unless the cause of rising temperature is removed, the driver transistor repeats on and off, and output waveform would be like consecutive pulses.

<CE function>

The XD6702 series allows stopping of the IC internal circuit by a CE pin signal.

When the IC is in the stopped state by CE "L" level voltage input, the V_{OUT} pin is pulled down by R1 and R2 to the V_{SS} level.

As long as the voltage input into the CE pin is within the CE pin voltage specification, the logic is established and there is no interference with operation. If the CE pin is left open, operation is unspecified.

■ OPERATIONAL EXPLANATION (Continued)

<Soft start>

The XD6702 series limits the rush current (I_{RUSH}) that suddenly flows from V_{IN} to V_{OUT} to charge the output capacitor (C_L) when the IC starts, and is also able to limit fluctuations of V_{IN} due to I_{RUSH} . The soft start time(t_{ss}) is optimized internally(370µs TYP.). The soft start time(t_{ss}) is defined as the V_{OUT} reaches 90% of $V_{OUT(T)}$ from the time when CE H threshold is input to the CE pin.

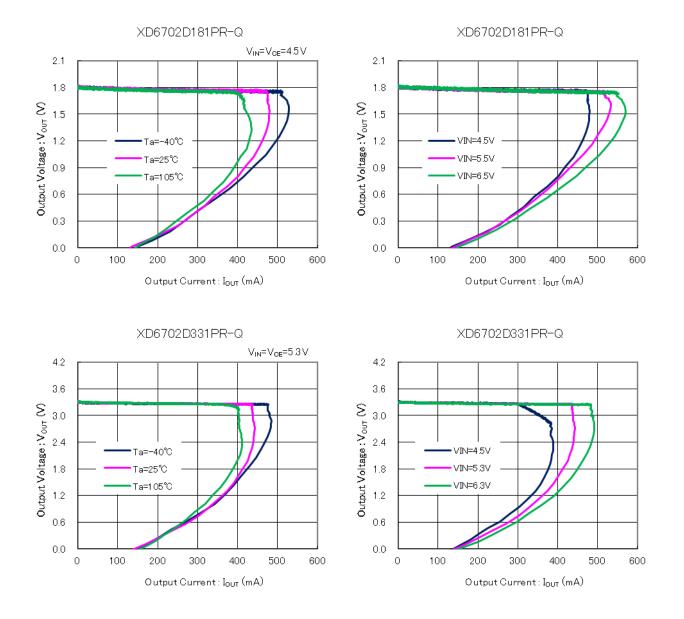
Example of the inrush current wave form at IC start-up

<Low ESR capacitor support>

An internal phase compensation circuit is incorporated in the XD6702 series to enable a stable output voltage to be obtained even when a low ESR capacitor is used. To stabilize the effect of the phase compensation circuit, always connect the output capacitor (C_L) in direct proximity to the V_{OUT} pin and V_{SS} pin. In addition, to stabilize the input power, connect the input capacitor (C_L) in direct proximity to the V_{IN} pin and V_{SS} pin. Refer to Table 1 for the recommended capacitance values to be connected.

Take particular care in selecting the capacitors for C_{IN} and C_{L} , as the bias dependence of the capacitor, the effect of capacitance loss due to temperature characteristics and other factors, and the effects of ESR may prevent stable phase compensation. Table 1 shows recommended capacitance values (MIN) for the actual bias and temperature conditions used for the capacitor. Select capacitances that satisfy Table 1 in all environments in which the product is to be used.

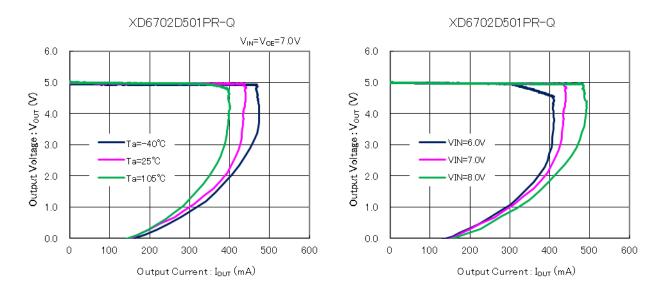
OUTPUT VOLTAGE	INPUT	OUTPUT				
RANGE	CAPACITOR	CAPACITOR				
Vout(t)	CIN	CL				
1.8V ~ 18.0V	1.0µF	2.2µF				

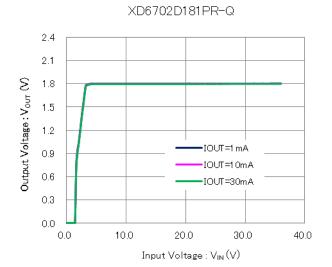

Notes on use

- 1) For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2) Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between V_{IN} and V_{SS} wiring in particular.
- 3) Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4) Capacitances of these capacitors (C_{IN}, C_L) are decreased by the influences of bias voltage and ambient temperature. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
- 5) Regarding the input transient response, the undershoot at the output voltage might be larger when input voltage variation is 5.0V or larger and the through-rate is 0.5V/µs or higher. If the undershoot is not acceptable, please increase the output capacitance value and evaluate the system on your PCB well.
- 6) The IC goes into "undefined state" if the CE pin is not connected (Open state). The CE pin voltage should be fixed in low or high for stable operation.
- 7) In general, semiconductor components have a possibility to have variation of electrical specifications due to the (cosmic) radiation exposure. Therefore this product has the same possibility. Please inform us in advance if your system might have a possibility to be exposed to the (cosmic) radiation in the production process (assembly, test, etc.).
- 8) Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging prevention treatment when using Torex products in their systems.

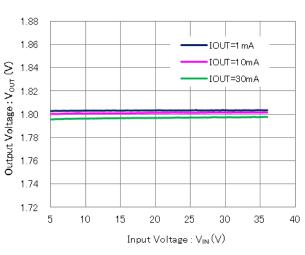
TYPICAL PERFORMANCE CHARACTERISTICS

 $Ta=25^{\circ}C, V_{IN} = V_{OUT}(T) + 1.0V, V_{CE} = V_{IN}, I_{OUT} = 1mA, C_{IN} = 1.0\mu F, C_L = 2.2\mu F(ceramic) \text{ unless otherwise specified.}$ This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

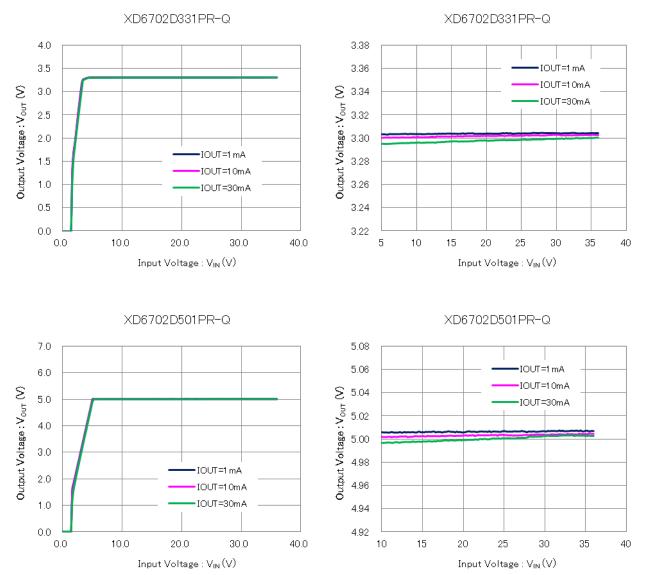

(1) Output Voltage vs. Output Current


* Mount conditions affect heat dissipation. Thermal shutdown may start to operate.

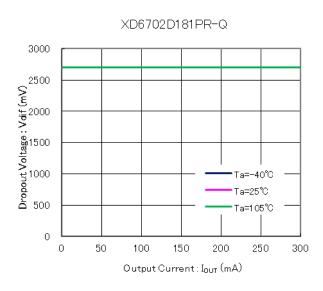
 $Ta=25^{\circ}C, V_{IN} = V_{OUT}(T) + 1.0V, V_{CE} = V_{IN}, I_{OUT} = 1mA, C_{IN} = 1.0\mu F, C_L = 2.2\mu F(ceramic) \text{ unless otherwise specified.}$ This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

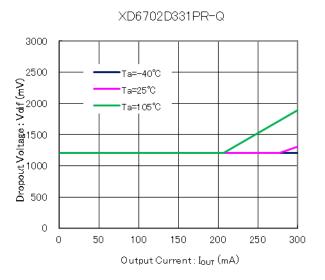

(1) Output Voltage vs. Output Current

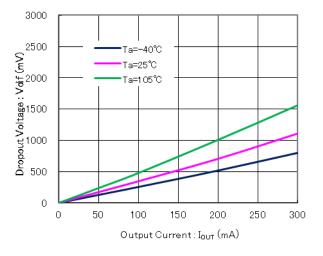
* Mount conditions affect heat dissipation. Thermal shutdown may start to operate.


(2) Output Voltage vs. Input Voltage

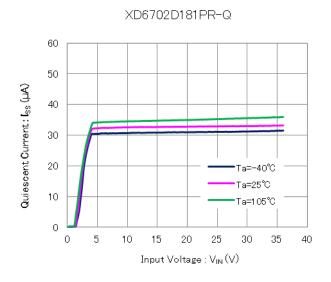
XD6702D181PR-Q

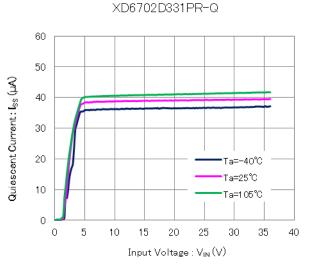

Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.


(2) Output Voltage vs. Input Voltage

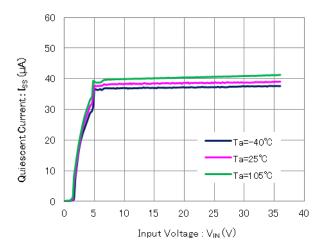

 $Ta=25^{\circ}C, V_{IN} = V_{OUT}(T) + 1.0V, V_{CE} = V_{IN}, I_{OUT} = 1mA, C_{IN} = 1.0\mu F, C_L = 2.2\mu F(ceramic) \text{ unless otherwise specified.}$ This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(3) Dropout Voltage vs. Output Current

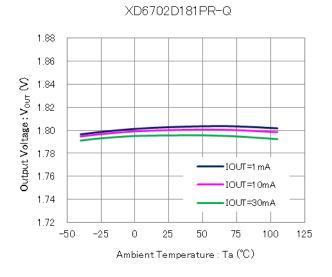

XD6702D501PR-Q

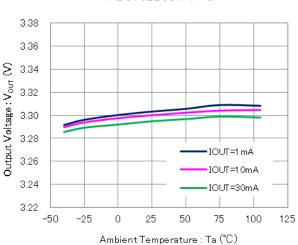


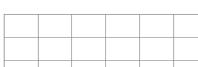
* Mount conditions affect heat dissipation. Thermal shutdown may start to operate.


Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(4) Quiescent Current vs. Input Voltage




XD6702D501PR-Q


Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(5) Output Voltage vs. Ambient Temperature

XD6702D331PR-Q

5.08 5.06

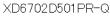
5.04 5.02 5.00 4.98

4.96

4.94

4.92 -50

-25


0

25

50

Ambient Temperature : Ta (°C)

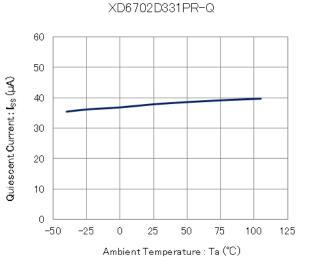
Output Voltage : V_{OUT} (V)

IOUT=1 mA

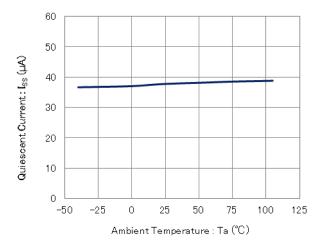
IOUT=10mA

IOUT=30mA

100


125

75


 $Ta=25^{\circ}C, V_{IN} = V_{OUT}(T) + 1.0V, V_{CE} = V_{IN}, I_{OUT} = 1mA, C_{IN} = 1.0\mu F, C_L = 2.2\mu F(ceramic) unless otherwise specified.$ This parameter is tested on $V_{IN}=4.5V$ if the input voltage is under 4.5V.

(6) Quiescent Current vs. Ambient Temperature

XD6702D501PR-Q

Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

1.86

1.84

1.82

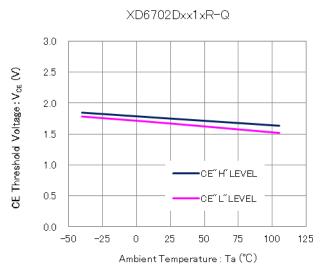
1.80

1.78

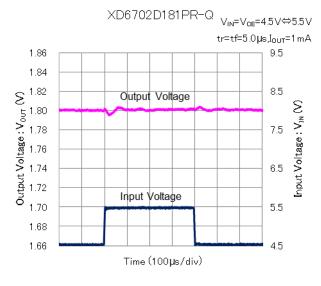
1.76

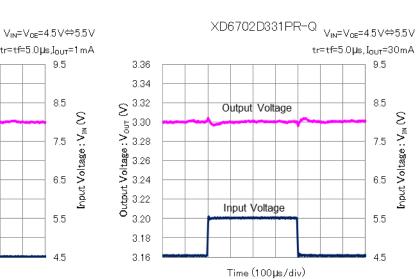
1.74

1.72


1.70

1.68


1.66


Output Voltage : V_{OUT} (V)

(7) CE Threshold Voltage vs. Ambient Temperature

(8) Input Transient Response

XD6702D181PR−Q _{VIN}=V_{CE}=4.5V⇔5.5V

Output Voltage

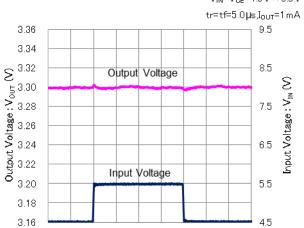
Input Voltage

Time (100µs/div)

tr=tf=5.0µs,I_{out}=30mA

9.5

8.5


7.5

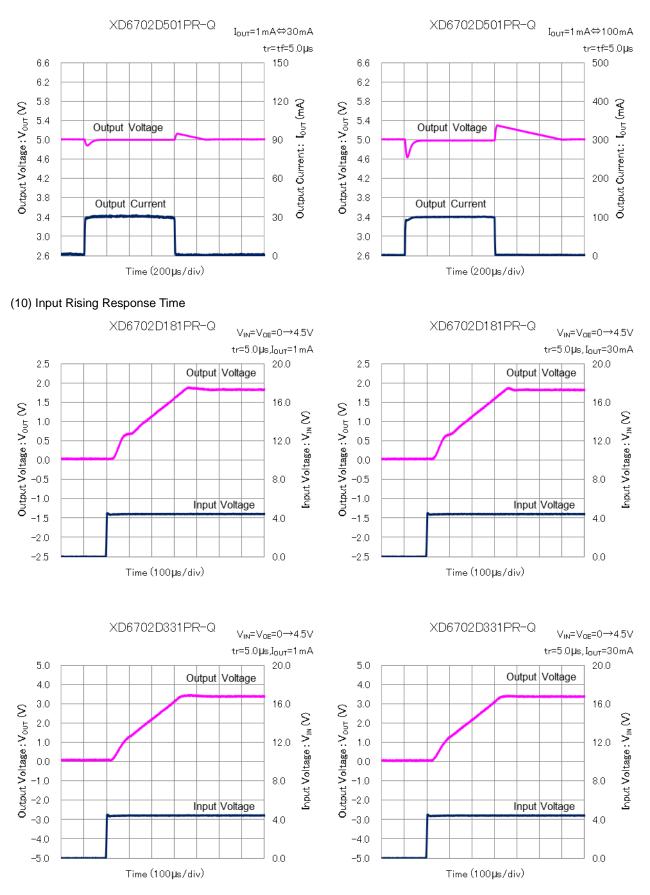
6.5

5.5

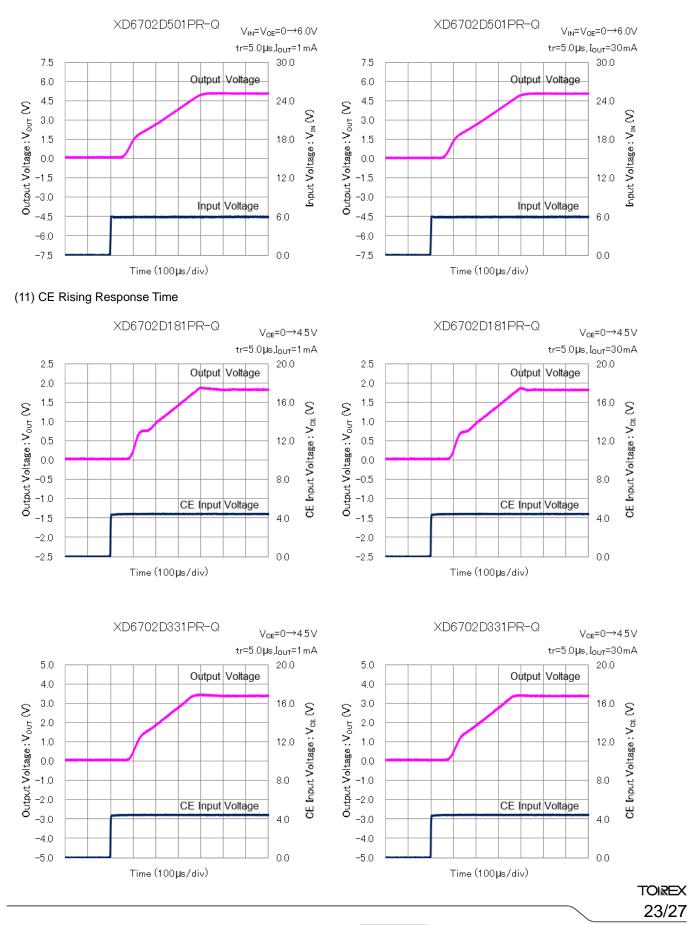
4.5

Input Voltage : V_{1N} (V)

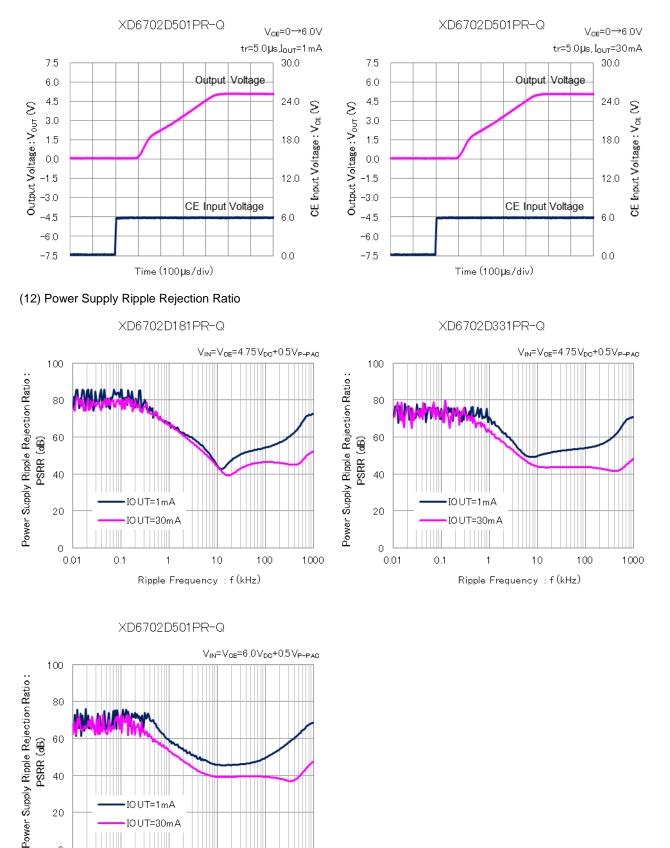
XD6702D331PR-Q


 $Ta=25^{\circ}C, V_{IN} = V_{OUT}(T) + 1.0V, V_{CE} = V_{IN}, I_{OUT} = 1mA, C_{IN} = 1.0\mu F, C_L = 2.2\mu F(ceramic) \text{ unless otherwise specified.}$ This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(8) Input Transient Response


Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(9) Load Transient Response


Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(10) Input Rising Response Time

Ta=25°C, $V_{IN} = V_{OUT}(T) + 1.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 1mA$, $C_{IN} = 1.0\mu$ F, $C_L = 2.2\mu$ F(ceramic) unless otherwise specified. This parameter is tested on V_{IN} =4.5V if the input voltage is under 4.5V.

(11) CE Rising Response Time

Ripple Frequency : f (kHz)

10

100

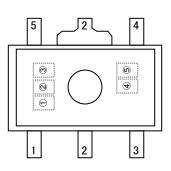
0.01

0.1

1

1000

■ PACKAGING INFORMATION


For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS			
SOT-89-5	<u>SOT-89-5 PKG</u>	Standard Board	SOT-89-5 Power Dissipation		

■ PRODUCT CLASSIFICATION

●SOT-89-5

SOT-89-5

(mark header: $(1 \sim 3)$) *mark header does not change with a lot.

① represents product series

MARK	PRODUCT SERIES
L	XD6702*****-Q

② represents type of regulators and output voltage

MARK	TYPE	OUTPUT VOLTAGE(V)				
4	1.8~3.0					
5	3.1~6.0					
6	6.1~9.0	XD6702D*****-Q				
7	9.1~12.0	XD6702D -Q				
С	12.1~15.0					
D	15.1~18.0					

③ represents output voltage。

MARK	OUTPUT VOLTAGE (V)					MARK	OUTPUT VOLTAGE (V)						
0	-	3.1	6.1	9.1	12.1	15.1	F	-	4.6	7.6	10.6	13.6	16.6
1	-	3.2	6.2	9.2	12.2	15.2	Н	-	4.7	7.7	10.7	13.7	16.7
2	-	3.3	6.3	9.3	12.3	15.3	К	1.8	4.8	7.8	10.8	13.8	16.8
3	-	3.4	6.4	9.4	12.4	15.4	L	1.9	4.9	7.9	10.9	13.9	16.9
4	-	3.5	6.5	9.5	12.5	15.5	М	2.0	5.0	8.0	11.0	14.0	17.0
5	-	3.6	6.6	9.6	12.6	15.6	Ν	2.1	5.1	8.1	11.1	14.1	17.1
6	-	3.7	6.7	9.7	12.7	15.7	Р	2.2	5.2	8.2	11.2	14.2	17.2
7	-	3.8	6.8	9.8	12.8	15.8	R	2.3	5.3	8.3	11.3	14.3	17.3
8	-	3.9	6.9	9.9	12.9	15.9	S	2.4	5.4	8.4	11.4	14.4	17.4
9	-	4.0	7.0	10.0	13.0	16.0	Т	2.5	5.5	8.5	11.5	14.5	17.5
A	-	4.1	7.1	10.1	13.1	16.1	U	2.6	5.6	8.6	11.6	14.6	17.6
В	-	4.2	7.2	10.2	13.2	16.2	V	2.7	5.7	8.7	11.7	14.7	17.7
С	-	4.3	7.3	10.3	13.3	16.3	Х	2.8	5.8	8.8	11.8	14.8	17.8
D	-	4.4	7.4	10.4	13.4	16.4	Y	2.9	5.9	8.9	11.9	14.9	17.9
E	-	4.5	7.5	10.5	13.5	16.5	Z	3.0	6.0	9.0	12.0	15.0	18.0

(4), 5 represents production lot number

01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ in order.

(G, I, J, O, Q, W excluded)

* No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions, excluding when specified for in-vehicle use or other uses.

Do not use the product for in-vehicle use or other uses unless agreed by us in writing in advance.

- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.

单击下面可查看定价,库存,交付和生命周期等信息

>>Torex Semiconductor(特瑞仕)