TECHNICAL DATA

TOSHIBA PHOTOCOUPLER

6 N 1 3 7

GaA_ℓAs IRDE & PHOTO IC

(6N137)

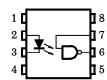
DEGITAL LOGIC ISOLATION.

TELE-COMMUNICATION.

ANALOG DATA EQUIPMENT CONTROL

The TOSHIBA 6N137 consist of a high emitting diode and a one chip photo IC. This unit is 8-lead DIP package.

LSTTL/TTL Compatible: 5V Supply


Ultra High Speed : 10 MBd

Guaranteed Performance Over Temperature : 0 °C to 70 °C

High Isolation Voltage : 2500Vrms Min.

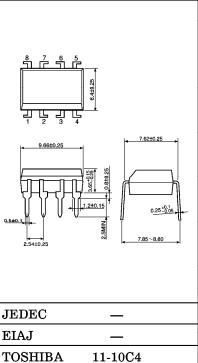
UL Recognized : UL1577, File No. E67349

PIN CONFIGURATIONS (TOP VIEW)

1. N.C.

4. N.C.

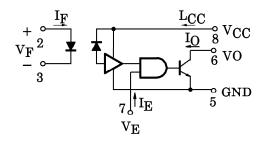
5. GND


2. ANODE

6. OUTPUT (OPEN COLLECTOR)

3. CATHODE

7. ENABLE 8. VCC


Unit in mm

Weight: 0.54g

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Input Current, Low Level Each Channel	I_{FL}	0	250	μ A
Input Current, High Level Each Channel	$I_{ m FH}$	7	20	mA
High Level Enable Voltage	$ m v_{EH}$	2.0	v_{CC}	V
Low Level Enable Voltage (Output High)	$ m V_{EL}$	0	0.8	V
Supply Voltage, Output	v_{CC}	4.5	5.5	V
Fan Out (TTL LOAD)	N	_	8	_
Operating Temperature	Ta	0	70	°C

TRUTH TABLE

INPUT	ENABLE	OUTPUT
H	H	L
L	H	H
H	${f L}$	${f H}$
${f L}$	${f L}$	${ m H}$

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.). please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve life threatening or critical application, including but not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA cannot accept and hereby disclaims liability or any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

	6N137 – 1	
()	1996 – 4 – 8	
0	1996 – 4 – 8	

TECHNICAL DATA

(6N137)

MAXIMUM RATINGS

CHARACTERISTIC		SYMBOL	RATING	UNIT
Forward Current		$I_{\mathbf{F}}$	20	mA
囝	Pulse Forward Current (Note 1)	I_{FP}	40	mA
Т	Reverse Voltage	$V_{\mathbf{R}}$	5	V
Output Current		IO	50	mA
Output Voltage		v_0	7	V
Supply Voltage (1 minute Maximum)		v_{CC}	7	V
Enable Input Voltage (Not to exceed V _{CC} by more than 500mV)		$ m V_{EH}$	5.5	v
Output Collector Power Dissipation		PO	85	mW
Operating Temperature Range		$T_{ m opr}$	0~70	°C
Storage Temperature Range		$ m T_{stg}$	-55~125	°C
Lead Solder Temperature (10s) (Note 2)		T_{sol}	260	°C

Note 1:50% duty cycle, 1ms Pulse width.

Note 2: Soldering portion of lead: up to 2mm from the body of the device.

PRECAUTION

Please be careful of the followings.

A ceramic capacitor $(0.1\mu\mathrm{F})$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1cm.

6N137 – 2	
1996 – 4 – 8	
'	

TECHNICAL DATA

(6N137)

ELECTRICAL CHARACTERISTICS

OVER RECOMMENDED TEMPERATURE ($Ta = 0 \sim 70^{\circ}C$ Unless otherwise noted)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	**TYP.	MAX.	UNIT
High Level Output Current	$I_{ m OH}$	V_{CC} =5.5V, V_{O} =5.5V I_{F} =250 μ A, V_{E} =2.0V	_	1	250	μ A
Low Level Output Voltage	V _{OL}	$V_{\rm CC}$ =5.5V, $I_{\rm F}$ =5mA $V_{\rm EH}$ =2.0V $I_{\rm OL}$ (Sinking) =13mA	_	0.4	0.6	V
High Level Enable Current	I_{EH}	$V_{CC} = 5.5V, V_{E} = 2.0V$	_	-1.0	_	mA
Low Level Enable Current	${ m I}_{ m EL}$	$V_{CC} = 5.5V, V_{E} = 0.5V$	_	-1.6	-2.0	mA
High Level Supply Current	I_{CCH}	$V_{CC} = 5.5V, I_{F} = 0, V_{E} = 0.5V$	_	7	15	mA
Low Level Supply Current	I_{CCL}	$V_{\rm CC} = 5.5 \text{V}, \text{ I}_{ m F} = 10 \text{mA}$ $V_{ m E} = 0.5 \text{V}$	_	12	18	mA
Resistance (Input-Output) (Note)	R _{I-O}	V _{I-O} =500V, Ta=25°C R.H. \(\leq 60\%\)	_	1012	_	Ω
Capacitance (Input-Output) (Note)	C _{I-O}	f=1MHz, Ta=25°C	_	0.6	_	pF
Input Forward Voltage	$V_{\mathbf{F}}$	I _F =10mA, Ta=25°C	_	1.65	1.75	V
Input Reverse Breakdown Voltage	$BV_{\mathbf{R}}$	I _R =10μA, Ta=25°C	5	_	_	V
Input Capacitance	c_{IN}	$V_{\mathbf{F}} = 0$, $\mathbf{f} = \mathbf{1MHz}$		45		рF
Current Transfer Ratio	CTR	I_F =5.0mA, R_L =100 Ω		1000		%

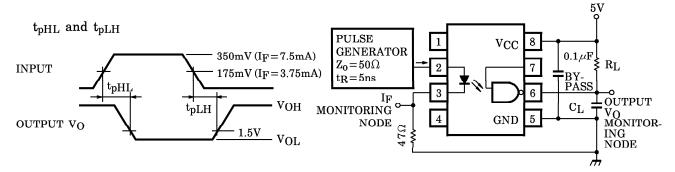
 $\%\ \%$ All typical values are at $V_{\mbox{\footnotesize{CC}}}\!=\!5V,\, \mbox{\footnotesize{Ta}}\!=\!25\mbox{\footnotesize{^{\circ}}}\mbox{\footnotesize{C}}$

Note: Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.

6N137 – 3	
1996 – 4 – 8	

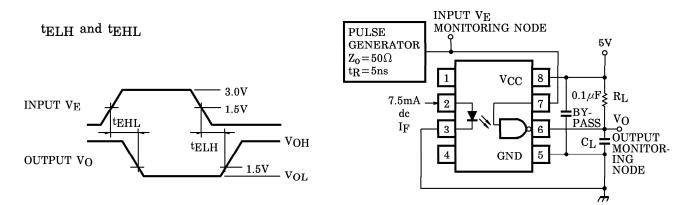
TECHNICAL DATA

(6N137)


SWITCHING CHARACTERISTICS (Ta = 25° C, $V_{CC} = 5V$)

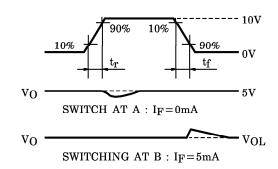
CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time to High Output Level	$t_{ m pLH}$	1	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	60	75	ns
Propagation Delay Time to Low Output Level	$t_{ m pHL}$	1	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	60	75	ns
Output Rise-Fall Time (10-90%)	t _r , t _f	_	R_L =350 Ω , C_L =15pF I_F =7.5mA		30		ns
Propagation Delay Time of Enable from V_{EH} to V_{EL}	tELH	2	$egin{array}{l} R_L\!=\!350\Omega,\ C_L\!=\!15pF \ I_F\!=\!7.5mA \ V_{EH}\!=\!3.0V \ V_{EL}\!=\!0.5V \ \end{array}$	_	25	_	ns
Propagation Delay Time of Enable from VEL to VEH	tEHL	2	$\begin{array}{l} R_L\!=\!350\Omega,\ C_L\!=\!15pF \\ I_F\!=\!7.5mA \\ V_{EH}\!=\!3.0V \\ V_{EL}\!=\!0.5V \end{array}$. —	25	<u> </u>	ns
Common Mode Transient Immunity at Logic High Output Level	CM_{H}	3	$egin{array}{c} V_{CM}\!=\!10V \ R_L\!=\!350\Omega \ V_{O(min.)}\!=\!2V \ I_F\!=\!0\text{mA} \end{array}$	_	200	_	V/μs
Common Mode Transient Immunity at Logic Low Output Level	CM_{L}	3	$egin{array}{c} V_{CM}\!=\!10V \\ R_{L}\!=\!350\Omega \\ V_{O(max.)}\!=\!0.8V \\ I_{F}\!=\!5\text{mA} \end{array}$	_	-500	_	V/μs

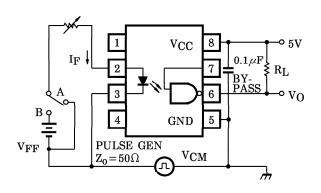
6N137 – 4	
1996 – 4 – 8	


TECHNICAL DATA

(6N137) TEST CIRCUIT 1.

· CL is approximately 15pF which includes probe and stray wiring capacitance.

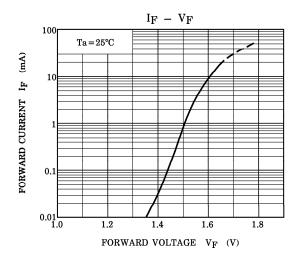

TEST CIRCUIT 2.

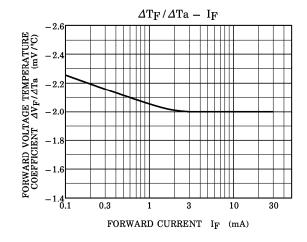


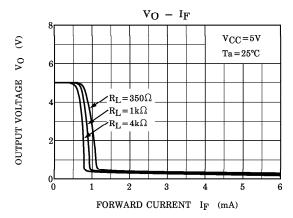
· CL is approximately 15pF which includes prove and stray wiring capacitance.

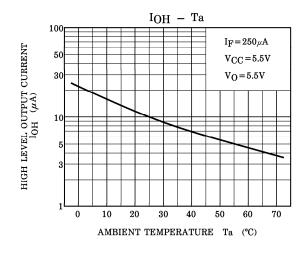
TEST CIRCUIT 3.

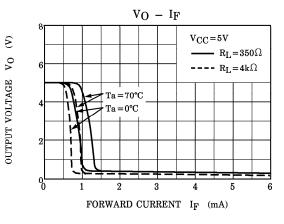
Transient Immunity and Typical Waveforms

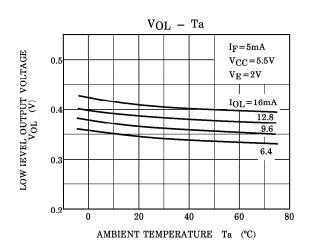


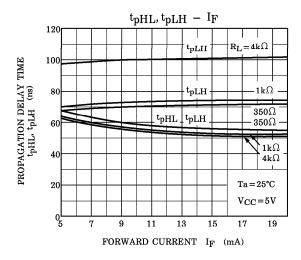


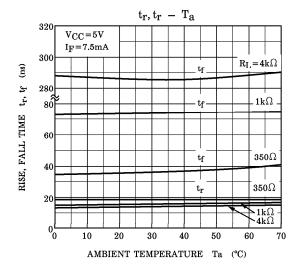

6N137 –	5
1996 – 4	1 – 8
roshiba	CORPORATION

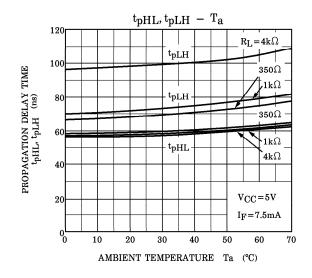

TECHNICAL DATA

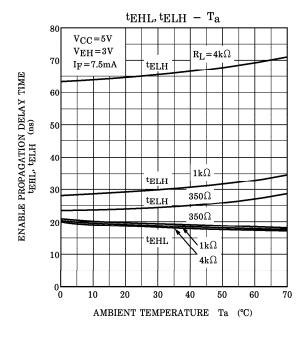

(6N137)








6N137 – 6
1996 – 4 – 8
TOSHIBA CORPORATION


TECHNICAL DATA

(6N137)

6N137 – 7*
1996 – 4 – 8
TOSHIBA CORPORATION

单击下面可查看定价,库存,交付和生命周期等信息

>>Toshiba(东芝)