# XC6237<sub>Series</sub>

## Ultra-Low Supply Current 0.6µA High Speed LDO Voltage Regulators

ETR03100-001

**☆GreenOperation Compatible** 

## **■**GENERAL DESCRIPTION

The XC6237 series is a CMOS process high-speed LDO regulator IC that achieves low current consumption, high accuracy, and high ripple rejection.

The output voltage is fixed internally and can be set in the range of 1.2V to 5.0V (0.05V step).

It has a Green Operation (GO) function that achieves both high-speed operation and low current consumption, and switches automatically between high speed (HS) mode and power save (PS) mode according to the output current.

At light load, high efficiency is realized by operating in PS mode with low current consumption, and at heavy load, high speed operation is enabled by operating in HS mode. This is ideal for applications that require both low current consumption and high speed operation.

The lineup of small and thin USPQ-4B05 and general-purpose SSOT-24 and SOT-23 is available for various applications. Low ESR capacitors such as ceramic capacitors can be used at the output of LDO.

#### APPLICATIONS

- Smart meters
- Smart cards
- Wearable devices
- Remote controllers

#### ■FEATURES

Low Supply Current :  $0.6\mu A TYP (PS)$ Accuracy :  $\pm 1.0\% (V_{OUT} \ge 2.00V)$ 

±20mV (V<sub>OUT</sub>≤1.95V)

Operating Voltage Range : 1.6V ~ 6.0V

Output Voltage Range : 1.2V ~ 5.0V(0.05V steps)

Maximum Output Current : 150mA

High Ripple Rejection : 60dB@1kHz (HS)

Green Operation,

CE function : "H" active

C<sub>L</sub> Discharge (A TYPE)

Protective Function : Current Limit 250mA(TYP)

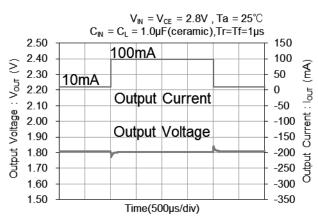
Short-Circuit Current 25mA(TYP)

Output Capacitor : Ceramic capacitor
Operating Ambient Temperature :  $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$ 

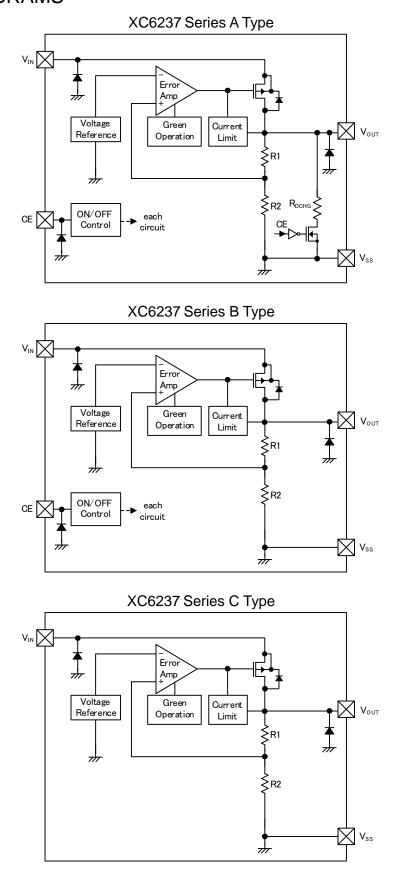
**Packages** : USPQ-4B05 (1.0x1.0xh0.33mm)

SSOT-24

SOT-23(No CE function)


(In Development)

Environmentally Friendly : EU RoHS Compliant, Pb Free


## **■**TYPICAL APPLICATION CIRCUIT

## 

# ■ TYPICAL PERFORMANCE CHARACTERISTICS



## **■BLOCK DIAGRAMS**



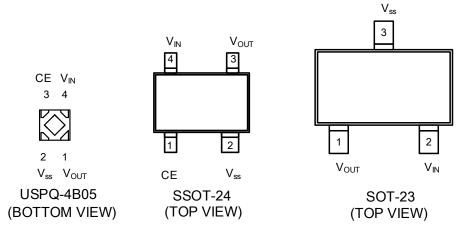
%Diodes inside the circuits are ESD protection diodes and parasitic diodes.

## **■ PRODUCT CLASSIFICATION**

### Ordering Information

XC6237(1)2(3)4(5)6)-(7)(\*1)

| DESIGNATOR | ITEM                                | SYMBOL               | DESCRIPTION                                                             |
|------------|-------------------------------------|----------------------|-------------------------------------------------------------------------|
|            |                                     | А                    |                                                                         |
| 1          | TYPE                                | В                    | Refer to Selection Guide                                                |
|            |                                     | С                    |                                                                         |
| 23         | Output Voltage                      | 12~50                | e.g. 2.8V ②=2, ③=8                                                      |
| 4          | Output Voltage                      | 1                    | Output Voltage {x.x0V} e.g. 2.80V → ②=2, ③=8, ④=1                       |
| 4          | (the 2 <sup>nd</sup> decimal place) | В                    | Output Voltage $\{x.x5V\}$ e.g. $2.85V \rightarrow 2=2$ , $3=8$ , $4=B$ |
|            | Daalaasa                            | 9R-G <sup>(*1)</sup> | USPQ-4B05 (A/B TYPE) (5,000pcs/Reel)                                    |
| 56-7       | Packages<br>Taping Type             | NR-G <sup>(*1)</sup> | SSOT-24 (A/B TYPE) (3,000pcs/Reel)                                      |
|            | raping type                         | MR-G <sup>(*1)</sup> | SOT-23 (C TYPE) (3,000 pcs/Reel) (In Development)                       |


 $<sup>\</sup>ensuremath{^{(^*1)}}$  "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

#### Selection Guide

| TYPE | CE function | CL Auto-Discharge |
|------|-------------|-------------------|
| А    | Yes         | Yes               |
| В    | Yes         | -                 |
| С    | -           | -                 |

## XC6237 Series

## **■PIN CONFIGURATION**



<sup>\*</sup>The dissipation pad for the USPQ-4B05 package should be solder-plated in reference mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to V<sub>SS</sub> (No. 2) pin.

## **■ PIN ASSIGNMENT**

|           | PIN NUMBER |        | DININIAME       | FUNCTION       |
|-----------|------------|--------|-----------------|----------------|
| USPQ-4B05 | SSOT-24    | SOT-23 | PIN NAME        | FUNCTION       |
| 1         | 3          | 1      | Vout            | Output         |
| 2         | 2          | 3      | V <sub>SS</sub> | Ground         |
| 3         | 1          | -      | CE              | ON/OFF Control |
| 4         | 4          | 2      | V <sub>IN</sub> | Power Input    |

## **■**FUNCTION CHART

XC6237series, Type A/B.

| PIN NAME | SIGNAL | STATUS           |
|----------|--------|------------------|
|          | Н      | Active           |
| CE       | L      | Stand-by         |
|          | OPEN   | Undefined state* |

<sup>(\*1)</sup> Please do not leave the CE pin open. Each should have a certain voltage.

## ■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

| PARAME                      | PARAMETER                    |                  | RATINGS                                          | UNITS |
|-----------------------------|------------------------------|------------------|--------------------------------------------------|-------|
| V <sub>IN</sub> Pin Voltage |                              | VIN              | -0.3~+6.5                                        | V     |
| V <sub>OUT</sub> Pin (      | V <sub>OUT</sub> Pin Current |                  | 250(*1)                                          | mA    |
| Vout Pin \                  | /oltage                      | V <sub>оит</sub> | -0.3~V <sub>IN</sub> +0.3 or 6.5 <sup>(*2)</sup> | V     |
| CE Pin V                    | oltage                       | V <sub>CE</sub>  | -0.3~+6.5                                        | V     |
|                             | USPQ-4B05                    |                  | 100                                              |       |
|                             | 03PQ-4B03                    |                  | 550 (40mm x 40mm Standard Board) (*3)            |       |
|                             |                              |                  | 150                                              |       |
| Power Dissipation           | SSOT-24                      | Pd               | 500 (40mm x 40mm Standard Board) (*3)            | mW    |
|                             |                              |                  | 680 (JESD51-7 Board) (*3)                        |       |
|                             | SOT 22                       |                  | 250                                              |       |
|                             | SOT-23                       |                  | 500 (40mm x 40mm Standard Board) (*3)            |       |
| Operating Ambier            | t Temperature                | Topr             | -40~+105                                         | °C    |
| Storage Tem                 | perature                     | Tstg             | -55~+125                                         | °C    |

All voltages are described based on the  $V_{\mbox{\scriptsize SS}}.$ 

 $<sup>^{(^{\</sup>star}1)}$  Please use within the range of  $I_{OUT}{\leqq}Pd$  /  $(V_{IN}{-}V_{OUT})$ 

 $<sup>\</sup>ensuremath{^{(^\circ 2)}}$  The maximum rating corresponds to the lowest value between V\_IN+0.3V or +6.5V.

<sup>(\*3)</sup> The power dissipation figure shown is PCB mounted and is for reference only. The mounting condition is please refer to PACKAGING INFORMATION.

## **■**ELECTRICAL CHARACTERISTICS

Ta=25°C

| PARAMETER                                  | SYMBOL                                                       | CONDITIONS                                                                                                                                                                                                               | MIN                                                                     | TYP                                 | MAX                                                                      | UNIT   | CIRCUIT |
|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|--------|---------|
| Input Voltage                              | Vin                                                          |                                                                                                                                                                                                                          | 1.6                                                                     | -                                   | 6.0                                                                      | V      | 1       |
| Output Voltage                             | V <sub>OUT(E)</sub> (*1)                                     | V <sub>OUT(T)</sub> ≧2.00V<br>I <sub>OUT</sub> =10mA<br>V <sub>OUT(T)</sub> ≦1.95V<br>I <sub>OUT</sub> =10mA                                                                                                             | V <sub>OUT(T)</sub> (*2)<br>× 0.99<br>V <sub>OUT(T)</sub> (*2)<br>-0.02 | V <sub>OUT(T)</sub> <sup>(*2)</sup> | V <sub>OUT(T)</sub> (*2)<br>× 1.01<br>V <sub>OUT(T)</sub> (*2)<br>+ 0.02 | V      | 1)      |
| Maximum Output Current                     | Гоитмах                                                      |                                                                                                                                                                                                                          | 150                                                                     | -                                   | -                                                                        | mA     | 1       |
| Load Regulation                            | ΔV <sub>OUT</sub>                                            | 10mA≦I <sub>OUT</sub> ≦150mA                                                                                                                                                                                             | -                                                                       | -                                   | 20                                                                       | mV     | 1)      |
| Load Regulation                            | Δνουτ                                                        | 0.1mA≦I <sub>OUT</sub> ≦150mA                                                                                                                                                                                            | -                                                                       | 10                                  | 50                                                                       | IIIV   | T)      |
| Dropout Voltage                            | V <sub>dif</sub> (*3)                                        | I <sub>ОUТ</sub> =150mA                                                                                                                                                                                                  | -                                                                       | [E-1                                | ] (*4)                                                                   | mV     | 1       |
| Supply Current                             | I <sub>SS</sub>                                              | I <sub>OUT</sub> =0mA                                                                                                                                                                                                    | -                                                                       | 0.6                                 | 0.9                                                                      | μΑ     | 2       |
| Stand-by Current                           | Іѕтв                                                         | VIN=6.0V,VCE=VSS                                                                                                                                                                                                         | -                                                                       | 0.01                                | 0.1                                                                      | μΑ     | 2       |
| Line Regulation                            | ΔV <sub>OUT</sub> /<br>(ΔV <sub>IN</sub> •V <sub>OUT</sub> ) | V <sub>OUT(T)</sub> +0.5V≦V <sub>IN</sub> ≦6.0V<br>I <sub>OUT</sub> =30mA                                                                                                                                                | -                                                                       | ±0.05                               | ±0.2                                                                     | %/V    | 1       |
| Output Voltage Temperature Characteristics | ΔV <sub>OUT</sub> /<br>(ΔTopr·<br>V <sub>OUT</sub> )         | I <sub>OUT</sub> =10mA<br>-40°C≦Topr≦105°C                                                                                                                                                                               | -                                                                       | ±50                                 | -                                                                        | ppm/°C | 1       |
| Ripple Rejection                           | PSRR                                                         | $VIN=5.75V_{DC}+0.5Vp-pac \\ 4.75V \leqq V_{OUT(T)} \\ V_{CE}=V_{IN}, I_{OUT}=30mA, f=1kHz \\ V_{IN}=\{V_{OUT(T)}+1.0\}V_{DC}+0.5Vp-pac \\ V_{OUT(T)}\leqq 4.7V \\ V_{CE}=V_{IN}, I_{OUT}=30mA, f=1kHz \\ \end{bmatrix}$ | -                                                                       | 60                                  | -                                                                        | dB     | 4       |
| Current Limit                              | ILIM                                                         | V <sub>OUT</sub> = V <sub>OUT(E)</sub> <b>×</b> 0.95                                                                                                                                                                     | 155                                                                     | 250                                 | -                                                                        | mA     | 1       |
| Short-Circuit<br>Current                   | Ishort                                                       | Vout=Vss                                                                                                                                                                                                                 | -                                                                       | 25                                  | -                                                                        | mA     | 1       |
| PS Switched<br>Current                     | I <sub>GOR</sub>                                             | louт: heavy to light load                                                                                                                                                                                                | 0.5                                                                     | -                                   | -                                                                        | mA     | 2       |
| HS Switched<br>Current                     | Igo                                                          | louт: light to heavy load                                                                                                                                                                                                | -                                                                       | -                                   | 10                                                                       | mA     | 2       |
| CE "H" Level<br>Voltage                    | Vсен                                                         |                                                                                                                                                                                                                          | 1.2                                                                     | -                                   | 6.0                                                                      | V      | 3       |
| CE "L" Level<br>Voltage                    | V <sub>CEL</sub>                                             |                                                                                                                                                                                                                          | V <sub>SS</sub>                                                         | -                                   | 0.3                                                                      | V      | 3       |
| CE "H" Level<br>Current                    | Ісен                                                         |                                                                                                                                                                                                                          | -0.1                                                                    | -                                   | 0.1                                                                      | μΑ     | 3       |
| CE "L" Level<br>Current                    | ICEL                                                         | V <sub>CE</sub> =V <sub>SS</sub>                                                                                                                                                                                         | -0.1                                                                    | -                                   | 0.1                                                                      | μΑ     | 3       |
| CL Auto-<br>Discharge<br>Resistance        | RDCHG                                                        | VIN=VOUT=6.0V, VCE=Vss                                                                                                                                                                                                   | -                                                                       | 280                                 | -                                                                        | Ω      | 1)      |

Unless otherwise stated regarding input voltage conditions,

 $(V_{IN}\!\!=\!\!V_{OUT(T)}\!\!+\!\!1.0V)$  ,  $V_{CE}\!\!=\!\!V_{IN}$  (A/B TYPE only) ,  $C_{IN}=1.0uF$  ,  $C_L=1.0uF$  .

 $V_{\text{IN1}}\;\;:\;\;$  The input voltage when  $V_{\text{OUT1}}$  appears as input voltage is gradually decreased.

 $V_{OUT1}: \ \ A \ voltage \ equal \ to \ 98\% \ of \ the \ output \ voltage \ whenever \ an \ amply \ stabilized \ I_{OUT} \{V_{OUT(T)} + 1.0V\} \ is \ input.$ 

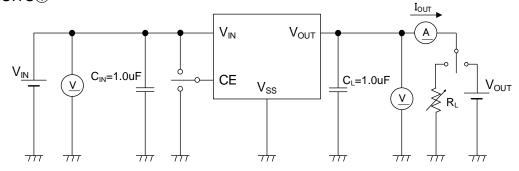
<sup>(\*1)</sup> V<sub>OUT(E)</sub> : Effective output voltage

 $V_{OUT(T)}^{(*2)}$ : Nominal output voltage.

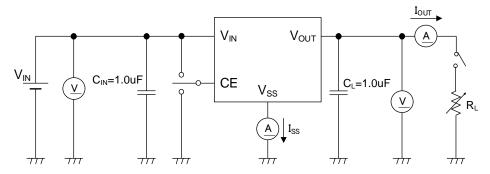
 $<sup>^{(*3)}</sup>$   $V_{dif} = \{V_{IN1}-V_{OUT1}\}$ 

<sup>(\*4)</sup> E-1 : DROPOUT VOLTAGE (Refer to the Voltage Chart)

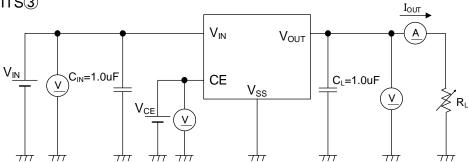
## **■**ELECTRICAL CHARACTERISTICS


●Voltage Chart Ta=25°C

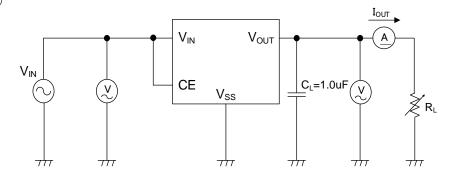
| • voltage Chart     |         |      |  |  |
|---------------------|---------|------|--|--|
| SYMBOL              | E       |      |  |  |
| NOMINAL             | DROPOUT |      |  |  |
| OUTPUT              |         | (mV) |  |  |
| VOLTAGE (V)         |         | 50mA |  |  |
| V <sub>OUT(T)</sub> |         | dif  |  |  |
|                     | TYP.    | MAX  |  |  |
| 1.20                |         |      |  |  |
| 1.25                |         |      |  |  |
| 1.30                |         |      |  |  |
| 1.35                | 470     | 825  |  |  |
| 1.40                |         |      |  |  |
| 1.45                |         |      |  |  |
| 1.50                |         |      |  |  |
| 1.55                |         |      |  |  |
| 1.60                |         |      |  |  |
| 1.65                |         |      |  |  |
| 1.70                |         |      |  |  |
| 1.75                | 315     | 550  |  |  |
| 1.80                |         |      |  |  |
| 1.85                |         |      |  |  |
| 1.90                |         |      |  |  |
| 1.95                |         |      |  |  |
| 2.00                |         |      |  |  |
| 2.05                |         |      |  |  |
| 2.10                |         |      |  |  |
| 2.15                |         |      |  |  |
| 2.20                | 240     | 420  |  |  |
| 2.25                |         |      |  |  |
| 2.30                |         |      |  |  |
| 2.35                |         |      |  |  |
| 2.40                |         |      |  |  |
| 2.45                |         |      |  |  |
| 2.50                |         |      |  |  |
| 2.55                |         |      |  |  |
| 2.60                |         |      |  |  |
| 2.65                |         |      |  |  |
| 2.70                | 200     | 325  |  |  |
| 2.75                | 200     | 323  |  |  |
| 2.80                |         |      |  |  |
| 2.85                |         |      |  |  |
| 2.90                |         |      |  |  |
| 2.95                |         |      |  |  |
| 3.00                |         |      |  |  |
| 3.05                |         |      |  |  |
| 3.10                |         |      |  |  |
| 3.15                | 465     | 055  |  |  |
| 3.20                | 165     | 255  |  |  |
| 3.25                |         |      |  |  |
| 3.30                |         |      |  |  |
| 3.35                |         |      |  |  |
|                     |         |      |  |  |


| SYMBOL       |      | -1      |
|--------------|------|---------|
| NOMINAL      |      | VOLTAGE |
| OUTPUT       |      | (mV)    |
| VOLTAGE (V)  |      | 50mA    |
| $V_{OUT(T)}$ | TYP. | dif MAX |
| 3.40         |      |         |
| 3.45         |      |         |
| 3.50         |      |         |
| 3.55         |      |         |
| 3.60         |      |         |
| 3.65         |      |         |
| 3.70         | 165  | 255     |
| 3.75         |      |         |
| 3.80         |      |         |
| 3.85         |      |         |
| 3.90         |      |         |
| 3.95         |      |         |
| 4.00         |      |         |
| 4.05         |      |         |
| 4.10         |      |         |
| 4.15         |      |         |
| 4.20         |      |         |
| 4.25         |      |         |
| 4.30         |      |         |
| 4.35         |      |         |
| 4.40         |      |         |
| 4.45         |      |         |
| 4.50         | 130  | 235     |
| 4.55         | .50  | 250     |
| 4.60         |      |         |
| 4.65         |      |         |
| 4.70         |      |         |
| 4.75         |      |         |
| 4.80         |      |         |
| 4.85         |      |         |
| 4.90         |      |         |
| 4.95         |      |         |
| 5.00         |      |         |

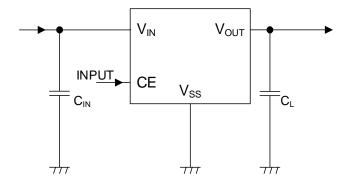
## **TEST CIRCUITS**


## TEST CIRCUITS ①




### TEST CIRCUITS②




### TEST CIRCUITS③



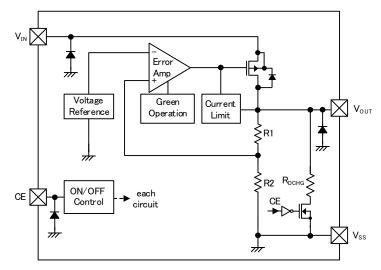
## TEST CIRCUITS4



## **■**TYPICAL APPLICATION CIRCUIT



### [Typical Examples] (\*1)


|         | MANUFACTURER | PRODUCT NUMBER     | VALUE                | SIZE(L×W×T)                       |
|---------|--------------|--------------------|----------------------|-----------------------------------|
|         | Murata       | GRM155C71A105KE11D | 1.0uF/10V            | 1.0 × 0.5 × 0.6(mm)               |
| CIN, CL | Murata       | GRM033D70J105ME01D | 1.0uF/6.3V 2parallel | $0.6 \times 0.3 \times 0.39 (mm)$ |
|         | Murata       | GRM033R60J225ME47D | 2.2uF/6.3V           | $0.6 \times 0.3 \times 0.39 (mm)$ |

<sup>(\*1)</sup> Select components appropriate to the usage conditions (ambient temperature, input & output voltage).

#### ■OPERATIONAL EXPLANATION

#### <Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal voltage reference by the error amplifier. The P-channel MOSFET, which is connected to the V<sub>OUT</sub> pin, is then driven by the subsequent output signal. The output voltage at the V<sub>OUT</sub> pin is controlled and stabilized by a system of negative feedback. The GO function monitors the output current and switches IC's consumption current according to the level of output current.



\*Diodes inside the circuits are ESD protection diodes and parasitic diodes.

#### <Green Operation Function >

The GO enables the IC to switch automatically the supply current to the high speed (HS) mode or the power save (PS) mode according to the level of output current. While having both high-speed operation and low supply current state, the series can acquire high efficiency. The switching point of the HS mode and the PS mode is being fixed inside the IC. When the output current becomes I<sub>GOR</sub> 0.5mA (MIN.) or below, the mode changes automatically to the PS mode and it can reduce supply current in light load.

Also when the output current becomes I<sub>GO</sub> 10mA (MAX.) or more, the mode changes automatically to the HS mode and the IC becomes high speed operation.

When the input voltage is lower than the nominal output voltage or the input / output voltage difference is small, it may operate in the HS mode regardless of the output current.

#### <CE Function>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6237 series A/B type. In shutdown mode, output at the V<sub>OUT</sub> pin will be pulled down to the V<sub>SS</sub> level via R1 & R2. However the XC6237 series A type has the CL auto-discharge function is able to discharge the electric charge at the CL via the internal auto-discharge resistance, when IC is shutdown mode and power is supplied to the VIN pin, as a result the VOUT pin quickly returns to the VSS level.

The output voltage becomes unstable, when the CE pin is open. Please input a certain voltage within an electrical characteristic into CE pin.

If this IC is used with the correct output voltage for the CE pin, the logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry when medium voltage is input.

#### < Current Limit, Short-Circuit Protection>

The XC6237 series limit output current by current fold-back circuit. When the output current reaches the current limit level (TYP. 250mA), the current fold-back circuit operates and the output current also drops as the output voltage drops. The output voltage drops further and output current decreases. When the output pin is shorted, the output current is Ishort (TYP> 25mA) and can be used safely by short-circuit.

## ■ OPERATIONAL EXPLANATION(Continued)

<C<sub>L</sub> Auto-Discharge Function>

As for the XC6237 series A type, the  $C_L$  auto-discharge function is able to discharge the electric charge at the  $C_L$  via the internal auto-discharge resistance, and as a result the  $V_{OUT}$  pin quickly returns to the  $V_{SS}$  level.

An N-channel transistor connect between the  $V_{OUT}$  pin and the  $V_{SS}$  pin, and the N-channel quickly discharge the electric charge in  $C_L$  when a low signal to the CE pin input.

Discharge time of the  $C_L$  and output voltage is determined by a  $C_L$  auto-discharge resistor value  $R_{DCHG}$  (TYP. 280 $\Omega$ @Vin=6.0V) and an output capacitor value. Output voltage after starting discharge can be calculated by the following formula.

 $V = V_{OUT(E)} \times e^{-t/\tau}$ 

V : Output voltage after starting discharge

 $\begin{array}{lll} V_{\text{OUT(E)}} & : \text{Output voltage} \\ T & : \text{Discharge time} \\ \tau & : R_{\text{DCHG}} \times C_{\text{L}} \end{array}$ 

C<sub>L</sub> : Capacitance connected V<sub>OUT</sub> pin

R<sub>DCHG</sub> : Output discharge resistor(C<sub>L</sub> Discharge Resistance)

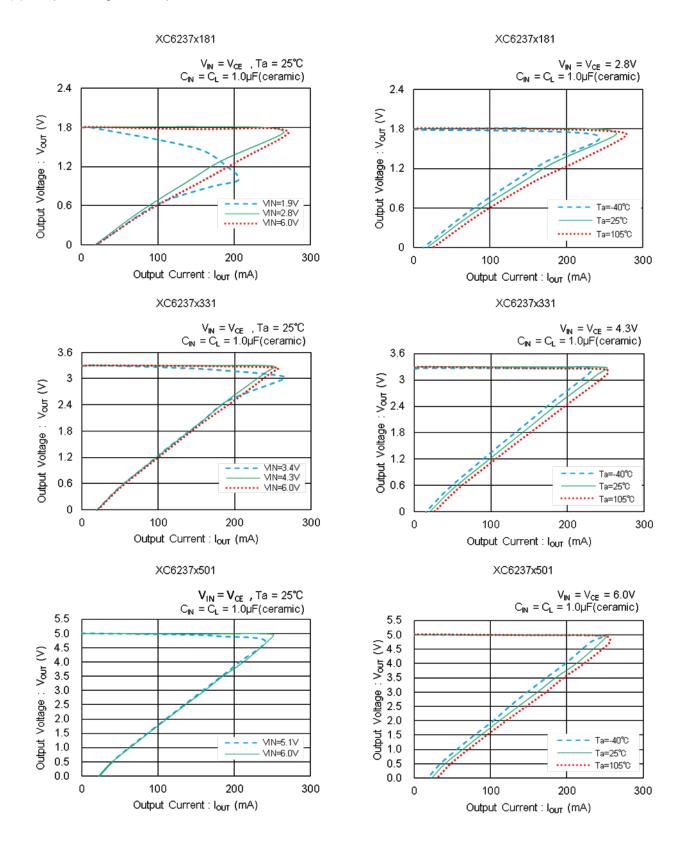
It can be expanded on "t",

 $t = \tau \ln(V_{OUT(E)} / V)$ 

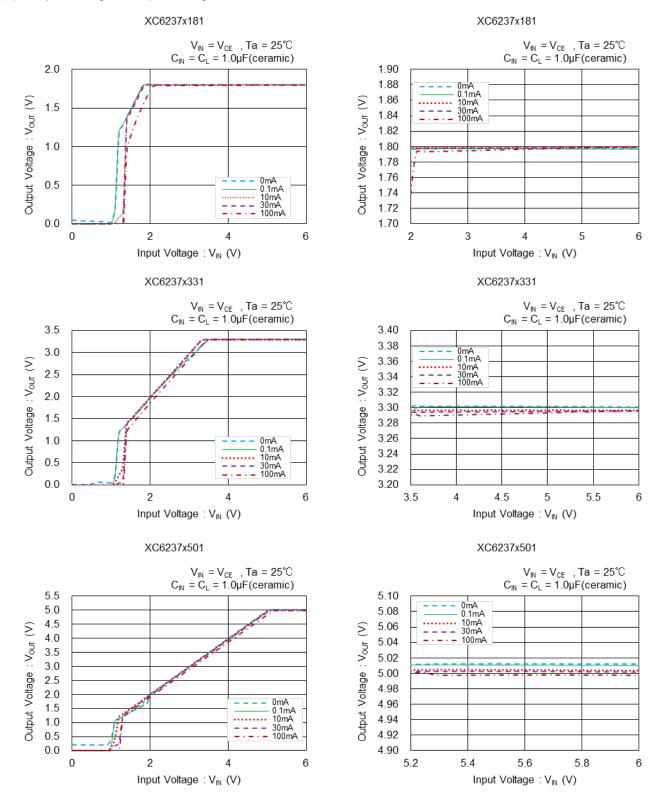
Discharge time can be calculated by the above formula.

Time constant  $\tau$  is defined as ( $\tau$  =C<sub>L</sub> x R<sub>DCHG</sub>).

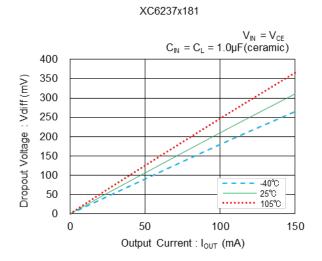
it is possible to obtain the discharge time from the above equation.

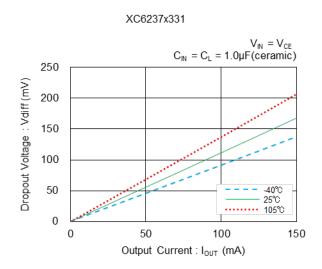

 $t = r \ln(V_{OUT(E)} / V)$ 

#### ■ NOTES ON USE

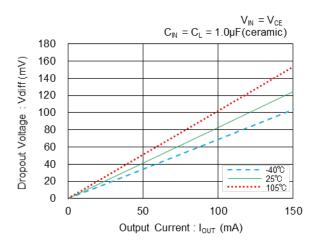

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V<sub>IN</sub> and V<sub>SS</sub> wiring in particular.
- 3. The input capacitor (C<sub>IN</sub>) and the output capacitor (C<sub>L</sub>) should be placed to the IC as close as possible and connected 1.0 µF or more capacitor. Since Input capacitor (C<sub>IN</sub>) and the output capacitor (C<sub>L</sub>) have the characteristics are fluctuated by a bias dependence of the capacitor, by the influence of the missing capacity and by temperature characteristics. There is a risk that cannot be stable phase compensation because of them. Please pay attention to the selection of the capacitor to be used.
- 4. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

### **■**TYPICAL PERFORMANCE CHARACTERISTICS

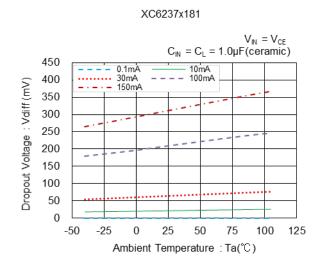

#### (1) Output Voltage vs. Output Current

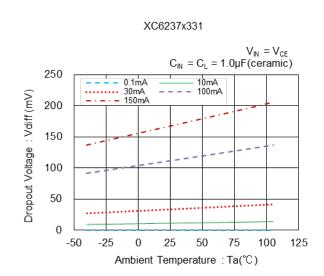



#### (2) Output Voltage vs. Input Voltage



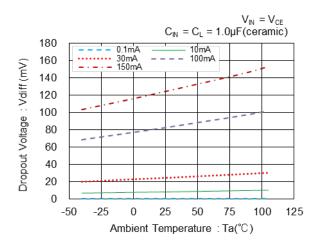

#### (3) Dropout Voltage vs. Output Current



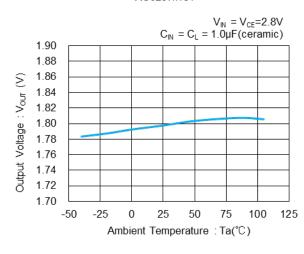




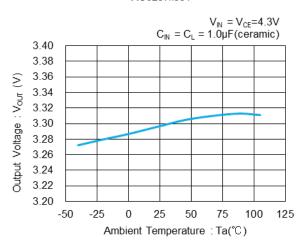


#### (4) Dropout Voltage vs. Ambient Temperature

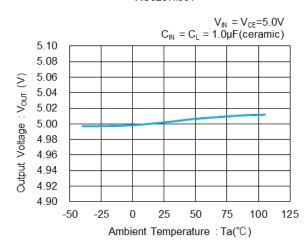




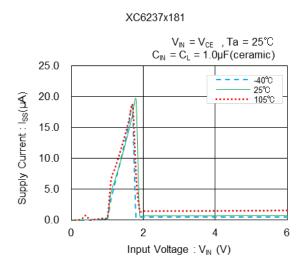

#### (4) Dropout Voltage vs. Ambient Temperature (Continued)

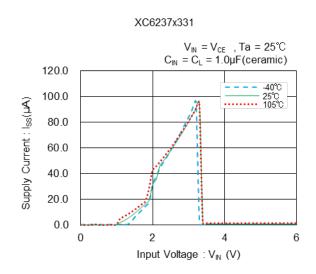
#### XC6237x501



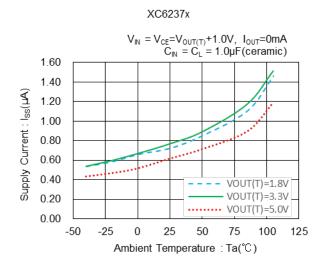


#### (5) Output Voltage vs. Ambient Temperature

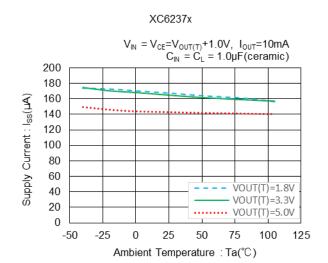
#### XC6237x181





#### XC6237x331





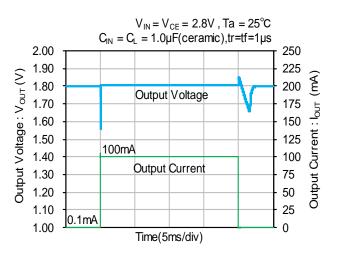


#### (6) Supply Current vs. Input Voltage

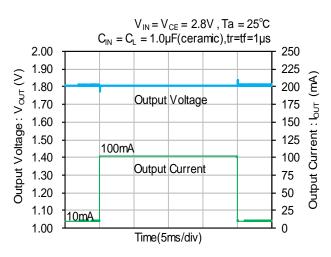




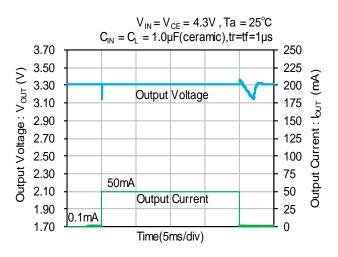

#### (7) Supply Current vs. Ambient Temperature

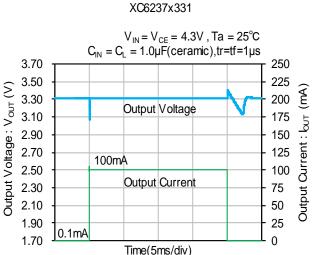






#### (8) Load Transient Response

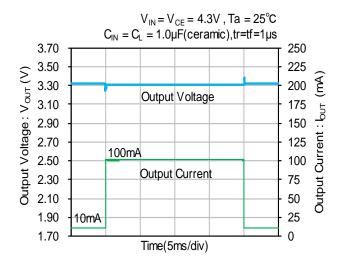




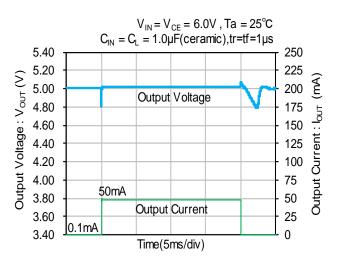


#### XC6237x181



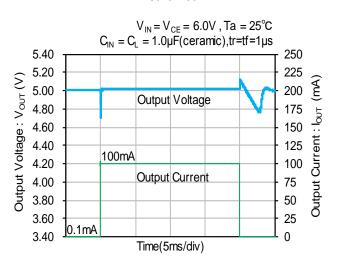


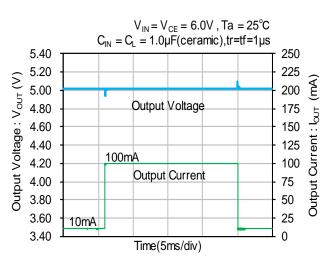

XC6237x331



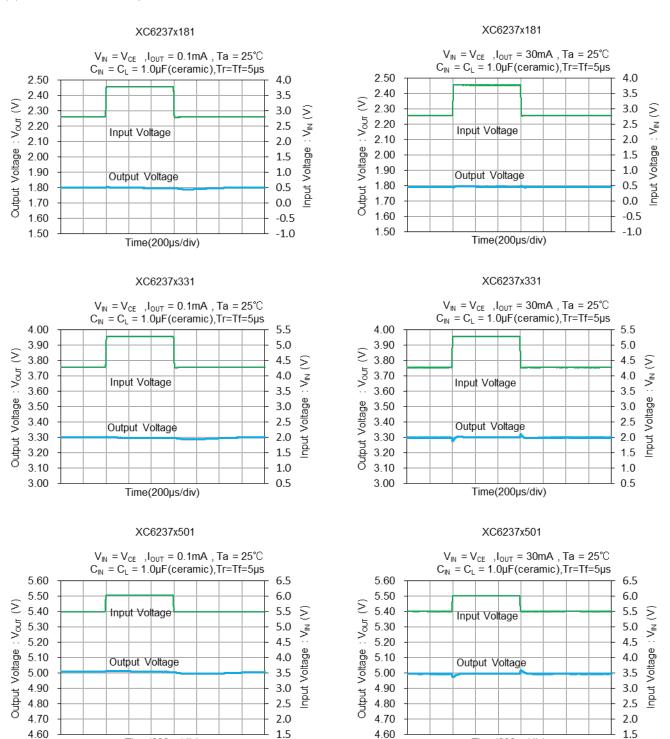



#### (8) Load Transient Response (Continued)


XC6237x331




XC6237x501

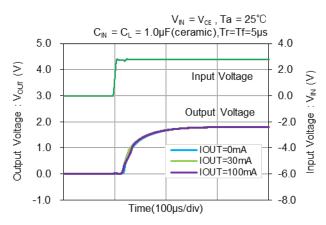



XC6237x501



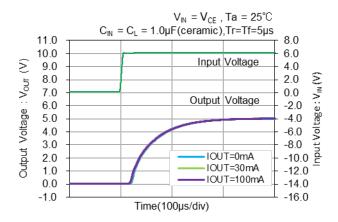


#### (9) Line Transient Response



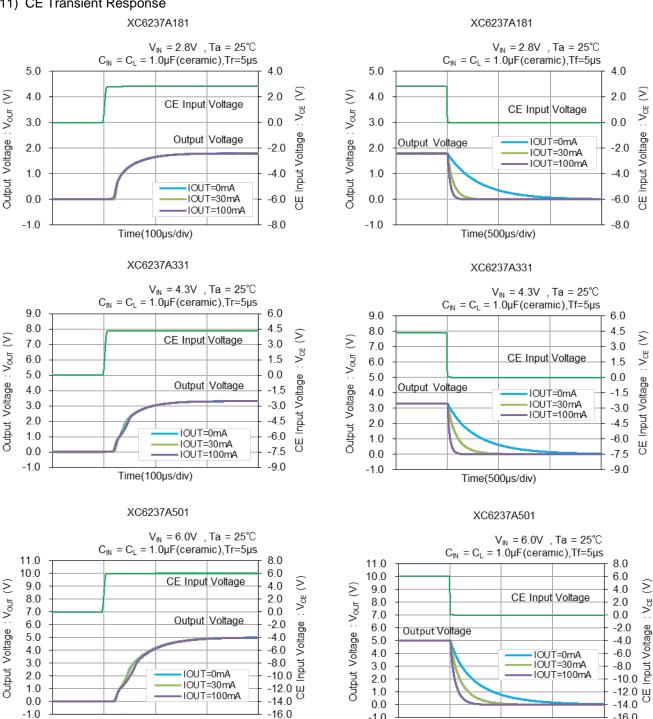

Time(200µs/div)


Time(200µs/div)


#### (10) Turn-On Response





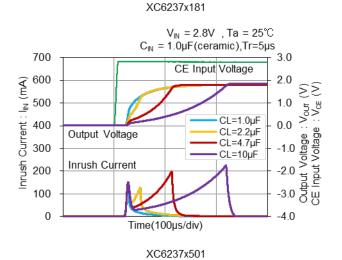

#### XC6237x331

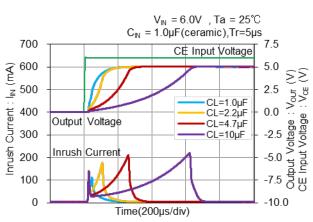


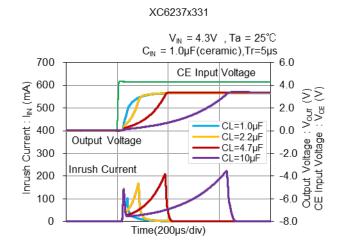


#### (11) CE Transient Response

Time(100µs/div)

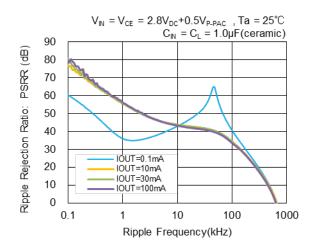




-16.0

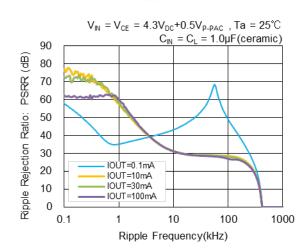

Time(500µs/div)

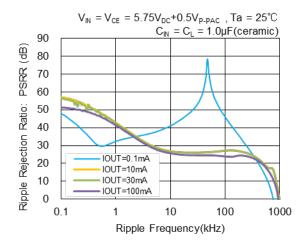
-1.0

#### (12) Inrush Current Response







#### (13) Ripple Rejection: PSRR



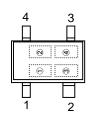


#### XC6237x331

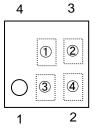




# XC6237 Series


## **■**PACKAGING INFORMATION

For the latest package information go to,  $\underline{www.torexsemi.com/technical-support/packages}$ 


| PACKAGE   | OUTLINE / LAND PATTERN | THERM          | IAL CHARACTERISTICS         |
|-----------|------------------------|----------------|-----------------------------|
| USPQ-4B05 | USPQ-4B05 PKG          | Standard Board | USPQ-4B05 Power Dissipation |
| CCOT 24   | SSOT-24 PKG            | Standard Board | SSOT 24 Power Dissipation   |
| SSOT-24   | <u>5501-24 PKG</u>     | Standard Board | 5501-24 Power Dissipation   |
| SOT-23    | SOT-23 PKG             | Standard Board | SOT-23 Power Dissipation    |

## ■MARKING RULE

### ●SSOT-24 / USPQ-4B05



SSOT-24(Mark on bar view)



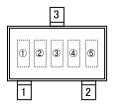
USPQ-4B05 (Mark on bar view)

### ①: represents type and the second decimal place of the output voltage

| Туре                                   | SYMBOL | Output Voltage Range(V) | Product Series  |  |
|----------------------------------------|--------|-------------------------|-----------------|--|
|                                        | В      | 1.20~2.15               |                 |  |
| With CE function and CL Auto-Discharge | D      | 2.20~3.15               | VCC2274****     |  |
|                                        | F      | 3.20~4.15               | XC6237A****-G   |  |
|                                        | K      | 4.20~5.00               |                 |  |
|                                        | Р      | 1.20~2.15               |                 |  |
| Mish OF two stiess                     | S      | 2.20~3.15               | VCC227D***** C  |  |
| With CE function                       | U      | 3.20~4.15               | - XC6237B****-G |  |
|                                        | Х      | 4.20~5.00               |                 |  |

<sup>\*</sup> Mark on bar view

#### 2: represents output voltage


| SYMBOL |      | Output Voltage(V) |      |      | SYMBOL | Output Voltage(V) |      | SYMBOL |      | Output V | oltage(V | ")   |      |      |
|--------|------|-------------------|------|------|--------|-------------------|------|--------|------|----------|----------|------|------|------|
| Α      | 1.20 | 2.20              | 3.20 | 4.20 | K      | 1.55              | 2.55 | 3.55   | 4.55 | Т        | 1.90     | 2.90 | 3.90 | 4.90 |
| В      | 1.25 | 2.25              | 3.25 | 4.25 | L      | 1.60              | 2.60 | 3.60   | 4.60 | U        | 1.95     | 2.95 | 3.95 | 4.95 |
| С      | 1.30 | 2.30              | 3.30 | 4.30 | М      | 1.65              | 2.65 | 3.65   | 4.65 | V        | 2.00     | 3.00 | 4.00 | 5.00 |
| D      | 1.35 | 2.35              | 3.35 | 4.35 | N      | 1.70              | 2.70 | 3.70   | 4.70 | Х        | 2.05     | 3.05 | 4.05 | -    |
| E      | 1.40 | 2.40              | 3.40 | 4.40 | Р      | 1.75              | 2.75 | 3.75   | 4.75 | Υ        | 2.10     | 3.10 | 4.10 | -    |
| F      | 1.45 | 2.45              | 3.45 | 4.45 | R      | 1.80              | 2.80 | 3.80   | 4.80 | Z        | 2.15     | 3.15 | 4.15 | -    |
| Н      | 1.50 | 2.50              | 3.50 | 4.50 | S      | 1.85              | 2.85 | 3.85   | 4.85 |          |          |      |      |      |

③,④: represents production lot number.01 $\sim$ 09, 0A $\sim$ 0Z, 11 $\sim$ 9Z, A1 $\sim$ A9, AA $\sim$ AZ, B1 $\sim$ ZZ in order. (G, I, J, O, Q, W excluded) \* No character inversion used.

# XC6237 Series

## **■**MARKING RULE

#### ●SOT-23



SOT-23

#### 1: represents products series

| Туре                             | SYMBOL | Product Series |  |  |  |
|----------------------------------|--------|----------------|--|--|--|
| 3pin regulator (Not CE function) | 7      | XC6237C****-G  |  |  |  |

#### 2: represents type and the second decimal place of the output voltage

| SYMBOL | Output Voltage Range(V) | Product Series                  |  |  |  |  |
|--------|-------------------------|---------------------------------|--|--|--|--|
| Α      | 1.20~2.15               | XC6237C12***-G ~ XC6237C21***-G |  |  |  |  |
| В      | 2.20~3.15               | XC6237C22***-G ~ XC6237C31***-G |  |  |  |  |
| С      | 3.20~4.15               | XC6237C32***-G ~ XC6237C41***-G |  |  |  |  |
| D      | 4.20~5.00               | XC6237C42***-G ~ XC6237C501**-G |  |  |  |  |

#### 3: represents output voltage

| SYMBOL | Output Voltage(V) |      | SYMBOL | Output Voltage(V) |   |      | SYMBOL | Output Voltage(V) |      |   |      |      |      |      |
|--------|-------------------|------|--------|-------------------|---|------|--------|-------------------|------|---|------|------|------|------|
| А      | 1.20              | 2.20 | 3.20   | 4.20              | K | 1.55 | 2.55   | 3.55              | 4.55 | Т | 1.90 | 2.90 | 3.90 | 4.90 |
| В      | 1.25              | 2.25 | 3.25   | 4.25              | L | 1.60 | 2.60   | 3.60              | 4.60 | U | 1.95 | 2.95 | 3.95 | 4.95 |
| С      | 1.30              | 2.30 | 3.30   | 4.30              | М | 1.65 | 2.65   | 3.65              | 4.65 | V | 2.00 | 3.00 | 4.00 | 5.00 |
| D      | 1.35              | 2.35 | 3.35   | 4.35              | N | 1.70 | 2.70   | 3.70              | 4.70 | Χ | 2.05 | 3.05 | 4.05 | -    |
| E      | 1.40              | 2.40 | 3.40   | 4.40              | Р | 1.75 | 2.75   | 3.75              | 4.75 | Υ | 2.10 | 3.10 | 4.10 | -    |
| F      | 1.45              | 2.45 | 3.45   | 4.45              | R | 1.80 | 2.80   | 3.80              | 4.80 | Z | 2.15 | 3.15 | 4.15 | -    |
| Н      | 1.50              | 2.50 | 3.50   | 4.50              | S | 1.85 | 2.85   | 3.85              | 4.85 |   |      |      |      |      |

45 represents production lot number.01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order. (G, I, J, O, Q, W excluded)\* No character inversion used.

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.

单击下面可查看定价,库存,交付和生命周期等信息

>>Torex Semiconductor(特瑞仕)